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On uniqueness of meromorphic functions
sharing three values and a set

consisting of two small meromorphic functions

by Xiao-Min Li (Qingdao) and Hong-Xun Yi (Jinan)

Abstract. We deal with a uniqueness theorem of two meromorphic functions that
share three values with weights and also share a set consisting of two small meromorphic
functions. Our results improve those by G. Brosch, I. Lahiri & P. Sahoo, T. C. Alzahary
& H. X. Yi, P. Li & C. C. Yang, and others.

1. Introduction and main results. In this paper, by meromorphic
functions we will always mean meromorphic functions in the complex plane.
We adopt the standard notations of the Nevanlinna theory of meromorphic
functions as explained in [6], [10] and [15]. It will be convenient to let E de-
note any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence. For a nonconstant meromorphic function h,
we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying

S(r, h) = o(T (r, h)) (r →∞, r 6∈ E).

Let f(z) and g(z) be two nonconstant meromorphic functions, and let a
be a value in the extended plane. We say that f and g share the value a CM
provided that f and g have the same a-points with the same multiplicities.
Similarly, we say that f and g share the value a IM provided that f and g
have the same a-points ignoring multiplicities (see [15]). We say that a is a
small function of f if a is a meromorphic function satisfying T (r, a) = S(r, f)
(see [15]). If a is a small function such that N(r, 1/(f − a)) = S(r, f), then
we say that a is an exceptional small function of f (see [11]). If α1, α2, α3,
α4 are four small functions of g such that f = (α1g+α2)/(α3g+α4), where
α1α4 − α2α3 6≡ 0, then f is said to be a quasi-Möbius transformation of g
(see [15]). We also need the following definition.
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Definition 1.1 (see [1, Definition 1]). Let p be a positive integer and
a ∈ C∪ {∞}. Then we denote by Np)(r, 1/(f − a)) the counting function of
those zeros of f−a (counted with proper multiplicities) whose multiplicities
are not greater than p, and by Np)(r, 1/(f − a)) the corresponding reduced
counting function (ignoring multiplicities). By N(p(r, 1/(f − a)) we denote
the counting function of those zeros of f − a (counted with proper multi-
plicities) whose multiplicities are not less than p, and by N (p(r, 1/(f − a))
the corresponding reduced counting function (ignoring multiplicities).

Let f and g be two nonconstant meromorphic functions, and let a be a
value in the extended plane. Let S be a subset of distinct elements in the
extended plane. We define Ef (S) =

⋃
a∈S{z : f(z) = a}, where each a-point

of f with multiplicity m is repeated m times in Ef (S) (see [4]). Similarly, we
define Ef (S) =

⋃
a∈S{z : f(z) = a}, where each point in Ef (a) is counted

only once. We say that f and g share the set S CM provided Ef (S) = Eg(S).
We say that f and g share the set S IM provided Ef (S) = Eg(S). Below, the
notation f = a⇒ g = a means Ef ({a}) ⊆ Eg({a}). If S is a set consisting
of small meromorphic functions of f and g, then the above definitions have
the same meanings.

In 1989, G. Brosch proved the following theorem.

Theorem A (see [3]). Let f and g be two distinct nonconstant mero-
morphic functions such that f and g share 0, 1, ∞ CM , and let a and b
be two distinct finite complex numbers such that a, b 6∈ {0, 1}. If f − a and
g − b share 0 IM , then f is a Möbius transformation of g.

Regarding Theorem A, it is natural to ask the following two questions.

Question 1.1 (see [8])). Is it possible to relax in any way the nature of
sharing any one of the values 0, 1 and ∞ in Theorem A?

Question 1.2. What can be said if the two distinct finite complex num-
bers a (6= 0, 1) and b ( 6= 0, 1) are replaced with two small meromorphic
functions a ( 6≡ 0, 1,∞) and b (6≡ 0, 1,∞) respectively?

In this paper, we will deal with these two questions. To this end we
employ the idea of weighted sharing of values which measures how close a
shared value is to being shared IM or to being shared CM. The notion is
explained in the following definition.

Definition 1.2 (see [7, Definition 4]). Let k be a nonnegative integer or
infinity. For any a ∈ C ∪ {∞}, we denote by Ek(a, f) the set of all a-points
of f, where an a-point of multiplicity m is counted m times if m ≤ k, and
k+ 1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f, g share the value
a with weight k.
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Remark 1.1. Definition 1.2 implies that if f, g share a value a with
weight k, then z0 is a zero of f − a with multiplicity m (≤ k) if and only
if it is a zero of g − a with multiplicity m (≤ k), and z0 is a zero of f − a
with multiplicity m (> k) if and only if it is a zero of g−a with multiplicity
n (> k), where m is not necessarily equal to n. Throughout this paper, we
write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly, if f, g share (a, k), then f, g share (a, p) for all integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share
(a, 0) or (a,∞), respectively.

Recently, I. Lahiri and P. Sahoo proved the following theorem which
improves Theorem A and Theorem 1 in [2], and deals with Question 1.1.

Theorem B (see [9, Theorem 1.1]). Let f and g be two distinct noncon-
stant meromorphic functions such that f and g share (a1, 1), (a2,m) and
(a3, k), where {a1, a2, a3} = {0, 1,∞}, and m and k are two positive integers
satisfying (m−1)(mk−1) > (1 +m)2, and let a and b be two distinct finite
complex numbers such that a, b 6∈ {0, 1}. If f−a and g−b share 0 IM , then
f and g share 0, 1 and ∞ CM , and f −a and g− b share 0 CM. Moreover ,
f and g satisfy one of the following nine relations:

(i) fg = 1 with ab = 1; (vi) f = (1−a)g + a with ab = a+ b;

(ii) f + g = 1 with a+ b = 1; (vii) f =
(1− a)g

1− b
+
b− a
b− 1

;

(iii) f =
g

g−1
with ab = a+ b; (viii) f =

ag

g + a− 1
with a+ b = 1;

(iv) f = ag with ab = 1; (ix) f =
a(b− 1)g

(b− a)g + (a− 1)b
.

(v) f =
ag

b
;

In 1997, P. Li and C. C. Yang proved the following result dealing with
Question 1.2.

Theorem C (see [11, Theorem 6]). Let f and g be two distinct noncon-
stant meromorphic functions such that f and g share 0, 1, ∞ CM , and let
a (6≡ 0, 1,∞) and b (6= 0, 1,∞) be two small meromorphic functions of f
such that a 6≡ b. If f − a and g − b share 0 CM , then f is a quasi-Möbius
transformation of g.

Regarding Theorem C, it is natural to ask the following two questions.

