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Abstract. It is proved that if X is a rotund Banach space and M is a closed and
proximinal subspace of X, then the quotient space X/M is also rotund. It is also shown
that if Φ does not satisfy the δ2-condition, then h0

Φ is not proximinal in l0Φ and the quotient
space l0Φ/h

0
Φ is not rotund (even if l0Φ is rotund). Weakly nearly uniform convexity and

weakly uniform Kadec–Klee property are introduced and it is proved that a Banach space
X is weakly nearly uniformly convex if and only if it is reflexive and it has the weakly
uniform Kadec–Klee property. It is noted that the quotient space X/M with X and M as
above is weakly nearly uniformly convex whenever X is weakly nearly uniformly convex.
Criteria for weakly nearly uniform convexity of Orlicz sequence spaces equipped with the
Orlicz norm are given.

1. Introduction. The notions of nearly uniform convexity (NUC for
short) and uniform Kadec–Klee property (UKK) play an important role
in some branches of mathematics, for example in fixed point theory (see
[1] and [8]). We introduce two new geometric properties of Banach spaces:
weakly nearly uniform convexity (WNUC for short) and another property,
called the weakly uniform Kadec–Klee property (WUKK). We prove that
a Banach space X is WNUC if and only if X is reflexive and it has the
WUKK-property.

Let (X, ‖ ‖) be a Banach space and X∗ be its dual space. By B(X)
and S(X) we denote the unit ball and unit sphere of X, respectively. Recall
that x ∈ S(X) is said to be an H-point if for any sequence {xn} in S(X)
with xn

w→ x, we have ‖xn − x‖ → 0. A Banach space X is said to have
the Kadec–Klee property (property H for short) if any point of S(X) is
an H-point. A sequence {xn} in X is said to be ε-separated (ε > 0) if
sep({xn}) := inf{‖xm − xn‖ : m 6= n} > ε. Further, X is said to have
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the uniform Kadec–Klee property (UKK for short) if for any ε > 0 there
exists δ(ε) > 0 such that if x is a weak limit of an ε-separated sequence in
S(X), then ‖x‖ ≤ 1− δ(ε). It is well known that Banach spaces with UKK
have weakly normal stucture (see [1]). Replacing in the definition of UKK
the phrase “for any ε > 0” by “for some ε ∈ (0, 1)” we define the weakly
uniform Kadec–Klee property (WUKK for short). Also the WUKK-property
of a Banach space X implies that X has weakly normal structure (the proof
remains the same as for UKK).

The notion of nearly uniform convexity of a Banach space was introduced
in [11]. It is an infinite-dimensional counterpart of the classical uniform
convexity introduced by Clarkson in [3]. Recall that a Banach space X is
said to be NUC if for every ε > 0 there exists δ(ε) > 0 such that for any
sequence {xn} inB(X) with sep({xn}) ≥ ε we have conv({xn})∩δB(X) 6= ∅.
It is easy to see that NUC implies UKK for any Banach space. Huff [11] has
proved that a Banach space X is NUC if and only if it is reflexive and it
has UKK. Define a Banach space X to be weakly nearly uniformly convex
if there are ε ∈ (0, 1) and δ ∈ (0, 1) such that conv({xn}) ∩ δB(X) 6= ∅ for
every sequence {xn} in B(X) with sep({xn}) ≥ ε.

Let M be a closed subspace of a Banach space X. We denote by X/M
the quotient space of X modulo M . It is well known that X/M equipped
with the norm ‖[x]‖ = inf{‖y‖ : y ∈ [x]}, where [x] = {y ∈ X : y − x ∈M},
is also a Banach space. The subspace M of X is called proximinal in X if
for any x ∈ X there is y ∈M such that ‖[x]‖ = ‖x− y‖.

A point x ∈ S(X) is said to be an extreme point of B(X) if for any
y, z ∈ S(X) such that x = (y + z)/2 we have z = y = x. A Banach space
X is called rotund (R for short) if any point of S(X) is an extreme point of
B(X).

