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Cousin-I spaces and domains of holomorphy

by Ilie Bârză (Karlstad) and Viorel Vâjâitu (Lille)

Abstract. We prove that a Cousin-I open setD of an irreducible projective surface X
is locally Stein at every boundary point which lies in Xreg. In particular, Cousin-I proper
open sets of P2 are Stein. We also study K-envelopes of holomorphy of K-complete spaces.

1. Introduction. Let X = (X,OX) be a complex space. We denote by
MX the sheaf of germs of meromorphic functions on X. Following Grauert
and Remmert ([9, p. 141]), we say that X has the Cousin-I property or that
X is a Cousin-I space if the first (additive) Cousin problem is universally
solvable on X.

This means that, for every Cousin data {(Ui,mi)}i on X (i.e. {Ui}i is an
open covering of X and mi is a meromorphic function on Ui such that on
the (non-empty) intersection Ui∩Uj the difference mi−mj is holomorphic)
there is a meromorphic function m on X such that m|Ui−mi is holomorphic
on Ui. Reformulated in cohomological language, this reads: the natural map
H0(X,MX)→ H0(X,MX/OX) is surjective, or equivalently, the morphism
H1(X,OX)→ H1(X,MX) is injective.

Consequently, a reasonable sufficient condition for X to be a Cousin-I
space is the vanishing of H1(X,OX). However, there are smooth compact
K3 surfaces M with H1(M,OM ) 6= 0 and no complex curve on M , so that
M is trivially a Cousin-I space. (This is because on a complex manifold Z
the existence of non-trivial first Cousin data implies that there are complex
hypersurfaces on Z.)

Although being a Cousin-I space is an intrinsic property, the notion is
extrinsically studied, usually for open sets in a larger space having “many
holomorphic functions”. For instance, it was shown in [2] that a Cousin-I
open set in a Stein surface is itself Stein. This extends a well-known theorem
due to Cartan, Behnke and Stein ([4], [5], [3]). We prove:
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Theorem 1. Let X be an irreducible projective surface and D ⊂ X a
Cousin-I open set. Then D is locally Stein at every point x0 ∈ ∂D ∩Xreg.
In particular , Cousin-I proper open sets of P2 are Stein.

In this circle of ideas we also prove (see § 4 for definitions):

Proposition 1. Let X be a K-complete, connected , normal complex
surface. If X is a Cousin-I space, then X coincides with its K-envelope of
holomorphy.

It turns out that when dealing with these questions it is necessary to
reconsider the notion of domain of holomorphy in complex spaces. This is
done in §2.

2. Preliminaries. Throughout this paper complex spaces are not nec-
essarily reduced. Curves, surfaces, etc. will be complex spaces of appropriate
pure dimensions.

Before giving the notion of domain of holomorphy we employ, let us
give an example of an irreducible Stein curve X and a non-empty open set
D ⊂ X for which there are two non-empty open sets U1, U2 such that U2 is
connected, U1 ⊂ D ∩ U2 6= U2, and for every holomorphic function f on D
there is a holomorphic function f2 on U2 such that f = f2 on U1.

Let X be the node {(z, w) ∈ C2 ; w2 = z2 + z3} and π : C → X the
normalization map given by

π(t) = (t2 − 1, t(t2 − 1)), t ∈ C.

Clearly, X is an irreducible Stein curve which is not locally irreducible at
its (only) singular point x0 = (0, 0), π−1(x0) = {−1, 1}, and π induces a
biholomorphism between C \ {−1, 1} and X \ {x0}.

We remark that if S and T are disjoint subsets of C such that S 3 −1
and T 3 1, then π(S)∩π(T ) = {x0}. Now take S and T open and connected;
let S′ and T ′ be non-empty connected open subsets of C such that S′ ⊂ S,
−1 6∈ S′, T ′ ⊂ T , T ′ 6= T and 1 ∈ T ′. Put D = π(S ∪ T ′), U1 = π(S′)
and U2 = π(S ∪ T ). Clearly, D is a Stein open set in X, U1 and U2 are
non-empty open sets, U2 is connected and U1 ⊂ U2 ∩D 6= U2. However, for
each f ∈ O(D) there exists f2 ∈ O(U2) with f = f2 on U1. (Notice that
π(S) and π(T ′) are the irreducible components of D.)