Question 1.3. What can be said if the condition “f − a and g − b
share 0 CM” in Theorem C is replaced with the condition “f − a and g − b
share 0 IM”?
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Question 1.4. What can be said if the condition “f − a and g − b
share 0 CM” in Theorem C is replaced with the condition “f and g share
the set {a, b} IM”?

In this paper, we will prove the following theorems, which improve The-
orems A–C, and deal with Questions 1.1, 1.3 and 1.4.

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic
functions such that f and g share (0, k1), (1, k2) and (∞, k3), where k1, k2

and k3 are three positive integers satisfying

(1.1) k1k2k3 > k1 + k2 + k3 + 2,

and let a ( 6≡ 0, 1,∞) and b (6≡ 0, 1,∞) be two small meromorphic functions
of f such that a 6≡ b. Suppose that f and g share the set {a, b} IM. Then

(I) If f is a quasi-Möbius transformation of g, then f and g satisfy one
of the following fifteen relations:

(i) fg = 1 with ab = 1; (ix) f = (1−a)g+a with ab= a+ b;

(ii) f + g = 1 with a+ b = 1; (x) f =
(1− a)g

1− b
+
b− a
b− 1

;

(iii) f =
g

g−1
with ab= a+ b; (xi) f = (1− b)g+ b with ab= a+ b;

(iv) f =
bg

a
; (xii) f =

ag

g + a− 1
with a+ b = 1;

(v) f = ag with ab = 1; (xiii) f =
b(a− 1)g

(a− b)g + (b− 1)a
;

(vi) f =
ag

b
; (xiv) f =

bg

g + b− 1
with a+ b = 1;

(vii) f = bg; (xv) f =
a(b− 1)g

(b− a)g + (a− 1)b
.

(viii) f =
(1− b)g

1− a
+
a− b
a− 1

;

(II) If f is not a quasi-Möbius transformation of g, then a and b are
constants, and there exists a nonconstant entire function γ such that f and
g are given by one of the following six expressions:

(i) f =
e3γ − 1
eγ − 1

, g =
e−3γ − 1
e−γ − 1

with a = 3 and b = 3
4 , or a = 3

4 and

b = 3;

(ii) f =
e3γ − 1
e2γ − 1

, g =
e−3γ − 1
e−2γ − 1

with a = 3
2 and b = −3, or vice versa;
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(iii) f =
eγ − 1
e3γ − 1

, g =
e−γ − 1
e−3γ − 1

with a = 1
3 and b = 4

3 , or vice versa;

(iv) f =
e2γ − 1
e3γ − 1

, g =
e−2γ − 1
e−3γ − 1

with a = 2
3 and b = −1

3 , or vice versa;

(v) f =
e2γ − 1
e−γ − 1

, g =
e−2γ − 1
eγ − 1

with a = −2 and b = 1
4 , or vice versa;

(vi) f =
eγ − 1
e−2γ − 1

, g =
e−γ − 1
e2γ − 1

with a = −1
2 and b = 4, or vice versa.

Using the idea of weighted sharing, we will prove the following theo-
rem which complements Theorem C and Theorem 1 in [2], and deals with
Questions 1.1–1.3.

Theorem 1.2. Let f and g be two distinct nonconstant entire functions
such that f and g share (0, 1) and (1,m), where m (≥ 2) is a positive
integer , and let a (6≡ 0, 1,∞) and b (6≡ 0, 1,∞) be two small meromorphic
functions of f such that a 6≡ b. If f = a ⇒ g = b, then f and g satisfy
one of the relations I(i), I(iii), I(xii), I(xv), II(i) and II(v) of Theorem 1.1,
where a = 3/4 and b = 3 in II(i), and a = 1/4 and b = −2 in II(v).

The following example of Gundersen (see [5]) shows that the condition
that f, g share 0, 1, ∞ CM in Theorem A cannot be replaced with the
condition that f, g share 0, 1, ∞ IM. This example also shows that the
condition that f, g share (0, k1), (1, k2) and (∞, k3) in Theorem 1.1 cannot
be replaced with the condition that f, g share 0, 1, ∞ IM.

Example 1.1. Let

f(z) =
ez + 1

(ez − 1)2
, g(z) =

(ez + 1)2

8(ez − 1)
.

Then f and g share 0, 1, ∞ IM. As

f(z) +
1
2

=
e2z + 3

2(ez − 1)2
, g(z)− 1

4
=

e2z + 3
8(ez − 1)

,

we see that f + 1/2 and g − 1/4 share 0 CM. However, f is not a bilinear
transformation of g.

2. Some lemmas

Lemma 2.1 (see [13, Lemma 2.6]). Let f and g be two distinct non-
constant meromorphic functions such that f and g share 0, 1 and ∞ IM.
If f is quasi-Möbius transformation of g, then f and g satisfy one of the
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following relations:
(i) f · g = 1; (iv) f = cg;

(ii) (f − 1)(g − 1) = 1; (v) f − 1 = c(g − 1);

(iii) f + g = 1; (vi) [(c− 1)f + 1] · [(c− 1)g − c] = −c;
where c (6≡ 0, 1,∞) is a small meromorphic function of f.

Let f and g be two distinct nonconstant meromorphic functions, and
let a be a value in the extended plane. We denote by N0(r, a) the reduced
counting function of the common a-points of f and g. We say that f and g
share the value a IM ∗ if

N

(
r,

1
f − a

)
+N

(
r,

1
g − a

)
− 2N0(r, a) = S(r, f).

Let NE(r, a) “count” those points in N(r, 1/(f − a)), where a is taken by
f and g with the same multiplicity, and each point is counted only once,
and N(r, 1/(f −∞)) means N(r, f). We say that f and g share the value a
CM ∗ if

N

(
r,

1
f − a

)
+N

(
r,

1
g − a

)
− 2NE(r, a) = S(r, f).

If a (6≡ 0, 1,∞) is a small meromorphic function of f and g, the above
definitions are still valid. Let f and g share 0, 1 and ∞ IM. We denote by
N0(r) the counting function of the zeros of f − g not containing the zeros
of f, 1/f and f − 1.

Lemma 2.2 (see [16, Theorem 1.1]). Let f and g be two nonconstant
meromorphic functions, and let a1, a2, a3, a4 and a5 be five distinct ele-
ments in the set {S(f)∩S(g)}∪{∞}, where S(f) is the set of meromorphic
functions which are small functions of f. If f and g share a1, a2, a3, a4

and a5 IM ∗, then f = g.

Lemma 2.3 (see [17, Lemma 2.6]). Let f and g be two distinct noncon-
stant meromorphic functions sharing (0, k1), (1, k2) and (∞, k3), where k1,
k2 and k3 are three positive integers satisfying (1.1). Then

N (2

(
r,

1
f

)
+N (2

(
r,

1
f − 1

)
+N (2(r, f) = S(r, f).