Let l0 be the space of all real sequences. A Banach space X is called
a Köthe sequence space if X ⊂ l0 and for any x ∈ l0 and y ∈ X with
|x(i)| ≤ |y(i)| for all i ∈ N, we have x ∈ X and ‖x‖ ≤ ‖y‖ (see [18]).
Since we are interested in infinite-dimensional Köthe sequence spaces X, we
may assume without loss of generality that there is an element x ∈ X with
x(i) > 0 for any i ∈ N.

For any x ∈ l0 we denote by x(n) the element

(

n times︷ ︸︸ ︷
0, . . . , 0, x(n+ 1), x(n+ 2), . . .).

We say that x is absolutely continuous if x(n) → 0 in X. We denote by
Xa the space of all absolutely continuous elements in X. A Köthe sequence
space X is said to be absolutely continuous if Xa = X. We say that X
has the semi-Fatou property if for any sequence {xn} in X and any x ∈ X
satisfying |xn(i)| ↑ |x(i)| for all i ∈ N, we have ‖xn‖ → ‖x‖.
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A mapping Φ : R→ [0,∞) is said to be an Orlicz function if Φ vanishes
only at zero, is even and convex.

Given any Orlicz function Φ we define on l0 the convex modular IΦ by

IΦ(x) =
∞∑

i=1

Φ(x(i)).

The linear space lΦ defined by

lΦ = {x ∈ l0 : IΦ(kx) <∞ for some k > 0}
is called the Orlicz space generated by Φ (see [2] and [12]–[17]). We consider
lΦ equipped with the Amemiya–Orlicz norm

‖x‖0 = inf
{

1
k

(1 + IΦ(kx)) : k > 0
}
.

To simplify notation we write l0Φ in place of (l0Φ, ‖ ‖0). The Luxemburg norm
in lΦ is defined by

‖x‖ = inf{λ > 0 : IΦ(x/λ) ≤ 1}.
For any x in l0Φ \ {0} the set of all numbers k > 0 such that ‖x‖0 =
k−1(1 + IΦ(kx)) is denoted by K(x). It is well known (see [2], [16] and
[19]) that K(x) = [k∗x, k

∗∗
x ], where k∗x = inf{k > 0 : IΨ (p ◦ k|x|) ≥ 1} and

k∗∗x = sup{k > 0 : IΨ (p◦k|x|) ≤ 1} if k∗x <∞ and K(x) = ∅ if k∗x =∞. Here
Ψ denotes the function complementary to Φ in the sense of Young and p de-
notes the right derivative of Φ. It is also known that if Φ satisfies condition
(∞1) : Φ(u)/u→∞ as u→∞, then K(x) 6= ∅ for any x ∈ lΦ \ {0}.

We say an Orlicz function Φ satisfies the δ2-condition (Φ ∈ δ2 for short)
if there are k ≥ 2 and u0 > 0 such that Φ(2u) ≤ kΦ(u) whenever |u| ≤ u0.
In what follows, hΦ denotes the space of all x ∈ l0 with IΦ(kx) < ∞ for
all k > 0. It is easy to see that hΦ = (lΦ)a. We write briefly h0

Φ in place
of (hΦ, ‖ ‖0). It is well known that hΦ = lΦ if and only if Φ ∈ δ2 (see [2]
and [17]).

2. Some results on geometry of quotient spaces. Let us begin
with the obvious observation that ‖[x]‖ = d(x,M), where d(x,M) denotes
the distance of x from M . Next, we make the following easy remark.

Remark 1. If X is a Banach space and M is its closed and proximinal
subspace, then there is z ∈ S(X) such that ‖[z]‖ = 1.

This follows from Godini’s result [7] stating that M is proximinal in X
if and only if q(B(X)) = B(X/M), where q is the canonical map X 3 x 7→
q(x) := [x] ∈ X/M. However, for completeness we present a short proof.
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Proof. Take x ∈ X \M. By the proximinality of M in X there is y ∈M
such that ‖x− y‖ = d(x,M). Define z = (x− y)/‖x− y‖. Then ‖z‖ = 1 and

‖[z]‖ =
1

‖x− y‖ ‖[x− y]‖ =
‖[x]‖
‖x− y‖ =

‖x− y‖
‖x− y‖ = 1.