This shows that the ordinary definition of domain of holomorphy from
the smooth case does not carry over ad litteram to complex spaces. The
appropriate one is:

Definition 1. Let X be a complex space of pure dimension n. An open
set D in X is a domain of holomorphy if there do not exist non-empty open
sets U1 and Û2 of X and an irreducible component Y of X such that:
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(i) the analytic set U2 := Û2 ∩ Y is irreducible,
(ii) U1 ⊂ U2 ∩D and U2 6⊂ D,

(iii) for every f ∈ O(D) there exists f2 ∈ O(U2) with f = f2 on U1.

The key result to deal with this definition is the construction of irre-
ducible principal Stein surfaces in Stein spaces.

Theorem 2. Let X be a Stein space of pure dimension n. Let Y ⊂ X
be a locally analytic set which is Stein, irreducible and of dimension n. Let
also Λ and Λ′ be two disjoint discrete subsets in X. Then there exists a
holomorphic function f ∈ O(X) with the following properties:

(a) The set Zf := {f = 0} contains Λ and is disjoint from Λ′.
(b) The analytic set Y ∩ Zf is irreducible and f has multiplicity one

on it.

The proof is similar to the one in [16] so we confine ourselves to indi-
cating the necessary changes. For instance, on p. 202 the “almost-proper”
holomorphic map π should now be considered from Y into Cn. Also, there
we did not have a condition concerning Λ′. However, this can be easily sat-
isfied as we reasoned using Baire’s theorem and because f is of the form
f = Fg :=

∑m
i=1 gihi, with fixed h1, . . . , hm ∈ O(X) such that Λ = {h1 =

· · · = hm = 0} and g = (g1, . . . , gm) running over a Gδ set. The simple
observation that {g ∈ O(X)m ; ∃a ∈ Λ′, Fg(a) 6= 0} is open and dense in
O(X)m concludes the proof of the theorem.

Proposition 2. Let X be a Stein space of pure dimension n. Let Ω be
a Cousin-I open set in X. Then Ω is a domain of holomorphy provided that
the following condition (?) holds:

(?) For each holomorphic function f ∈ O(X) which is non-constant on
every irreducible component of X of positive dimension, Ω ∩ f−1(0)
is a domain of holomorphy in f−1(0).

Proof. For an arbitrary complex space X, let Sd = {x ∈ X ; prof OX,x ≤
d}. Then Sd is an analytic set in X of dimension ≤ d. It is easily seen that
there is a discrete set Λ = {xi}i∈I of points in X (possibly infinite) such
that, for each d = 0, 1, . . . , every d-dimensional irreducible component of
Sd contains a point of Λ. Now, if f is a holomorphic function on X and
f(xi) 6= 0 for all i, then by [14], for every x ∈ X, the germ fx is not a zero
divisor in OX,x so that the multiplication morphism induced by f from OX
into itself is injective.

Now we come to the proof of the proposition. Assume, in order to reach
a contradiction, that Ω is not a domain of holomorphy in X; let U1 and U2

be according to the definition. We can assume that U2 is Stein. Let Ũ1 be
the union of the irreducible components of U2 ∩ Ω meeting U1. Using the
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normalization map we see that there is a boundary point a of Ω that is also
a boundary point of Ũ1. (This a might belong to the set Λ above.) Fix a
point b ∈ U1 \ Λ. By Theorem 2, there exists f ∈ O(X) with the following
properties:

(1) The zero set Z of f contains the points a and b and for each x ∈
Λ \ {a}, f(x) 6= 0.

(2) The analytic set U2 ∩ Z is irreducible.

Let Z be endowed with the full fiber of f over 0 ∈ C and Ω′ := Ω ∩ Z.
We claim that Ω′ is not a domain of holomorphy in Z. To show this, first
observe that U ′1 := U1 ∩ Z and U ′2 := U2 ∩ Z are as in the definition. Now
let h ∈ O(Ω′). From [2, p. 321], since fx is not a zero divisor of OX,x, for
every x ∈ Ω, there exists H ∈ O(Ω) which extends h. But, in view of our
assumption, there exists H2 ∈ O(U2) which agrees with H on U1. The claim
follows and so the proof of the proposition is complete.