Lemma 2.4 (see [18, Lemma 6]). Let f1 and f2 be nonconstant mero-
morphic functions satisfying N(r, fj) + N(r, 1/fj) = S(r) (j = 1, 2). Then
either N0(r, 1; f1, f2) = S(r) or there exist two integers s, t (|s| + |t| > 0)
such that fs1f

t
2 = 1. Here and below , N0(r, 1; f1, f2) denotes the reduced

counting function of f1 and f2 related to the common 1-points and T (r) =
T (r, f1) + T (r, f2), S(r) = o(T (r)) (r → ∞, r 6∈ E) only depending on f1

and f2.
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Lemma 2.5 (see [18, proof of Theorems 1 and 2]). Let f and g be two
distinct nonconstant meromorphic functions sharing 0, 1 and ∞ CM , and
let N0(r) 6= S(r, f). If f is a fractional linear transformation of g, then
N0(r) = T (r, f)+S(r, f). If f is not a fractional linear transformation of g,
then N0(r) ≤ 1

2 T (r, f) + S(r, f), and f and g satisfy one of the following
three relations:

(i) f =
e(k+1)γ − 1
esγ − 1

, g =
e−(k+1)γ − 1
e−sγ − 1

,

(ii) f =
esγ − 1

e(k+1)γ − 1
, g =

e−sγ − 1
e−(k+1)γ − 1

,

(iii) f =
esγ − 1

e−(k+1−s)γ − 1
, g =

e−sγ − 1
e(k+1−s)γ − 1

,

where γ is a nonconstant entire function, s and k (≥ 2) are positive integers
such that s and k + 1 are relatively prime and 1 ≤ s ≤ k.

Lemma 2.6 (see [18]). Let s (> 0) and t be relatively prime integers,
and let c be a finite complex number such that cs = 1. Then there exists one
and only one common zero of ωs − 1 and ωt − c.

Lemma 2.7 (see [14]). Let f be a nonconstant meromorphic function,
and let F =

∑p
k=0 akf

k/
∑q

j=0 bjf
j be an irreducible rational function in

f with constant coefficients {ak} and {bj}, where ap 6= 0 and bq 6= 0. Then
T (r, F ) = d T (r, f) +O(1), where d = max {p, q}.

Lemma 2.8 (see [15, Theorem 1.62]). Let f1, . . . , fn be nonconstant
meromorphic functions, and let fn+1 ( 6≡ 0) be a meromorphic function such
that

∑n+1
i=1 fi = 1. If there exists a subset I ⊆ R+ satisfying mes I = ∞

such that
n+1∑
i=1

N(r, 1/fi) + n

n+1∑
i=1
i 6=j

N(r, fi)

< (λ+ o(1))T (r, fj) (r →∞, r ∈ I, 1 ≤ j ≤ n),

where λ < 1, then fn+1 = 1.

Lemma 2.9. Let f and g be two distinct nonconstant meromorphic func-
tions such that f and g share (0, k1), (1, k2) and (∞, k3), where k1, k2 and
k3 are three positive integers satisfying (1.1), and let a ( 6≡ 0, 1,∞) be a small
meromorphic function of f. Then either

(2.1) N(3(r, 1/(f − a)) +N(3(r, 1/(g − a)) = S(r, f),
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or f and g are given by one of the following six expressions:

(i) g = af ; (iv) f + (a− 1)g = a;

(ii) g + (a− 1)f = a; (v) (g − a)(f + a− 1) = a(1− a);

(iii) f = ag; (vi) (f − a)(g + a− 1) = a(1− a).

Proof. First, from the condition that f and g share 0, 1, ∞ IM, we have
T (r, f) ≤ 3T (r, g) + S(r, f) and T (r, g) ≤ 3T (r, f) + S(r, g), and so

(2.2) S(r, g) = S(r, f).

Let

(2.3) (f − 1)/(g − 1) = α and f/g = h.

Then from (2.2), (2.3) and Lemma 2.3 we get

(2.4) N(r, 1/α) +N(r, α) = S(r, f) and N(r, 1/h) +N(r, h) = S(r, f).

If one of α = h, α = 1 and h = 1 holds, from (2.3) we get f = g, which
contradicts the assumption of Lemma 2.9. Next we suppose that α 6≡ h,
α 6≡ 1 and h 6≡ 1. Applying (2.3) we deduce

(2.5) f =
1− α−1

h−1 − α−1
and g =

1− α
h− α

.

We discuss the following five cases.

Case 1. Suppose that a′h + ah′ = 0. Then (ah)′ = 0, and so ah = A1,
where A1 (6= 0) is a finite complex number. Applying (2.3), we have

(2.6) f/g = A1/a and T (r, h) = S(r, f).

Since

(2.7) h− 1 = (f − g)/g,

from (2.2), (2.6), (2.7) and the condition that f and g share 1 IM, we have

N(r, 1/(f − 1)) = N(r, 1/(g − 1)) ≤ N(r, 1/(h− 1))(2.8)
≤ T (r, h) +O(1) = S(r, f).

From (2.6) and f 6≡ g, and the condition that f and g share 1 IM, we get

(2.9) A1/a 6≡ 1 and N(r, 1/(g − a/A1)) = S(r, f).

If a/A1 = a, then A1 = 1, and so from (2.6) we have (i) of Lemma 2.9. If
a/A1 6≡ a, from (2.2), (2.8), (2.9) and Nevanlinna’s three small functions
theorem (see [15, Theorem 1.36]), we get

(2.10) T (r, g) = N(r, 1/(g − a)) + S(r, f) = N(r, 1/(g − a)) + S(r, f).

From (2.10) we get N(2(r, 1/(g − a)) = S(r, f), and so

(2.11) N(3(r, 1/(g − a)) = S(r, f).
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Case 2. Suppose that (a − 1)α′ + a′α = 0. Then ((a − 1)α)′ = 0, and
so (a − 1)α = A2, where A2 ( 6= 0) is a finite complex number. From this
and (2.3) we have

(2.12) (f − 1)/(g − 1) = A2/(a− 1).

From (2.12), the condition f 6≡ g and the condition that f and g share 0
IM, we get

(2.13) A2/(a− 1) 6≡ 1

and

N(r, 1/f) = N(r, 1/g) ≤ N
(
r,

1
A2/(a− 1)− 1

)
(2.14)

≤ T (r, a) +O(1) = S(r, f).

Since (2.12) can be rewritten as

(2.15) f =
A2

a− 1
·
(
g − A2 − (a− 1)

A2

)
,

from (2.13), (2.15) and the condition that f and g share 0 IM, we get

(2.16)
A2− (a−1)

A2
6≡ 0 and N

(
r, 1
/(

g− A2− (a−1)
A2

))
= S(r, f).

