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Generalized iterated function systems,
multifunctions and Cantor sets

by Maciej Klimek (Uppsala) and Marta Kosek (Kraków)

Abstract. Using a construction similar to an iterated function system, but with
functions changing at each step of iteration, we provide a natural example of a continuous
one-parameter family of holomorphic functions of infinitely many variables. This family is
parametrized by the compact space of positive integer sequences of prescribed growth and
hence it can also be viewed as a parametric description of a trivial analytic multifunction.

1. Introduction. For any given function ρ : N → N, we say that the
growth of a sequence of natural numbers σ : N → N is prescribed by ρ if
σ ≤ ρ. The set Σρ of all such sequences can be easily turned into a compact
space if two sequences are regarded as close provided that sufficiently many
of their initial terms coincide. Let A(E) denote the Banach space of con-
tinuous affine operators on a complex Banach space E. Consider a matrix
T = [Tn,j ]n≥1,1≤j≤ρ(n) whose entries belong to the open unit ball in A(E).
The matrix has infinitely many finite length rows, possibly of different sizes
dictated by the function ρ. By a column of T we understand any sequence of
the form Tcol(σ) = {Tn,σ(n)}n≥1, where σ ∈ Σρ. Since the entries of T are con-
tractions, if we assume that their contraction ratios are uniformly bounded
by a constant smaller than 1, then independent of the choice of z ∈ E, the
sequence (T1,σ(1) ◦ · · · ◦ Tn,σ(n))(z) converges to a limit, say f(Tcol(σ)). We
will denote by Ωρ the set of all T of this type. One of our objectives is to
show that the mapping

Σρ ×Ωρ 3 (σ, T ) 7→ f(Tcol(σ)) ∈ E
is continuous and holomorphic with respect to T . Furthermore, the set-valued
mapping

Ωρ 3 T 7→ {f(Tcol(σ)) : σ ∈ Σρ} ∈ Comp(E)
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is upper semicontinuous and has values in the set Comp(E) of all compact
subsets of E. In particular, if E = CN , we get an example of a so-called
trivial analytic multifunction.

The modern concept of an analytic multifunction whose values are com-
pact subsets of C was conceived by Oka over 70 years ago in [14]. The
idea was picked up later by Nishino [13] and Yamaguchi ([22], [23]), but
otherwise—despite the widespread recognition of other discoveries made by
Oka—this particular notion went largely unnoticed for many decades. The
interest in analytic multifunctions was reignited in the early 1980’s, largely
due to Słodkowski introducing different equivalent descriptions of such func-
tions and leading the way to multi-dimensional generalizations (see in par-
ticular [17] and [18]). A general systematic approach was developed nearly at
the same time by Ransford (see e.g. [16]). Initially much of the interest was
linked to spectral theory in Banach algebras (see e.g. [8], [19], [20]) but later
it was complex dynamics that yielded new classes of analytic multifunctions
(see [2], [9], [10], [11], [1], [12], [3]).

Trivial analytic multifunctions—defined as unions of graphs of holomor-
phic functions—are important not just as basic examples. Their significance
is shown in Słodkowski’s theorem stating that any (strongly) analytic mul-
tifunction can be approximated by a decreasing sequence of locally trivial
functions [21]. At the same time, specific one-parameter families of holomor-
phic functions have become an object of interest as a result of research on
holomorphic motions in one complex variable (see e.g. [3]).

The research described in this paper has been motivated partly by the
background outlined above and—in particular—by the results presented in
[3] concerning iterated function systems in C viewed in the context of analytic
multifunctions. Also, the intention was to investigate how polynomial based
constructions used in [11] and [12] translate into the case of affine operators.

The organization of the paper is as follows. In Section 2 we introduce no-
tation and present the basic iteration scheme for sequences of affine operators
in a Banach space. Sections 3, 4 and 5 are devoted to various properties of
attractors of iterated function systems based on families of affine mappings.
In Section 6 we present the example announced above. The final section
contains remarks about Cantor sets relevant in this context. It is worth
mentioning that every generalized Cantor set can occur as the attractor in
our construction, which was not the case for classical IFSs.

2. Sequences of continuous affine operators. Let (E, ‖ ‖) be a com-
plex Banach space. Denote by L(E) the space of bounded linear operators
on E, furnished with the usual operator norm, and by A(E) the space of
continuous affine operators on E. Each such operator T : E → E has the
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decomposition T = T̂ + T (0), where T̂ ∈ L(E). Hence A(E) = L(E) ⊕ E
and the natural norm in A(E) is given by the formula ‖T‖ = ‖T̂‖+ ‖T (0)‖.