Remark. This corollary generalizes Cartan’s well-known result for
Cousin-I open sets in C2.

3. Proof of Theorem 1. The proof is divided into several steps and is
completed in the last fifth step.

Step 1. Let X = (X,OX) be a complex space. We say that X is co-
homologically 1-convex if, and only if, for any coherent analytic sheaf F on
X, the cohomology groups Hj(X,F), j = 1, 2, . . . , are finite-dimensional
complex vector spaces. For instance, a complex curve is cohomologically
1-convex if, and only if, it has finitely many one-dimensional compact irre-
ducible components. For more details, see [12].

Also, if Y = (Y,OY ) is another complex space, then we say that Y is
an infinitesimal extension of X if they have the same underlying topological
space and X becomes a closed subspace of Y , that is, there is a coherent
sheaf of ideals I ⊆ OY with Supp(OY /I) = X and OX ' OY /I. From [17]
we get:

Lemma 1. Let X and Y be a complex spaces such that Y is an infinites-
imal extension of X. Then X and Y are simultaneously cohomologically
1-convex.

Step 2. Let X be a projective space and L an ample line bundle over X.
Let σ ∈ Γ (X,L), σ 6= 0. Put X0 := X \ {σ = 0}. Then the set

{(τ/σm)|X0 ; τ ∈ Γ (X,Lm), m ∈ N}

is dense in O(X0) with respect to the canonical topology of uniform conver-
gence on compact subsets of X0.



Cousin-I spaces 55

Indeed, it is no loss of generality to assume that L is the restriction of
O(1) to X for some holomorphic embedding X ↪→ PN and σ comes from a
hyperplane section. Now, becauseX0 is realized as a closed analytic subspace
of CN = PN \ {σ = 0}, any holomorphic function on X0 is the restriction of
a holomorphic function on CN which can be approximated by polynomials.
The proof of Step 1 concludes easily.

Step 3. Let X be a Cousin-I complex space and L a holomorphic line
bundle over X. Assume that there is a section σ ∈ Γ (X,L) such that the
multiplication by σ induces an injective OX -morphism OX → L, where L
denotes the sheaf of germs of holomorphic sections in L. Then the canonical
restriction map

H0(X,L)→ H0(X,L/σOX)

is surjective. We notice that the above injectivity results if X is irreducible
and σ 6= 0. (For s ∈ H0(X,L/σOX), select a locally finite Stein open cover-
ing {Vi}i of X and then extensions si ∈ H0(Vi,L) of s|Vi . It follows readily
that {(Vi, si/σ)}i defines an additive Cousin data on X. Let m ∈M(X) be
a solution. Then mσ is the desired extension.)

Step 4. For a complex space X and a holomorphic function f on X, let
Zf be the zero set of f , i.e. Zf = {x ∈ X ; f(x) = 0}. From [16] we recall
the following result.

Lemma 2. Let X be an irreducible Stein space and D an irreducible open
set in X which is Stein and Runge in X. Then, for any x1, x2 ∈ D, there
exists a holomorphic function f on X such that x1 and x2 are contained in
the same irreducible component of Zf ∩D.

Furthermore, if U1 is an open neighborhood of x1, then there is a compact
set K in D and ε > 0 such that , for any holomorphic function h on X with

h(x2) = 0 and max
x∈K
|h(x)− g(x)| ≤ ε,

there is an irreducible component Σ of Zh passing through x2 such that
Σ ∩ U1 is non-empty and Σ ∩D is irreducible.

Step 5. Now we conclude the proof of Theorem 1. Let X ↪→ PN be a
holomorphic embedding such that there are finitely many global holomor-
phic sections σj ∈ Γ (PN ,O(1)) such that the singular part Xsing of X is
X ∩ {σ1 = · · · = σm = 0}.

Let σ be one of the sections σ1, . . . , σm. We show that D0 := D\{σ = 0}
is Stein (in the Stein smooth connected surface X0 := X \ {σ = 0}).