If (A2− (a−1))/A2 = a, then A2 = −1. From this and (2.12) we have (ii) of
Lemma 2.9. If (A2 − (a− 1))/A2 6≡ a, from (2.14), (2.16) and Nevanlinna’s
three small functions theorem, we get (2.10) and (2.11).

Case 3. Suppose that a′h−1 + a(h−1)′ = 0. Proceeding as in Case 1, we
get (iii) of Lemma 2.9.

Case 4. Suppose that (a−1)(α−1)′+a′α−1 = 0. Proceeding as in Case 2,
we get (iv) of Lemma 2.9.

Case 5. Suppose that

a′h+ ah′ 6≡ 0, (a− 1)α′ + a′α 6≡ 0,(2.17)
a′h−1 + a(h−1)′ 6≡ 0, (a− 1)(α−1)′ + a′α−1 6≡ 0.(2.18)

From (2.5) we get

(2.19) g − a =
1− ah+ (a− 1)α

h− α
.

Let

(2.20) ω = 1− ah+ (a− 1)α.

By differentiating both sides of (2.20) twice, we get

(2.21) ω′ =
{

(a− 1) · α
′

α
+ a′

}
· α−

(
a′ + a · h

′

h

)
· h,
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(2.22) ω′′ =
{

2a′ · α
′

α
+(a−1) · α

′′

α
+ a′′

}
· α−

(
a′′+ 2a′ · h

′

h
+a · h

′′

h

)
·h.

We discuss the following three subcases.

Subcase 5.1. Suppose that D = 0, where

(2.23) D =

∣∣∣∣∣∣ −a′ − a · h′

h (a− 1) · α′

α + a′

−a′′ − 2a′ · h′

h − a ·
h′′

h 2a′ · α′

α + (a− 1) · α′′

α + a′′

∣∣∣∣∣∣ .
Then from (2.23) we get

(2.24) (a′h+ah′) ·((a−1) ·α′+a′ ·α)′ = ((a−1) ·α′+a′ ·α) ·(a′h+ah′)′.

From (2.17) and (2.24) we get

(2.25)
((a− 1)α′ + a′α)′

(a− 1)α′ + a′α
=

(a′h+ ah′)′

a′h+ ah′
.

From (2.25) we get

(2.26) (a− 1)α′ + a′α = A3 · (a′h+ ah′),

where A3 (6= 0) is a finite complex number. From (2.26) we deduce

(2.27) (a− 1) · α = A3ah+A4,

where A4 is a finite complex number. If there exists a subset I ⊆ R+ satis-
fying mes I =∞ such that T (r, α) = S(r, f) (r ∈ I, r →∞), then it follows
by (2.27) that T (r, h) = S(r, f) (r ∈ I, r →∞), and so from (2.5) we have
T (r, f) = S(r, f) (r ∈ I, r →∞), which is impossible. Thus from (2.27) we
have

(2.28) T (r, α) 6= S(r, f) and T (r, h) 6= S(r, f) (r 6∈ E, r →∞).

Next we put γ0 := α/h. If A4 6= 0, from (2.4), (2.27), (2.28) and Lemma 2.8
we get a contradiction. Thus A4 = 0. Applying (2.3) and (2.27) we have

(2.29)
f − 1
f

= γ0 ·
g − 1
g

,

where γ0 = (A3a)/(a−1). If N(r, f) 6= S(r, f), from (2.29) and the condition
that f and g share∞ IM, we get (A3a)/(a−1) = 1, and so it follows by (2.29)
that f = g, which is a contradiction. Thus

(2.30) N(r, f) = N(r, g) = S(r, f).

Since (2.29) can be rewritten as

(2.31)
f

g
·
(
g − γ0

γ0 − 1

)
=

1
1− γ0

,

from (2.31) and Lemma 2.3 we get

(2.32) N

(
r,

1
g − γ0/(γ0 − 1)

)
= S(r, f).
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If γ0/(γ0−1) 6≡ a, from (2.30), (2.32) and Nevanlinna’s three small functions
theorem we get (2.10) and (2.11). If γ0/(γ0 − 1) = a, then γ0 = a/(a − 1).
From this and (2.29) we get (v) of Lemma 2.9.

Subcase 5.2. Suppose that D1 = 0, where

(2.33) D1 =

∣∣∣∣∣∣ −a′ − a · h
′
1
h1

(a−1) · α
′
1
α1

+ a′

−a′′ − 2a′ · h
′
1
h1
− a · h

′′
1
h1

2a′ · α
′
1
α1

+ (a−1) · α
′′
1
α1

+ a′′

∣∣∣∣∣∣ ,
and h1 = h−1, α1 = α−1. From D1 = 0, in the same manner as in Sub-
case 5.1, we get (vi) of Lemma 2.9.

Subcase 5.3. Suppose that D 6≡ 0 and D1 6≡ 0, where D is defined
by (2.23), and D1 is defined by (2.33). First, we will prove (2.11). Let

(2.34) ω = 1− ah+ (a− 1)α.

By differentiating both sides of (2.34) two times we get

ω′ =
{

(a− 1) · α
′

α
+ a′

}
· α−

(
a′ + a · h

′

h

)
· h,(2.35)

ω′′ =
{

2a′ · α
′

α
+(a−1) · α

′′

α
+a′′

}
·α−

(
a′′+2a′ · h

′

h
+a · h

′′

h

)
·h.(2.36)

From (2.35) and (2.36) we get

(2.37) α =
Dα

D
and h =

Dh

D
,

where

Dα =

∣∣∣∣∣∣ −a′ − a · h′

h ω′

−a′′ − 2a′ · h′

h − a ·
h′′

h ω′′

∣∣∣∣∣∣ ,
Dh =

∣∣∣∣∣∣ω
′ (a− 1) · α′

α + a′

ω′′ 2a′ · α′

α + (a− 1) · α′′

α + a′′

∣∣∣∣∣∣ .
Substituting (2.37) into (2.34) we get

(2.38) ω + y1 · ω′ + y2 · ω′′ = 1,

where

y1 =
a(a− 1) · α′′

α + aa′′+ 2aa′ · α′

α + (1− a) ·
(
a′′+ 2a′ · h′

h + a · h′′

h

)
D

,(2.39)

y2 =
(a− 1)

(
a′ + a · h′

h

)
− a(a− 1) · α′

α − aa
′

D
.(2.40)
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From (2.2), (2.4), (2.23), (2.39), (2.40) and the lemma of logarithmic deriva-
tive (see [10, Corollary 2.3.4]), we get

(2.41) T (r, y1) + T (r, y2) = S(r, f).