We will consider Banach spaces of sequences or different types of matrices
of affine operators. If S is a nonempty set, then

(1) `∞(S,A(E)) = {T : S 3 s 7→ Ts ∈ A(E) : sup
s∈S
‖Ts‖ <∞}

endowed with the norm ‖T‖ = sups∈S ‖Ts‖ is a complex Banach space. For
T = (Ts)s∈S ∈ `∞(S,A(E)), we define T̂ = (T̂s)s∈S . It will be useful to
consider the open set

(2) ΩS = {T ∈ `∞(S,A(E)) : ‖T̂‖ < 1}.

In this section we are interested in sequences, so we take S = N in (1)
and (2). We will need an enhanced version of Banach’s Contraction Principle
[11, see Lemma 4.5 and its proof].

Lemma 2.1 (Enhanced version of Banach’s Contraction Principle). Let
(X, %) be a complete metric space and let (Hn)n≥1 be a sequence of contrac-
tions of X with contraction ratios not greater than L < 1. If

M = sup
n≥1

%(Hn(x), x) <∞

for each x ∈ X, then there exists a unique point c in X such that the sequence
(H1 ◦ · · · ◦Hn)n≥1 converges pointwise to c.

Furthermore, if K ⊂ X is such that

MK = sup
x∈K

sup
n≥1

%(Hn(x), x) <∞,

then the convergence is uniform on the set K.

As a consequence we easily get the following statement.

Lemma 2.2. If T ∈ ΩN, then the sequence (T1 ◦ · · · ◦ Tn)n∈N converges
uniformly on bounded sets to a constant mapping.

Proof. Note first that Tn, n ∈ N, is a contraction with contraction ratio
not greater than ‖T̂‖ < 1, since ‖Tn(z) − Tn(w)‖ = ‖T̂n(z) − T̂n(w)‖ ≤
‖T̂‖ ‖z − w‖ for any z, w ∈ E. Furthermore,

‖Tn(z)− z‖ ≤ ‖T̂n(z)‖+ ‖Tn(0)‖+ ‖z‖ ≤ (‖T̂‖+ 1)‖z‖+ ‖T‖
for any z ∈ E and n ∈ N, so the conclusion is a direct consequence of Lemma
2.1.

The above lemma shows the existence of the limit of the sequence
(T1 ◦ · · · ◦ Tn)n∈N but says nothing about its dependence on the original
sequence T . It turns out that this dependence is holomorphic, as shown in
the following theorem.
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Theorem 2.3. If

fn(T, z) = (T1 ◦ · · · ◦ Tn)(z), (T, z) ∈ ΩN × E,

then the sequence of holomorphic mappings (fn)n≥1 converges locally uni-
formly in ΩN × E to a holomorphic mapping f , which is independent of z.
The rate of convergence satisfies the estimate

(3) ‖f(T )− fn(T, z)‖ ≤ (2‖z‖+ ‖T‖) ‖T̂‖
n

1− ‖T̂‖
, (T, z) ∈ ΩN × E.

Furthermore, if T = (Tn) is such that all Tn are bijective then

(4) lim
n→∞

‖(T1 ◦ · · · ◦ Tn)−1(w)‖ =∞

for any w ∈ E \ {f(T )}.

Proof. By Lemma 2.2 we can define

f(T ) = lim
n→∞

fn(T, z), (T, z) ∈ ΩN × E.

We have

‖fn+k(T, z)− fn(T, z)‖ ≤
k∑
j=1

‖fn+j(T, z)− fn+j−1(T, z)‖

≤
k∑
j=1

‖T̂‖n+j−1‖Tn+j(z)− z‖

≤ (2‖z‖+ ‖T‖)
k∑
j=1

‖T̂‖n+j−1.

By letting k go to infinity we obtain the estimate (3).
Assume now that (T, z) ∈ ΩN × E and T = (Tn) is such that all Tn are

bijective. Note that the inverses are continuous. First we will show that if
the set

Sz = {(T1 ◦ · · · ◦ Tn)−1(z) : n ∈ N}

is bounded, then z = f(T ). Suppose that z 6= f(T ). If n is sufficiently large,
then ‖f(T ) − fn(T,w)‖ < ‖f(T ) − z‖ for all w ∈ Sz. In particular, this
should be true for w = (T1 ◦ · · · ◦ Tn)−1(z), which is clearly impossible.

Suppose now that (4) does not hold. Then there exist a w ∈ E \ {f(T )}
and an increasing sequence (nk) of integers such that the set

{(T1 ◦ · · · ◦ Tnk)−1(w) : k ∈ N}

is bounded. We can now apply the above argument to the mappings

T1 ◦ · · · ◦ Tn1 , Tn1+1 ◦ · · · ◦ Tn2 , . . . , Tnk−1+1 ◦ · · · ◦ Tnk , . . .
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instead of T1, T2, . . . , Tk, . . . . Since the fixed point f(T ) is exactly the same
for the new sequence of maps, we conclude that w = f(T ), which is not the
case.

If T ∈ ΩN, by Banach’s Contraction Principle all the mappings T1◦· · ·◦Tn
have unique fixed points. It turns out that f(T ) is the limit of those points.