Assume, in order to reach a contradiction, that D0 is not Stein. There-
fore, due to the positive solution of the Levi problem in Stein manifolds,
there is a point a ∈ ∂D ∩X0 such that, for every Stein open neighborhood
W of a in X0, W ∩ D is not Stein. Hence there are non-empty connected
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open sets U1 and U2 in W such that U1 ⊂ D ∩ U2 6= U2, U2 is Stein and
Runge in X0, and for every holomorphic function F on W ∩ D, there is a
holomorphic function F2 on U2 such that F = F2 on U1. Clearly, we may
assume that U1 is a connected component of U2 ∩D.

From Steps 2 and 4 (and replacing L by a suitable tensor power of it,
if necessary), there is a holomorphic section τ ∈ Γ (X,L), τ 6= 0, and an
irreducible component Σ of the compact complex curve {τ = 0} such that
Σ 3 a, Σ ∩ U2 is irreducible and Σ ∩ U1 6= ∅. This implies easily that the
boundary of U1∩Σ computed with respect to U2∩Σ is non-empty. Therefore,
there is a boundary point a] of D in U2 that is also an accumulation point
of U1 ∩Σ.

Let X ′ := {x ∈ X ; τ(x) = 0}. This is a compact curve and D′ := D∩X ′
is cohomologically 1-convex. Let I be the ideal sheaf of X ′ in X, L′ the
restriction of L to X ′ (which is again a holomorphic line bundle), L′ the
sheaf of germs of its holomorphic sections (which is a coherent OX′-module)
and S the sheaf of germs of holomorphic sections of L that vanish on X ′.

Now, because X ′ is compact, there is a positive integer m such that
ImS ⊆ σOX . This implies that S/σOX isOX/Im-coherent. Thus, by Step 1,
the cohomology group H1(D′,S/σOX) has finite dimension.

To reach the desired contradiction, let {xν}ν be a sequence of points inD′

converging to a]. Since D′ is holomorphically convex, there is a holomorphic
function f on D′ such that {f(xν)}ν is unbounded in C. Let also θ ∈ Γ (X,L)
with θ(a]) 6= 0 and let θ′ ∈ Γ (X ′, L′) be canonically induced by θ. On the
other hand, the short exact sequence

0→ S/σOX → L/σOX → L′ → 0

induces a long exact cohomology sequence from which we retain the exact
portion

H0(D′,L/σOX)→ H0(D′,L′)→ H1(D′,S/σOX).

But, as H1(D′,S/σOX) has finite dimension, there is a non-constant holo-
morphic polynomial P in one complex variable such that P (f)θ′∈H0(D′,L′)
comes from a holomorphic section θ̂ ∈ H0(D,L). Then F := θ̂/σ is holomor-
phic on D0 and is unbounded near a], so that no holomorphic “extension”
F2 exists. The conclusion of the theorem follows. (The additional state-
ment now follows easily thanks to the positive solution of the Levi problem
in Pk.)

4. Proof of Proposition 1. The material presented so far motivates
the question of characterizing those K-complete complex spaces X that are
Cousin-I spaces. Below we give a description of X in terms of certain en-
velopes of holomorphy; as a byproduct, this will give a proof of Proposition 1.
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First we recall a few concepts. Let X be a complex space. We say that X
is K-complete if, for any point x0 of X, there exists a holomorphic mapping
F : X → Cm, m = m(x0), such that x0 is isolated in the fiber F−1(F (x0))
and F is nowhere degenerate (1) in a neighborhood of x0.

Let X be K-complete. By a K-envelope of holomorphy of X we mean a
pair (α, X̃) with the following two properties:

(i) X̃ is a complex space and α : X → X̃ is a nowhere degenerate
holomorphic map such that the natural homomorphism ?α : O(X̃)→
O(X) induced by α is a ring isomorphism.

(ii) For each K-complete complex space Y and for every nowhere degen-
erate holomorphic map β : X → Y such that ?β : O(Y ) → O(X) is
a ring isomorphism (?β is induced by β), there is a nowhere degen-
erate holomorphic mapping h : Y → X̃ which makes the following
diagram commutative:

Y

h
��

X
α //

β
??~~~~~~~~
X̃

It is proved in [11] that the K-envelope of holomorphy (α, X̃) exists and
it is uniquely determined (up to analytic isomorphism) for X connected,
normal and K-complete. Also, X̃ is K-complete, normal and connected.