On the other hand, from (2.4) we get

N(r, α/h)+N(r, h/α)≤N(r, α)+N(r, 1/h)+N(r, h)+N(r, 1/α)(2.42)
= S(r, f).

Noting that h/α 6≡ 1, from (2.42) and the second fundamental theorem, we
get

(2.43) T (r, h/α) = N

(
r,

1
h/α−1

)
+ S(r, f) = N

(
r,

1
h/α−1

)
+ S(r, f).

From (2.43) we deduce

(2.44) N(2

(
r,

1
h/α− 1

)
= S(r, f).

From (2.19), (2.34), (2.38), (2.41), (2.44) and the left equality of (2.4), we
get (2.11). Similarly, from D1 6≡ 0 we get

(2.45) N(3(r, 1/(f − a)) = S(r, f).

From (2.11) and (2.45) we have (2.1).
Lemma 2.9 is thus completely proved.

Lemma 2.10 (see [11, Theorem 3]). Let f and g be two distinct non-
constant meromorphic functions such that f and g share 0, 1 and ∞ CM ∗,
and let a ( 6≡ 0, 1,∞) be a small meromorphic function. If T (r, f) 6=
N(r, 1/(f − a)) + S(r, f), then one of the following cases will occur :

(i) f = ag and N(1, 1/(f − a)) +N(1, 1/(f − 1)) = S(r, f);
(ii) f − 1 = (1− a)(g − 1) and N(1, 1/(f − a)) +N(1, 1/f) = S(r, f);

(iii) (f−a)(g−1+a) = a(1−a) and N(r, 1/(f−a))+N(r, f) = S(r, f).

Let f and g be two distinct nonconstant meromorphic functions, and let
a (6≡ 0, 1,∞) and b (6≡ 0, 1,∞) be small meromorphic functions such that
a 6≡ b. We denote by N0(r, a, b) the reduced counting function of the common
zeros of f − a and g− b, and by N (l,k)(r, a, b) the reduced counting function
of those zeros of f − a with multiplicity l, and of g − b with multiplicity k.

Lemma 2.11 (see [12, Theorem 4.2]). Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞ CM. If there exists a
finite complex number a (6= 0, 1) such that a is not a Picard value of f,
and such that N1)(r, 1/(f − a)) ≤ uT (r, f) + S(r, f), where u < 1/3, then
N1)(r, 1/(f − a)) = 0, and f, g are given by one of the following nine ex-
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pressions:

(i) f =
e3γ − 1
eγ − 1

, g =
e−3γ − 1
e−γ − 1

with a = 3
4 ;

(ii) f =
e3γ − 1
e2γ − 1

, g =
e−3γ − 1
e−2γ − 1

with a = −3;

(iii) f =
eγ − 1
e3γ − 1

, g =
e−γ − 1
e−3γ − 1

with a = 4
3 ;

(iv) f =
e2γ − 1
e3γ − 1

, g =
e−2γ − 1
e−3γ − 1

with a = −1
3 ;

(v) f =
e2γ − 1
e−γ − 1

, g =
e−2γ − 1
eγ − 1

with a = 1
4 ;

(vi) f =
eγ − 1
e−2γ − 1

, g =
e−γ − 1
e2γ − 1

with a = 4;

(vii) f =
e2γ − 1
λ eγ − 1

, g =
e−2γ − 1
1
λ e
−γ − 1

with λ2 6= 1 and a2λ2 = 4(a− 1);

(viii) f =
eγ − 1
λe2γ − 1

, g =
e−γ − 1

1
λe
−2γ − 1

with λ 6= 1 and 4a(1− a)λ = 1;

(ix) f =
eγ − 1
λe−γ − 1

, g =
e−γ − 1
1
λe

γ − 1
with λ 6= 1 and (1− a)2 + 4aλ = 0;

where γ is a nonconstant entire function.

From Lemmas 2.3 and 2.9 we get the following result.

Lemma 2.12 (see [11, proof of Theorem 6]). Let f and g be two distinct
nonconstant meromorphic functions such that f and g share (0, k1), (1, k2)
and (∞, k3), where k1, k2 and k3 are three positive integers satisfying (1.1),
and let a ( 6≡ 0, 1,∞) and b (6≡ 0, 1,∞) be two small meromorphic functions
of f. If

(2.46) N (2,1)(r, a, b) +N (1,2)(r, a, b) = S(r, f)

and
N(r, 1/(f − a)) +N(r, 1/(g − b))− 2N0(r, a, b) = S(r, f),

then f is a quasi-Möbius transformation of g.

3. Proofs

Proof of Theorem 1.1. We discuss the following two cases.

Case 1. Suppose that f is a quasi-Möbius transformation of g. Then f
and g satisfy one of the six relations (i)–(vi) in Lemma 2.1. We discuss the
following two subcases.
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Subcase 1.1. Suppose that

(3.1) N0(r, a) 6= S(r, f).

Then from (3.1) and the six relations (i)–(vi) in Lemma 2.1 we see that f−a
and g− a share 0 CM∗. From this and the condition that f and g share the
set {a, b} IM, we see that f − b and g − b also share 0 CM∗. Noting that f
and g share 0, 1 and ∞ IM, by Lemma 2.2 we get f = g, which contradicts
the assumptions of Theorem 1.1.

Subcase 1.2. Suppose that

(3.2) N0(r, b) 6= S(r, f).

Then in the same manner as in Subcase 1.1 we get a contradiction.

Subcase 1.3. Suppose that

(3.3) N0(r, a) +N0(r, b) = S(r, f).

Noting that f and g share the set {a, b} IM, from (3.3) and the six relations
(i)–(vi) in Lemma 2.1 we see that f − a and g − b share 0 CM∗, and that
f − b and g − a share 0 CM∗. We discuss the following four subcases.

Subcase 1.3.1. Suppose that f and g satisfy one of the three rela-
tions (i)–(iii) in Lemma 2.1. Then two of 0, 1 and ∞ are exceptional small
functions of f. From this and the condition that f − a and g − b share 0
CM∗, and the condition that f − b and g − a share 0 CM∗, we see that
N(r, 1/(f − a)) = N(r, 1/(g − b)) + S(r, f) 6= S(r, f) and N(r, 1/(f − b)) =
N(r, 1/(g−a))+S(r, f) 6= S(r, f). From this we get I(i)–(iii) of Theorem 1.1
respectively.