Corollary 2.4. If T ∈ ΩN and an is the fixed point of T1 ◦ · · · ◦ Tn,
n ∈ N, then

f(T ) = lim
n→∞

an.

Proof. We have

‖an‖ = ‖(T̂1 ◦ · · · ◦ T̂n)(an) + (T1 ◦ · · · ◦ Tn)(0)‖ ≤ ‖T̂‖n‖an‖+ n‖T‖,

hence by (3),

‖f(T )− an‖ = ‖f(T )− fn(T, an)‖ ≤
(

2
n‖T‖

1− ‖T̂‖n
+ ‖T‖

)
‖T̂‖n

1− ‖T̂‖
.

3. Bounded families of affine operators. Let Bdd(E) be the family
of nonempty closed bounded subsets of E, and Comp(E) the subfamily of
nonempty compact subsets of E. Denote by dH the Hausdorff metric associ-
ated with the norm ‖ ‖ on Bdd(E). It is well known that (Bdd(E), dH) is a
complete metric space and Comp(E) is a closed subset of Bdd(E).

Consider now a bounded family F in A(E) and let M = sup{‖Q‖ :
Q ∈ F}. If K ∈ Bdd(E) and R = sup{‖z‖ : z ∈ K}, then sup{‖Q(z)‖ :
z ∈ K} ≤ (R+ 1)M for each Q ∈ F . Thus the mapping

(5) ΦF : Bdd(E) 3 K 7→ ΦF (K) =
⋃
Q∈F

Q(K) ∈ Bdd(E)

is well defined.
It would be interesting to know whether ΦF (and more precisely its re-

striction) could be viewed as a mapping from Comp(E) to Comp(E).

Proposition 3.1. If the closure of the bounded family F in A(E) is
compact , then

(6) ΦF : Comp(E) 3 K 7→ ΦF (K) =
⋃
Q∈F

Q(K) ∈ Comp(E).

Proof. Pick K ∈ Comp(E), and put R = sup{‖z‖ : z ∈ K} and M =
sup{‖Q‖ : Q ∈ F}. We need to show that⋃

Q∈F

Q(K) =
⋃
Q∈F

Q(K).
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(⊂) Let Q be the limit of a sequence (Qν) ⊂ F . Then for any z ∈ K,

‖Qν(z)−Q(z)‖ ≤ ‖Q̂ν − Q̂‖ ‖z‖+ ‖Qν(0)−Q(0)‖ ≤ (R+ 1)‖Qν −Q‖ → 0.

(⊃) Take z ∈
⋃
{Q(K) : Q ∈ F}. Then there exist sequences (Qν) ⊂ F

and (wν) ⊂ K such that zν = Qν(wν) → z. Since K is compact, by taking
a subsequence if needed, we may assume that wν → a ∈ K. As F is also
compact, we may assume again that Qν→Q∈F . Note that ‖Q̂‖≤‖Q‖≤M .

Take ε > 0. For ν large enough we have

‖z − zν‖ < ε/3,

‖zν −Q(wν)‖ ≤ ‖Q̂ν − Q̂‖ ‖wν‖+ ‖Qν(0)−Q(0)‖ ≤ (R+ 1)‖Qν −Q‖
< ε/3,

‖Q(wν)−Q(a)‖ = ‖Q̂(wν)− Q̂(a)‖ ≤ ‖Q̂‖ ‖wν − a‖ ≤M‖wν − a‖
< ε/3.

Therefore ‖z − Q(a)‖ < ε by the triangle inequality and thus z = Q(a) ∈
Q(K), since ε > 0 can be arbitrarily small.

It remains to verify that ΦF (K) is compact. Take a sequence (zν) ⊂⋃
{Q(K) : Q ∈ F}. As before there exist sequences (Qν) ⊂ F and (wν) ⊂ K

such that zν = Qν(wν). In view of the compactness of K and F we may
assume that wν → w ∈ K and Qν → Q ∈ F , therefore zν → Q(w) ∈ ΦF (K)
as ν →∞.

One can pose a natural question whether the assumption of Proposi-
tion 3.1 is really necessary for ΦF to map Comp(E) into Comp(E). The
following easy example shows that it indeed is.

Example 3.2. Take E = `∞ (= `∞(N,C)) and let (en)n∈N be its canoni-
cal basis (enk = δnk, the Kronecker delta). Consider F = {hn : n ∈ N}, where
hn(z) = 1

2z + en. Then F is closed and bounded and

ΦF ({0}) =
⋃
h∈F

h({0}) =
⋃
h∈F

h({0}) = {en : n ∈ N} ∈ Bdd(E) \ Comp(E).

We now turn our attention to bounded families of affine contractions.

Proposition 3.3. Assume that the family F ⊂ A(E) is bounded and
m = sup{‖Q̂‖ : Q ∈ F} < 1. Then the mapping ΦF defined by formula
(5) is a contraction with ratio m. It has a unique fixed point. Moreover , if
the closure of the bounded family F in A(E) is compact , the fixed point is
compact too.