In order to introduce the second type of envelope recall that a branched
Riemann domain over Cn is a pair (X,π) where X is a reduced complex
space and π : X → Cn a nowhere degenerate holomorphic map. To such
a branched Riemann domain (X,π) we associate the set D of all Riemann
domains (Y, σ) over Cn such that there exists a commutative diagram of
holomorphic maps

X
f //

π
!!B

BB
BB

BB
B Y

σ
~~||

||
||

||

Cn

for which the naturally induced map ?f : O(Y ) → O(X) is bijective. On D
we define a natural ordering “≺” by saying that (Y1, σ1) ≺ (Y2, σ2) if there
exists a holomorphic map h : Y1 → Y2 with σ2 ◦ h = σ1 and ?h : O(Y2) →
O(Y1) is bijective. It is shown in [11] that D has a maximal element (X̂, π̂)

(1) A mapping u : S → T between connected topological spaces is said to be nowhere
degenerate if each fiber of u is a discrete set in S and the image u(S) contains an open
subset of T .
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(unique up to analytic isomorphism), which we call the Thullen–Cartan
envelope of (X,π).

The relation between X̃ and X̂ is clarified in [11]. Let X be a con-
nected, normal, K-complete complex space. Let (α, X̃) be the K-envelope
of holomorphy of X and let π̃ : X̃ → Cn be the holomorphic extension of
π : X → Cn. Then X̂ might be viewed as the complement in X̃ of the
degeneracy set of π̃.

Proposition 3 ([11]). Let X be a K-complete, normal , connected com-
plex space. Then X coincides with its K-envelope of holomorphy X̃ if and
only if , for any realization (X,π) of X as a Riemann domain over Cn,
(X,π) coincides with (X̂, π̂).

Now we give:

Proposition 4. Let X be a connected , normal K-complete space. If X
is a Cousin-I space and for each non-constant holomorphic function f on X,
{f = 0} is Stein, then X coincides with its K-envelope of holomorphy.

Proof. It suffices to establish the following fact. Let Y be a K-complete
holomorphic extension of X, that is, Y is connected, normal, K-complete,
and there is a nowhere degenerate holomorphic map β : X → Y such
that ?β : O(Y ) → O(X) is a ring isomorphism. Under the hypothesis
of Proposition 4, we show that β is biholomorphic. We do this in two
steps.

Step 1. We show that O(X) separates the points of X, so that β is
injective; as X and Y are normal, β is also an open map, so that X may be
regarded as an open subset of Y .

To check this step, let x 6= y be two points of X. Let f be a non-
constant holomorphic function on X. If f(x) 6= f(y), then we are done.
If f(x) = f(y) =: c, then the hypothesis implies that the restriction map
O(X) → O(Y ) is surjective, where Y = {f = c}. Since Y is Stein, the
assertion follows.

Step 2. The map β is surjective. In order to prove this we shall apply
the following proposition which results mutatis mutandis from [16] (see the
proof of Theorem 2 there).

Proposition 5. Let Z be an irreducible K-complete complex space and
Γ a discrete subset of Z. Then there exists a holomorphic function f on Z
for which there is a (unique) irreducible component of {f = 0} contain-
ing Γ .

Now, returning to the proof of Step 2, assume, in order to reach a con-
tradiction, that there exists x0 ∈ ∂X. Let f̂ be a non-constant holomorphic
function on X̂ such that there is an irreducible component Σ of {f̂ = 0}
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containing x0 and intersecting X. Now the boundary of Σ ∩X (computed
in Σ) cannot be empty. (Otherwise, Σ ∩ X is closed and open in Σ, thus
Σ ∩X is a union of connected components of Σ, thus Σ ∩X equals Σ be-
cause Σ is irreducible, a fortiori connected. This gives x0 ∈ X, which is not
the case.) On the other hand, one verifies easily that ∂Σ(Σ ∩X) ⊂ Σ ∩ ∂X.
Thus there is a boundary point of X which is an accumulation point of
Σ∩X, which means that there is a sequence of points {xν}ν in X ∩{f̂ = 0}
converging to a point of ∂X. Let g be a holomorphic function on X such
that {g(xν)}ν is unbounded. Considering its holomorphic extension ĝ to X̂
we arrive easily at a contradiction. This implies the surjectivity of β, whence
Step 2.
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