Subcase 1.3.2. Suppose that f and g satisfy the relation (iv) of Lem-
ma 2.1. Then it follows that 1, c are two exceptional small functions of f,
and 1, 1/c are two exceptional small functions of g. If N(r, 1/(f − a)) +
N(r, 1/(g− b)) = S(r, f), then N(r, 1/(f − b)) = N(r, 1/(g− a)) + S(r, f) 6=
S(r, f), and so a = c and b = 1/c. From this we get I(iv) and I(v) of
Theorem 1.1. Similarly, if N(r, 1/(f−a)) = N(r, 1/(g−b))+S(r, f) 6= S(r, f)
and N(r, 1/(f−b))+N(r, 1/(g−a)) = S(r, f), then b = c and a = 1/c, and so
we have I(vi) and I(vii) of Theorem 1.1. If N(r, 1/(f−a)) = N(r, 1/(g−b))+
S(r, f) 6= S(r, f) and N(r, 1/(f − b)) = N(r, 1/(g − a)) + S(r, f) 6= S(r, f),
then we have I(iv) and I(vi) of Theorem 1.1.

Subcase 1.3.3. Suppose that f and g satisfy the relation (v) of Lem-
ma 2.1. Then it follows that 0 is the only exceptional small function of f
and g, and f, g are given by

(3.4) f =
c− 1
eγ − 1

, g =
c−1 − 1
e−γ − 1

,



Uniqueness of meromorphic functions 15

where γ is a nonconstant entire function. From (3.4) we deduce

(3.5) f − a =
−aeγ + (a+ c− 1)

eγ − 1
, g − b =

−be−γ + (b+ c−1 − 1)
e−γ − 1

.

From (3.5) and the relation (v) of Lemma 2.1, in the same manner as in
Subcase 1.3.2 we get the conclusions I(viii)–(xi) of Theorem 1.1.

Subcase 1.3.4. Suppose that f and g satisfy the relation (vi) of Lem-
ma 2.1. Then it follows that ∞ is the only exceptional small function of f
and g, and f and g are given by

(3.6) f =
eγ − 1
c− 1

, g =
e−γ − 1
c−1 − 1

,

where γ is a nonconstant entire function. From (3.6) we deduce

(3.7) f − a =
eγ − (1 + a(c− 1))

c− 1
, g − b =

e−γ − (1 + b(c−1 − 1))
c−1 − 1

.

From (3.7) and the relation (vi) of Lemma 2.1, in the same manner as in
Subcase 1.3.2 we get the conclusions I(xii)–(xv) of Theorem 1.1.

Case 2. Suppose that f is not a quasi-Möbius transformation of g. From
the condition that f and g share 0, 1 and ∞ IM we get

(3.8) S(r, f) = S(r, g).

Let
f − 1
g − 1

= h1,(3.9)

f

g
= h2,(3.10)

h0 =
h1

h2
.(3.11)

From (3.8)–(3.11) and Lemma 2.3 we get

(3.12) N(r, hj) +N(r, 1/hj) = S(r, f) (j = 0, 1, 2).

Noting that f is not a Möbius transformation of g, from (3.8)–(3.11) we see
that none of h1, h2 and h0 is constant. From (3.9)–(3.11) we get

f =
h1 − 1
h0 − 1

,(3.13)

g =
h−1

1 − 1
h−1

0 − 1
.(3.14)

From (3.9), (3.10), (3.13) and (3.14) we get

(3.15) f − g =
(h1 − 1) (1− h0h

−1
1 )

h0 − 1
.
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From (3.8) and (3.11)–(3.15) we get

(3.16) N0(r) = N0(r, 1;h1, h0) + S(r, f) = N0(r, 1;h1, h2) + S(r, f).

We discuss the following three subcases.

Subcase 2.1. Suppose that (3.1) and

(3.17) N0(r, b) = S(r, f).

Then from (3.1) we get

(3.18) N0(r) 6= S(r, f).

From (3.16) and (3.18) we get

(3.19) N0(r, 1;h1, h2) 6= S(r, f).

From (3.12), (3.19) and Lemma 2.4 we see that there exist two integers s
and t (|s|+ |t| > 0) such that

(3.20) hs1h
t
2 = 1.

Substituting (3.9) and (3.10) into (3.20) we get

(3.21) f t(f − 1)s = gt(g − 1)s.

Noting that f is not a Möbius transformation of g, from (3.21) we deduce
that s 6= 0, and t 6= 0 and |s| 6= |t|, and so it follows from (3.21) that f and
g share 0, 1 and ∞ CM. Noting that f is not a Möbius transformation of g,
from (3.18) and Lemma 2.5 we see that f and g are given by one of the
three expressions (i)–(iii) of Lemma 2.5. Applying (3.17), Lemmas 2.6, 2.7,
2.9, 2.10, and the condition that f and g share the set {a, b} IM, we get

T (r, f)− T (r, g) = N2)(r, 1/(f − a))−N2)(r, 1/(g − b)) = S(r, f),(3.22)
T (r, g)− T (r, f) = N2)(r, 1/(g − a))−N2)(r, 1/(f − b)) = S(r, f).(3.23)

Let

(3.24) ϕ =
f ′(f − a)
f(f − 1)

− g′(g − a)
g(g − 1)

.

Noting that f and g share 0, 1 and ∞ CM, from (3.8) and (3.24) we get
T (r, ϕ) = S(r, f). Applying (3.1) and (3.24) we get ϕ = 0, which reads

(3.25)
f ′(f − a)
f(f − 1)

=
g′(g − a)
g(g − 1)

,

and (3.25) can be rewritten as

(3.26)
f ′

f − 1
− g′

g − 1
=

a

a− 1
·
(
f ′

f
− g′

g

)
.

From (3.26) and (i)–(iii) of Lemma 2.5 we see that a is a constant. Let z0 be
a zero of g− a with multiplicity 2, and a zero of f − b with multiplicity ≤ 2.
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Then it follows from (3.23) and (3.25) that f ′(z0) = g′(z0) = 0. Applying
(3.8), (3.9), (3.12) and Lemma 2.9, we get

(3.27) N(2(r, 1/(g − a))

=
{
N(2

(
r,

1
g − a

)
−N(3

(
r,

1
g − a

)}
+N(3

(
r,

1
g − a

)
≤ 2N

(
r,
h1

h′1

)
+ S(r, f) ≤ 2T

(
r,
h′1
h1

)
+ S(r, f)

= 2
{
m

(
r,
h′1
h1

)
+N

(
r,
h′1
h1

)}
+ S(r, f) = S(r, f).

Similarly, from (3.22) and (3.25) we get

(3.28) N(2(r, 1/(f − a)) = S(r, f).