Proof. PickK,L ∈ Bdd(E). If z ∈ ΦF (K) and ε > 0, then ‖z−Q(ζ)‖ < ε
for some Q ∈ F and ζ ∈ K. Let ξ ∈ L be such that ‖ζ − ξ‖ < dist(ζ, L) + ε.



Generalized iterated function systems 31

Then

dist(z, ΦF (L)) ≤ ‖z −Q(ξ)‖ ≤ ε+ ‖Q(ζ)−Q(ξ)‖ ≤ ε+ ‖Q̂‖ ‖ζ − ξ‖
≤ (m+ 1)ε+mdist(ζ, L) ≤ (m+ 1)ε+mdH(K,L).

Letting ε → 0, we obtain dist(z, ΦF (L)) ≤ mdH(K,L). A similar estimate
for dist(w,ΦF (K)), w ∈ L, yields

dH(ΦF (K), ΦF (L)) ≤ mdH(K,L).

By the Banach Contraction Principle, ΦF has a unique fixed point. By
Proposition 3.1, under the assumption of the “moreover” part, the unique
fixed point is compact as it is also the unique fixed point of the restriction
of ΦF to Comp(E) given by formula (6).

We will need some special cases of Proposition 3.3. The following corollary
is straightforward.

Corollary 3.4. Assume that the family F ⊂ A(E) is bounded and m =
sup{‖Q̂‖ : Q ∈ F} < 1. If either the dimension of E or the bounded family
F ⊂ A(E) is finite, then the mapping ΦF defined by (5) is a contraction with
ratio m and has a unique compact fixed point.

Proof. If the family F is finite, then it is closed and compact.
Now assume that the dimension of the Banach space E is finite. Then

the space A(E) is also of finite dimension and thus the closure of the family
F is compact.

4. Attractors of affine mapping matrices. In this section we will
discuss two spaces given by formula (1). In a more general setting we take
`∞(N2,A(E)). Another possibility is to take `∞(Nρ,A(E)), where for a fixed
function ρ : N→ N we define the index set

Nρ = {(n, j) ∈ N2 : j ≤ ρ(n)}.
Note that if the fixed function is constant, ρ ≡ k, then Nρ = N× {1, . . . , k}.

Our objects `∞(N2,A(E)) and `∞(Nρ,A(E)) (and in the special case
also `∞(N× {1, . . . , k},A(E))) are spaces of matrices (with infinite or finite
rows) of continuous affine operators. From now on we will use the letter Ω
to denote either the open set ΩN2 or, respectively, ΩNρ (see (2)), since the
construction is the same in both cases.

Let us now take T = [Tn,j ] ∈ Ω. Let Tn denote the (unordered) set of all
affine operators in the nth row of T . For any n ≥ 1, the family Tn is bounded
by ‖T‖ in A(E) and moreover sup{‖Q̂‖ : Q ∈ Tn} ≤ ‖T̂‖ < 1. Hence, by
Proposition 3.3, ΦTn is a contraction with ratio at most ‖T̂‖. Note that if
we want all families Tn to be finite (we will need this for some results), we
have to consider the space `∞(Nρ,A(E)).
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Proposition 4.1. If T ∈ Ω, then the sequence (ΦT1 ◦ · · · ◦ ΦTn)n≥1

converges pointwise to a constant mapping.

Proof. It suffices to verify the last assumption of the enhanced version
of Banach’s Contraction Principle (Lemma 2.1). Pick K ∈ Bdd(E) and put
R = sup{‖z‖ : z ∈ K}. Then sup{‖w‖ : w ∈ ΦTn(K)} ≤ (R + 1)‖T‖ and
therefore

sup
n≥1

dH(K,ΦTn(K)) ≤ R+ (R+ 1)‖T‖.

We denote by A(T ) the value of the constant mapping from Proposi-
tion 4.1. Note that if either the dimension of E is finite or T ∈ ΩNρ , then
the set A(T ) is compact.

Moreover, if T ∈ Ω has the same finite rows (i.e. Tn = F for all n ∈ N
and F ⊂ A(E) is finite), then A(T ) is exactly the unique invariant compact
set of F (an iterated function system of contractions) from Hutchinson’s
survey [7]. If E = C, such invariant sets (not only for finite but also for
countable families F) can be considered as special cases of attractors studied
in [3]. Therefore we will call A(T ) the attractor of the matrix T . Note that
if all entries of T have the same fixed point a (for example if all entries are
linear, their fixed points are equal to zero), then A(T ) = {a}.

Let us now look at some properties of attractors.

Lemma 4.2. Let T be in Ω. If K ∈ Bdd(E) is such that Q(K) ⊂ K for
any Q ∈ Tn and n ∈ N, then

A(T ) =
⋂
n≥1

(ΦT1 ◦ · · · ◦ ΦTn)(K).