If b is not a constant, then b′ 6≡ 0. Applying (3.22), (3.25), (3.28), Lem-
ma 2.10, the condition that f and g share 0, 1, ∞ IM, and the supposition
that f is not a quasi-Möbius transformation of g, we get

N (1,2)(r, f, a, b) ≤ N1)(r, 1/(f − a)) + S(r, f)

≤ N(r, 1/{b′(b− a)}) + S(r, f) = S(r, f),

which together with (3.28) implies (2.46). Again from (3.17), (3.22) and the
condition that f and g share the set {a, b} IM we get

N(r, 1/(f − a)) +N(r, 1/(g − b))− 2N0(r, a, b) = S(r, f);

this together with (2.46) and Lemma 2.12 implies that f is a quasi-Möbius
transformation of g, which contradicts the above supposition. Thus b′ = 0,
and so b is a constant. Noting that a 6= b and that f and g share 0, 1, ∞
CM, from (3.22), (3.23) and (i)–(iii) of Lemma 2.5, we get

g − b = 0 ⇒ f − a = 0,(3.29)
f − b = 0 ⇒ g − a = 0.(3.30)

From (3.29), (3.30) and (3.25) and the assumptions of Theorem 1.1 we get

(3.31) N1)(r, 1/(g − b)) +N1)(r, 1/(f − b)) = 0.

From (3.31) and Lemma 2.11 we see that f and g are given by one of the
nine expressions in Lemma 2.11. Suppose that f and g have the form (i) of
Lemma 2.11. Then

(3.32) f =
e3γ − 1
eγ − 1

, g =
e−3γ − 1
e−γ − 1

,

with b = 3/4. From (3.26)–(3.28) and (3.32) we get a = 3, and so we obtain
the conclusion II(i) of Theorem 1.1. Suppose that f and g have one of the
forms (ii)–(ix) in Lemma 2.11. As above we obtain the conclusions II(ii)–(vi)
of Theorem 1.1, where a = 3/2 and b = −3; a = 1/3 and b = 4/3; a = 2/3
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and b = −1/3; a = −2 and b = 1/4; and a = −1/2 and b = 4, in the
cases II(ii)–(vi) of Theorem 1.1 respectively.

Subcase 2.2. Suppose that (3.2) and

(3.33) N0(r, a) = S(r, f).

Proceeding as in the proof of Subcase 2.1, we get the conclusions II(i)–(vi)
of Theorem 1.1, where a = 3/4 and b = 3; a = −3 and b = 3/2; a = 4/3
and b = 1/3; a = −1/3 and b = 2/3; a = 1/4 and b = −2; and a = 4 and
b = −1/2, in the cases II(i)–(vi) of Theorem 1.1 respectively.

Subcase 2.3. Suppose that (3.3) and (3.18) hold. Proceeding as at the
beginning of Subcase 2.1 we see that f and g share 0, 1, ∞ CM, and that
f, g are given by one of the three expressions (i)–(iii) of Lemma 2.5. Apply-
ing (3.3), Lemmas 2.6, 2.7, 2.9, 2.10, the condition that f and g share the set
{a, b} IM, and the supposition that f is not a quasi-Möbius transformation
of g, we get

T (r, f)− T (r, g) = N2)(r, 1/(f − a))−N2)(r, 1/(g − b)) + S(r, f)

= N (2,1)(r, a, b)−N (1,2)(r, a, b) + S(r, f) = S(r, f),
so

(3.34) N (2,1)(r, a, b)−N (1,2)(r, a, b) = S(r, f).

If (2.46) holds, from Lemma 2.12 we see that f is a quasi-Möbius transfor-
mation of g, this contradicts the above supposition. Thus N (2,1)(r, a, b) +
N (1,2)(r, a, b) 6= S(r, f). Applying (3.34) we get

N (2,1)(r, a, b) 6= S(r, f),(3.35)

N (1,2)(r, a, b) 6= S(r, f).(3.36)

From (3.8)–(3.11) and (3.13)–(3.14) we get

f − a =
h1 − ah0 + a− 1

h0 − 1
,(3.37)

g − b =
h−1

1 − bh
−1
0 + b− 1

h−1
0 − 1

(3.38)

and

(3.39) T (r, g) + T (r, h1) + T (r, h0) = O(T (r, f)) (r 6∈ E).

From (3.11), (3.12) and (3.39) we get

(3.40) T (r, α) + T (r, β) = S(r, f);

here and below,

(3.41) α =
h′1
h1

and β =
h′0
h0
.
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From the supposition that f is not a quasi-Möbius transformation of g, we
get aβ − aα + a′ 6≡ 0. Let z0 be a zero of f − a with multiplicity 2, and of
g − b with multiplicity 1, such that z0 6∈ S1, where

S1 = {z : α(z) = 0,∞} ∪ {z : β(z) = 0,∞}(3.42)
∪ {z : β(z)− α(z) = 0,∞}.

From (3.37) and (3.42) we get

(3.43) h1(z0)− a(z0)h0(z0) + a(z0)− 1 = 0

and

(3.44) h1(z0)α(z0)− h0(z0)[a′(z0) + a(z0) · β(z0)] + a′(z0) = 0.

From (3.43) and (3.44) we get

h1(z0) =
{a(z0)− a2(z0)}β(z0) + a′(z0)
a(z0)β(z0)− a(z0)α(z0) + a′(z0)

,(3.45)

h0(z0) =
a′(z0) + {1− a(z0)}α(z0)

a(z0)β(z0)− a(z0)α(z0) + a′(z0)
.(3.46)

Let

(3.47) f1 =
(aβ − aα+ a′)h1

(a− a2)β + a′
, f2 =

(aβ − aα+ a′)h0

a′ + (1− a)α
,

(3.48) T (r) = T (r, f1) + T (r, f2), S(r) = o(T (r)) (r →∞, r 6∈ E).

From (3.8)–(3.11), (3.41), (3.47) and (3.48) we get

(3.49) S(r) = S(r, f).

On the other hand, from (3.8), (3.12), (3.40), (3.47)–(3.49) we have

(3.50) N(r, fj) +N(r, 1/fj) = S(r) (j = 1, 2).

From (3.45)–(3.47) we have f1(z0) = f2(z0) = 1, and so

(3.51) N (2,1)(r, a, b) ≤ N0(r, 1; f1, f2) + S(r).

From (3.35), (3.49) and (3.51) we have

(3.52) N0(r, 1; f1, f2) 6= S(r).

From (3.47), (3.48), (3.50), (3.52) and Lemma 2.4 we know that there exist
two integers s and t (|s|+ |t| > 0) such that

(3.53) fs1 · f t2 = 1.

From (3.8)–(3.10), (3.40), (3.47), (3.53) and Lemma 2.7 we get

(3.54) T (r, f) = T (r, g) + S(r, f).