Proof. We have ΦTn(K) ⊂ K for all n ∈ N, hence

ΦT1(K) ⊂ K,
ΦT1(ΦT2(K)) ⊂ ΦT1(K) ⊂ K,

(ΦT1 ◦ · · · ◦ ΦTn−1)(ΦTn(K)) ⊂ (ΦT1 ◦ · · · ◦ ΦTn−1)(K) ⊂ · · · ⊂ K.

The sequence ((ΦT1 ◦ · · · ◦ΦTn)(K))n∈N is decreasing in Bdd(E) to the limit⋂
n≥1

(ΦT1 ◦ · · · ◦ ΦTn)(K),

which by Proposition 4.1 must be equal to A(T ).

For R > 0, we denote by BR the closed ball {z ∈ E : ‖z‖ ≤ R}.

Lemma 4.3. Let T be in Ω. If R is large enough, then

A(T ) =
⋂
n≥1

(ΦT1 ◦ · · · ◦ ΦTn)(BR).
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Proof. If n ∈ N and Q ∈ Tn, then
‖Q(z)‖ ≤ ‖Q̂‖ ‖z‖+ ‖Q(0)‖ ≤ ‖T̂‖ ‖z‖+ ‖T‖

for any z ∈ E. Therefore if R ≥ ‖T‖/(1 − ‖T̂‖), we have Q(BR) ⊂ BR and
the conclusion follows from the previous lemma.

Observe that it is enough to take

(7) R =
sup{‖Q(0)‖ : Q ∈ Tn, n ∈ N}

1− ‖T̂‖
≤ ‖T‖

1− ‖T̂‖
in Lemma 4.3.

The last lemma allows us to give an easy example showing that not all
attractors are compact.

Example 4.4. Take E = `∞ (= `∞(N,C)) and let (ek)k∈N be its canon-
ical basis. Define the matrix T = [Tn,k]n,k∈N by putting Tn,k(z) = 1

3z + 2
3e
k.

Then T ∈ ΩN2 , since ‖T‖ = 1 and ‖T̂‖ = 1
3 . Note that e

k is the unique fixed
point of Tn,k for each n and k. Therefore by Lemma 4.3,

{ek : k ∈ N} ⊂
⋂
n≥1

(ΦT1 ◦ · · · ◦ ΦTn)(BR) = A(T )

if R ≥ 1 is large enough. Hence A(T ) is not compact.

Now we have two simple observations, analogous to some results from [7].

Observation 4.5. Let T be in Ω. Assume that all families Tn are finite
and there exists δ ∈ (0, 1) such that∑

Q∈Tn

‖Q̂‖ ≤ δ, n ≥ 0.

Then the attractor A(T ) is a singleton or is totally disconnected.

Proof. By Lemma 4.3 we can pick R > 0 such that

A(T ) =
⋂
n≥1

(ΦT1 ◦ · · · ◦ ΦTn)(BR).

Let S be a connected component of A(T ). For each n consider the finite
family

Gn := {K = (Q1 ◦ · · · ◦Qn)(BR) : Qk ∈ Tk, k ∈ {1, . . . , n}, K ∩ S 6= ∅}.
Since S ⊂

⋃
Gn, we have

diam(S) ≤
∑
K∈Gn

diam(K) ≤
∑

(Q1,...,Qn)∈T1×···×Tn

2R‖Q̂1‖ · . . . · ‖Q̂n‖

≤ 2Rδn → 0,

hence S is a singleton.
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For z ∈ C consider

h1(z) =
3
8
z, h2(z) =

3
8
z +

5
8
, h3(z) =

3
8
z +

5
8
i, h4(z) =

9
64
z +

9
64

+
15
64
i.

It is shown in [3] that the attractor of a matrix T ∈ `∞(N×{1, 2, 3, 4},A(C))
with Tn = {h1, h2, h3, h4}, n ∈ N, is totally disconnected. Therefore even for
matrices with finite rows the assumption about δ in Observation 4.5 is only
sufficient, but not necessary.

Recall the definition of the k-dimensional Hausdorff measure Hk and
Hausdorff dimension dimH. For every k ≥ 0, δ > 0 and K ⊂ E we define

Hkδ (K) = inf
{ ∞∑
i=0

(diam(Ki))k : K ⊂
∞⋃
i=0

Ki,diam(Ki) ≤ δ
}
,

Hk(K) = lim
δ→0
Hkδ (K) = sup

δ≥0
Hkδ (K),

dimH(K) = sup{k ≥ 0 : Hk(K) =∞} = inf{k ≥ 0 : Hk(K) = 0}.

The following observation will be proved only for T ∈ Ω such that all families
Tn are finite. For a fixed n we define

φn : [0,∞) 3 t 7→ φn(t) =
∑
Q∈Tn

‖Q̂‖t ∈ (0, ]Tn].

The function φn is strictly decreasing, continuous and φn(0) = ]Tn ≥ 1,
hence there exists a unique αn ∈ [0,∞) with φn(αn) = 1.

Observation 4.6. If T ∈ Ω is such that all families Tn are finite and
α = sup{αn : n ∈ N} <∞, then dimH(A(T )) ≤ α.

Proof. By Lemma 4.3 there exists a number R > 0 such that for each n,

A(T ) ⊂
⋃

(Q1,...,Qn)∈T1×···×Tn

(Q1 ◦ · · · ◦Qn)(BR).

We know that

diam((Q1 ◦ · · · ◦Qn)(BR)) = 2R‖Q̂1‖ · . . . · ‖Q̂n‖ ≤ 2R‖T̂‖n → 0,

which means that for n large enough we can use the family

Gn := {K = (Q1 ◦ · · · ◦Qn)(BR) : Qk ∈ Tk, k ∈ {1, . . . , n}}

to calculate the sum in the definition of the Hausdorff measure. Now∑
K∈Gn

(diam(K))α ≤
∑

(Q1,...,Qn)∈T1×···×Tn

(2R)α‖Q̂1‖α · . . . · ‖Q̂n‖α

= (2R)αφ1(α)φ2(α) · . . . · φn(α) ≤ (2R)α.

Hence Hα(A(T )) <∞.



Generalized iterated function systems 35

We conclude this section by remarking that a sufficient condition for α
to be finite is that k = sup{]Tn : n ∈ N} <∞, since φn(t) ≤ k‖T̂‖t for all n
and t (and hence α ≤ −(log k)/(log ‖T̂‖)).

5. Relation between attractors of matrices and sequences. In
this section we restrict the investigation to two cases: either the dimension
of the space E is finite, or we have matrices with finite rows (in the first case
we can consider ΩN2 , in the second we take ΩNρ). Since in both situations
the attractors of matrices T are compact, we can also restrict the mappings
ΦTn to Comp(E) using formula (6). In what follows, f and fn are defined as
in Theorem 2.3.

Proposition 5.1. Assume that either the dimension of the space E is
finite or the matrices considered have finite rows. Let T ∈ Ω. Define

Col(T ) := {Q = (Qn)n≥1 : Qn ∈ Tn, n ∈ N}
and a(T ) := {f(Q) : Q ∈ Col(T )}. Then A(T ) = a(T ).

Proof. Since for anyQ ∈ Col(T ) we have ‖Q‖ ≤ ‖T‖ and ‖Q̂‖ ≤ ‖T̂‖, the
family Col(T ) is a subset of ΩN. If K is in Comp(E), R = sup{‖z‖ : z ∈ K}
and z ∈ K, we use (3) to show that

dist(f(Q), ΦT1(K)) ≤ ‖f(Q)− f1(Q, z)‖ ≤ (2R+ ‖T‖) ‖T̂‖
1− ‖T̂‖

,

for any Q ∈ Col(T ). In particular, we see that the set a(T ) is bounded.
Fix n ∈ N. Pick ζ ∈ a(T ) and ε > 0. There exists Q ∈ Col(T ) satisfying

‖ζ − f(Q)‖ < ε. We can pick w ∈ (ΦT1 ◦ · · · ◦ ΦTn)(K) with ‖f(Q) − w‖ =
dist(f(Q), (ΦT1 ◦ · · · ◦ ΦTn)(K)). Then by (3),

dist(ζ, (ΦT1 ◦ · · · ◦ ΦTn)(K)) ≤ ‖ζ − f(Q)‖+ ‖f(Q)− w‖
≤ ε+ dist(f(Q), (ΦT1 ◦ · · · ◦ ΦTn)(K))
≤ ε+ ‖f(Q)− fn(Q, z)‖

≤ ε+ (2R+ ‖T‖) ‖T̂‖
n

1− ‖T̂‖
.

Letting ε tend to 0 we obtain

dist(ζ, (ΦT1 ◦ · · · ◦ ΦTn)(K)) ≤ (2R+ ‖T‖) ‖T̂‖
n

1− ‖T̂‖
.

On the other hand, if ξ ∈ (ΦT1◦· · ·◦ΦTn)(K), then there exist Q̃ ∈ Col(T )
and x ∈ K such that ξ = fn(Q̃, x), and thus

dist(ξ, a(T )) ≤ ‖fn(Q̃, x)− f(Q̃)‖ ≤ (2R+ ‖T‖) ‖T̂‖
n

1− ‖T̂‖
again by (3). Therefore dH(a(T ), (ΦT1 ◦ · · · ◦ ΦTn)(K))→ 0.
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If we now take a sequence T = (Tn)n≥1 ∈ ΩN, we can view it as a
matrix with infinite constant rows. It follows from Proposition 5.1 that the
attractor of the matrix is a singleton consisting of the unique limit point for
the sequence, which exists by Lemma 2.2.