On the other hand, from (3.9)–(3.11) we have

(3.55)
h0(z0)
h1(z0)

=
b(z0)
a(z0)

,
1

h1(z0)
=
b(z0)− 1
a(z0)− 1

.
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Now (3.44) can be rewritten as

(3.56) α(z0)− h0(z0)
h1(z0)

[a′(z0) + a(z0) · β(z0)] +
a′(z0)
h1(z0)

= 0.

From (3.55) and (3.56) we get

(3.57) α(z0)− b(z0)
a(z0)

· [a′(z0) + a(z0) · β(z0)] + a′(z0) · b(z0)− 1
a(z0)− 1

= 0.

From (3.35) and (3.57) we get

(3.58) α− b(a′ + a · β)
a

+
(b− 1)a′

a− 1
= 0.

Similarly, from (3.36), (3.38), in the same manner as above we deduce

(3.59) −α− a(b′ − bβ)
b

+
(a− 1)b′

b− 1
= 0.

Again from (3.3), (i)–(iii) of Lemmas 2.5–2.7 and Lemmas 2.9–2.10, and
from the condition that f and g share the set {a, b} IM, we deduce

T (r, f)− T (r, g) = N2)(r, 1/(f − b))−N2)(r, 1/(g − a)) + S(r, f)

= N (2,1)(r, b, a)−N (1,2)(r, b, a) = S(r, f),
so

(3.60) N (2,1)(r, b, a)−N (1,2)(r, b, a) = S(r, f).

If N (2,1)(r, b, a)+N (1,2)(r, b, a) = S(r, f), from Lemma 2.12 we see that f is a
quasi-Möbius transformation of g, which contradicts the above supposition.
Thus N (2,1)(r, b, a) +N (1,2)(r, b, a) 6= S(r, f). From this and (3.60) we get

(3.61) N (2,1)(r, b, a) 6= S(r, f) and N (1,2)(r, b, a) 6= S(r, f).

Proceeding as in the proof of (3.58) and (3.59), from (3.61) we get

α− a(b′ + b · β)
b

+
(a− 1)b′

b− 1
= 0,(3.62)

α− b(a′ − aβ)
a

+
(b− 1)a′

a− 1
= 0.(3.63)

From (3.58) and (3.63) we get a′ = 0. Similarly, from (3.59) and (3.62) we
get b′ = 0. Applying (3.58) and (3.59) we have α− bβ = 0 and α− aβ = 0.
Thus from (3.41) and a 6= b we get β = h′0/h0 = 0, which implies that
h′0 = 0, and so h0 = c1, where c1 ( 6= 0) is a finite complex number. Applying
(3.9)–(3.11) we see that f is a Möbius transformation of g, which contradicts
the above supposition.

Subcase 2.4. Suppose that

(3.64) N0(r) = S(r, f).
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Then from (3.64) we get (3.3). From (3.3) and the condition that f and g
share the set {a, b} IM we have

N(r, 1/(f − a))−N0(r, a, b) = S(r, f),(3.65)
N(r, 1/(f − b))−N0(r, b, a) = S(r, f).(3.66)

From Lemma 2.3 we see that f and g share 0, 1 and∞ CM∗. Applying (3.65),
Lemmas 2.9, 2.10, and the condition that f and g share the set {a, b} IM,
we get

(3.67) T (r, f)− T (r, g) = N2)

(
r,

1
f − a

)
−N2)

(
r,

1
g − b

)
+ S(r, f),

and

(3.68) N2)(r, 1/(f − a))−N2)(r, 1/(g − b))
= N (2,1)(r, a, b)−N (1,2)(r, a, b) + S(r, f).

If (2.46) holds, then from (3.68) and Lemma 2.12 we see that f is a quasi-
Möbius transformation of g, which contradicts the above supposition. Thus

N (2,1)(r, a, b) +N (1,2)(r, a, b) 6= S(r, f).

Proceeding as in Subcase 2.3 we have (3.37)–(3.54). From (3.54), (3.67)
and (3.68) we have (3.34)–(3.36). In the same manner as in Subcase 2.3
we have (3.58). Similarly, from (3.54), (3.66) and in the same manner as in
Subcase 2.3 we get (3.59)–(3.63). From (3.58), (3.59), (3.62) and (3.63) we
get a′ = b′ = 0, which reveals that a and b are two distinct finite complex
numbers. Moreover, from (3.58) and (3.59) we have α−bβ = 0 and α−aβ =
0. Applying (3.41) and a 6= b we get β = h′0/h0 = 0, which implies that
h′0 = 0, and so h0 = c1, where c1 (6= 0) is a finite complex number. Applying
(3.9)–(3.11) we see that f is a Möbius transformation of g. This contradicts
the above supposition.

Theorem 1.1 is thus completely proved.

Proof of Theorem 1.2. We discuss the following two cases.

Case 1. Suppose that f is a quasi-Möbius transformation of g. Then
from the condition that f = a ⇒ g = b we see that f − a and g − b share
0 CM∗. Noting that f and g are entire functions, from Lemma 2.1 we see
that f and g satisfy one of the relations (i), (ii) and (vi) of Lemma 2.1.
Proceeding as in Case 1 of the proof of Theorem 1.1 we get I(i), I(iii), I(xii)
and I(xv) of Theorem 1.1.

Case 2. Suppose that f is not a quasi-Möbius transformation of g. Pro-
ceeding as in Case 2 in the proof of Theorem 1.1 we get (3.8)–(3.16). From
the condition that a 6≡ b and f = a⇒ g = b, we get (3.33). We discuss the
following three subcases.
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Subcase 2.1. Suppose that (3.2) holds. Noting that f and g are entire
functions, from (3.2), (3.33), in the same manner as in Subcase 2.2 of the
proof of Theorem 1.1 we get II(i) of Theorem 1.1 with a = 3/4 and b = 3,
and get II(v) of Theorem 1.1 with a = 1/4 and b = −2.

Subcase 2.2. Suppose that (3.17) and (3.18) hold. From (3.17) and
(3.33) we get (3.3). Noting that f and g are entire functions, from (3.3),
(3.18), in the same manner as in Subcase 2.3 of the proof of Theorem 1.1
we get a contradiction.

Subcase 2.3. Suppose that (3.64) holds. From (3.16) and (3.64) we get

(3.69) N0(r, 1;h1, h0) = S(r, f).

From (3.8)–(3.12), (3.69) and the second fundamental theorem we deduce

(3.70) T (r, h0) = S(r, f).

From (3.13), (3.14) and (3.70) we get (3.54). From (3.54), Lemmas 2.9, 2.10
and the condition that f = a⇒ g = b we get (3.34), (3.67) and (3.68). Next
in the same manner as in Subcase 2.4 of the proof of Theorem 1.1 we get
contradictions.

Theorem 1.2 is thus completely proved.
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