Furthermore, the attractor of a matrix can have exactly k points for any
positive integer k. Moreover, if dim(E) is finite, then any compact subset of
E is the attractor of some matrix T ∈ ΩN2 . To see this, note first that if
Q = (Qn) ∈ ΩN, k ∈ N and a ∈ E are such that Qn(a) = a for all n > k,
then

f(Q) = lim
n→∞

(Q1 ◦ · · · ◦Qn)(a) = lim
n→∞

(Q1 ◦ · · · ◦Qk)(a) = (Q1 ◦ · · · ◦Qk)(a).

Consequently, by Proposition 5.1, if T ∈ Ω, k ∈ N and a ∈ E are such that
Tn,j(a) = a for all n > k and j, then

a(T ) = {(Q1 ◦ · · · ◦Qk)(a) : Q1 ∈ T 1, . . . , Qk ∈ T k}.

In particular, we can obtain any finite set as an attractor. We also have the
following

Example 5.2. Let diam(E) be finite,K be in Comp(E) and {aj : j ∈ N}
be an at most countable dense subset of K. Define

T1,j : E 3 z 7→ 1
2
z + aj ∈ E, j ∈ N,

Tn,j : E 3 z 7→
(

1
2

+
1

n+ j

)
z ∈ E, j ∈ N, n = 2, 3, . . . .

Then T = [Tn,j ]n,j∈N ∈ ΩN2 and A(T ) = a(T ) = K.

Note that for a matrix of affine contractions of C, if the associated at-
tractor is finite but is not a singleton, it cannot be at the same time the
attractor of an iterated function system of affine nonconstant contractions
of the complex plane. Attractors of such systems are either singletons or
infinite sets. Indeed, if all the functions in the system have the same fixed
point then the attractor is the singleton consisting of that point. However,
if two functions h1 and h2 in the system have distinct fixed points, say z1
and z2, then the invariance property of the attractor implies that all points
hn2 (z1), n ∈ N, are in the attractor and all these points are distinct.

6. Analyticity of attractors. Let us recall the definition of (strongly)
analytic multifunction due to Słodkowski [18]. (The term “strongly analytic”
is used here to make a distinction between the definition stated below and
a less restrictive definition given in [17].)

Just as before, if X is a metric space, Comp(X) denotes the set of all
nonempty compact subsets of X.
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Let U be an open set in a complex Banach space G. Any mapping K :
U → Comp(E) is called a multifunction with values in E. By the graph of
K we mean the set graph(K) = {(z, w) ∈ U × E : w ∈ K(z)}. We say that
a multifunction is upper semicontinuous if for any open set W ⊂ E, the set
{z ∈ U : K(z) ⊂W} is open.

Furthermore, we say that a subset Y of a complex Banach space F has
the local maximum property if there is no holomorphic function f : W → C
(where W ⊂ F is open) such that |f | restricted to W ∩ Y has a strict
local maximum. A multifunction K : U → Comp(CN ) is said to be strongly
analytic (or simply analytic) if it is upper semicontinuous and if for any
(N+1)-dimensional complex affine subspace L ofG×CN the set L∩graph(K)
has the local maximum property.

Finally, we say that a multifunction is trivial analytic if its graph is the
union of a family of graphs of holomorphic functions.

In this section we restrict our investigation to the space `∞(Nρ,A(E))
and its open subset Ωρ = ΩNρ . Just as in Proposition 5.1, our construction of
attractors necessitates different choices of infinite sequences of entries from
a matrix with an infinite number of finite rows (possibly of varying length),
one entry from each row. The set Col(T ) can be seen as a collection of
somewhat crooked columns and it turns out that it can be furnished with a
useful topological structure.

Let Σρ denote the set of all functions σ : N→ N such that σ ≤ ρ. Choose
a nondecreasing function ρ̄ : N→ N such that ρ ≤ ρ̄. We can define a metric
on Σρ by the formula

δ(σ, τ) =
∞∑
j=1

|σ(j)− τ(j)|
ρ̄(j)j

, σ, τ ∈ Σρ.

It has been shown in [12] that for any σ ∈ Σρ the sets

(8) U(σ,m) = {τ ∈ Σρ : σ(j) = τ(j) for j = 1, . . . ,m}, m ∈ N,

form a basis of neighbourhoods of σ and that the metric space (Σρ, δ) is
compact.

Suppose that T = [Tn,j ] ∈ `∞(Nρ,A(E)). If n ∈ N, then the nth row of
T will be denoted by

Trow(n) = [Tn,1, . . . , Tn,ρ(n)] ∈ (A(E))ρ(n).

If σ ∈ Σρ, then

Tcol(σ) = [T1,σ(1), T2,σ(2), . . .]
∗ ∈ Col(T ) ⊂ `∞(N,A(E)),

where the asterisk denotes the transpose. If σ ≡ m, then Tcol(σ) is simply
the mth column of the infinite matrix T .
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Theorem 6.1. If f is defined as in Theorem 2.3, then the mapping

Ψ : Σρ ×Ωρ 3 (σ, T ) 7→ f(Tcol(σ)) ∈ E
is continuous. Moreover , the set-valued mapping

A : Ωρ 3 T 7→ A(T ) ∈ Comp(E),

where A(T ) denotes the attractor of T , is upper semicontinuous. In particu-
lar , if E = CN , the mapping A is a trivial strongly analytic multifunction.

Proof. The first statement follows from (3) and (8).
As for the second statement, note that if T ∈ Ωρ, then

A(T ) = a(T ) =
⋃
σ∈Σρ

{f(Tcol(σ))} = Ψ(Σρ × {T})

is a compact set in E.
To show the upper semicontinuity, take an open set U ⊂ E containing

A(T ). By the continuity of Ψ , for each σ ∈ Σρ there exists a neighbourhood
Vσ⊂Σρ of σ and a neighbourhood Wσ⊂Ωρ of T such that f(Scol(τ))∈U for
all (τ, S) ∈ Vσ×Wσ. The open cover (Vσ)σ of the compact space Σρ contains
a finite open subcover Vσ1 , . . . , Vσn . Let W = Wσ1 ∩ · · ·∩Wσn . If S ∈W and
τ ∈ Σρ, then τ ∈ Vσi for some σi and thus (τ, S) ∈ Vσi ×W ⊂ Vσi ×Wσi .
Therefore A(S) ⊂ U as required.

The last conclusion is obvious.

7. Generalized Cantor sets. We now recall the construction of a gen-
eralized Cantor set in C from [15]. Let (ln)n≥0 be a given sequence of positive
numbers such that l0 = 1 and

(9) 2ln < ln−1

for n ≥ 1. We start with the interval F0 = [0, 1] from which we remove
the open concentric subinterval of length 1 − 2l1 and thus obtain the set
F1 = I1,1 ∪ I1,2, where I1,1 = [0, l1] and I1,2 = [1− l1, 1]. If Fn = In,1 ∪ In,2 ∪
· · · ∪ In,2n , we obtain Fn+1 by removing the open concentric subinterval of
length ln − 2ln+1 from each of the intervals In,k. Then

(10) F =
⋂
n≥0

Fn

is called a generalized Cantor set.
If ln = 3−n (n = 0, 1, 2, . . .), we obtain the classical ternary Cantor

set, probably the most popular example of attractors of iterated function
systems in C. In a slightly more general setting, if ln = an (n = 0, 1, 2, . . .)
for a fixed a ∈ (0, 1/2), the generalized Cantor set is the attractor of the
iterated function system {h1, h2} with h1(z) = az, h2(z) = az + 1 − a.
Barnsley [4] showed that every nonempty compact set can be approximated
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by attractors of iterated function systems. However, the sequence (ln)n≥0

may be such that F is not the attractor of any (finite or countable) iterated
function system of contractions (namely one can choose the sequence so that
F will satisfy the assumptions on the set X1 in [6]). We will show though
that the generalized Cantor sets defined in this section can be easily obtained
as attractors of matrices in Ω ⊂ `∞(N× {1, 2},A(C)).

First we need a technical lemma.

Lemma 7.1. Let (ln)n≥0 be a sequence of positive numbers such that l0 =1
and 2ln < ln−1 for n ≥ 1. Define

(11) Tn,0(z) =
ln
ln−1

z, Tn,1(z) =
ln
ln−1

z + 1− ln
ln−1

.

Then Tn,j([0, 1]) ⊂ [0, 1] for any n ≥ 1 and j ∈ {0, 1}. Furthermore, if n ≥ 1,
ν ∈ {0, 1, . . . , 2n−1} and j1j2 . . . jn is the binary expansion of the number ν,
then

(T1,j1 ◦ T2,j2 ◦ · · · ◦ Tn,jn)(z) = lnz + anν

with 0 = an0 < an0 + ln < an1 < an1 + ln < · · · < an2n−1 < an2n−1 + ln = 1.
Moreover , an2k+1 − an2k − ln = ln−1 − 2ln.

Proof. The first statement follows from (9). To prove the rest we use
induction with respect to n.

Proposition 7.2. Let (ln)n≥0 be a sequence of positive numbers such
that l0 = 1 and 2ln < ln−1 for n ≥ 1. Then T = [Tn,j−1]n∈N,j∈{1,2} ∈ Ω ⊂
`∞(N×{1, 2},A(C)) where Tn,j−1 are given by formulas (11). Furthermore,
A(T ) is the generalized Cantor set given by (10).

Proof. We have ‖T‖ = 1 and ‖T̂‖ ≤ 1/2 by definition of T and (9). The
second statement follows from Lemmas 4.2 and 7.1.

To finish this section, we remark that the family of the generalized Cantor
sets considered here plays an important role in the constructive theory of
functions (see for instance [15] and [5]).
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