Example 1. Denote by C[0, 1] the space of all continuous real functions
on the interval [0, 1] equipped with the norm ‖x‖∞ = sup0≤x≤1 |x(t)|. Define

X = {x ∈ C[0, 1] : x(0) = 0} and M = {x ∈ X :
� 1
0 x(t) dt = 0}. It is obvious

that X is a Banach space and M is its closed subspace. It is known (see [18,
pp. 64–65]) that there is no point on the unit sphere in X with unit distance
from M . Therefore, by Remark 1, M is not proximinal in X.

Theorem 1. If X is a rotund Banach space and M is its closed and
proximinal subspace, then the Banach space X/M is also rotund.

Proof. Let [x], [y] ∈ S(X/M), [x] 6= [y], i.e. x − y 6∈ M. By the proxim-
inality of M in X, there are x′ ∈ [x] and y′ ∈ [y] such that ‖[x]‖ = ‖x′‖ =
‖y′‖ = ‖[y]‖ = 1. It follows from [x] 6= [y] that x′ 6= y′. Since X is rotund
we get

∥∥x′+y′
2

∥∥ < 1, whence
∥∥∥∥

[x] + [y]
2

∥∥∥∥ =
∥∥∥∥
[
x+ y

2

]∥∥∥∥ ≤
∥∥∥∥
x′ + y′

2

∥∥∥∥ < 1,

which means that X/M is rotund.
The next theorem shows that the assumption in Theorem 1 that M is

proximinal is essential in general.

Theorem 2. If Φ is an Orlicz function vanishing only at zero such that
Φ 6∈ δ2 and Φ satisfies condition (∞1), then h0

Φ is not proximinal in l0Φ and
l0Φ/h

0
Φ is not rotund.

Proof. It is well known that the spaces lΦ/hΦ and l0Φ/h
0
Φ are isometric

under the identity map (see [2] and [17]). Recall (see [2]) that

(1) ‖x‖ < ‖x‖0 for any x ∈ lΦ \ {0}.
Assume that h0

Φ is proximinal in l0Φ and take any x ∈ l0Φ \ h0
Φ. We can find

y ∈ h0
Φ such that ‖[x]‖ = ‖x− y‖0. Hence,

‖x− y‖0 = ‖[x]‖ ≤ ‖x− y‖,
which yields ‖x− y‖0 = ‖x− y‖, contradicting (1).

Now, we show that l0Φ/h
0
Φ is not rotund if Φ 6∈ δ2 (even if Φ is strictly

convex). It is well known (see [2]) that if Φ 6∈ δ2, then one can find x, y ∈ l0Φ
such that suppx ⊂ {2k − 1 : k ∈ N}, supp y ⊂ {2k : k ∈ N}, IΦ(x) ≤ 1/2,
IΦ(y) ≤ 1/2 and IΦ(λx) = IΦ(λy) = ∞ for all λ > 1. Defining w = x + y
and z = x − y, we have ‖[w]‖ = ‖[z]‖ = 1, because it is well known (see
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again [2]) that ‖[w]‖ = inf{λ > 0 : IΦ(w/λ) <∞}. We have

[x] =
[
w + z

2

]
=

[w] + [z]
2

and so ‖[x]‖ = 1. This completes the proof that l0Φ/h
0
Φ is not rotund.

Remark 2. It is well known (see [4]) that if Φ is an Orlicz function
satisfying condition (∞1), then l0Φ is rotund if and only if Φ is strictly convex
on the interval [0,ΠΦ(1)] with ΠΦ(1) = inf{t > 0 : Ψ(p(t)) ≥ 1}, where Ψ
denotes the function complementary to Φ in the sense of Young and p denotes
the right derivative of Φ on R+. Therefore, taking an Orlicz function Φ which
is strictly convex on the real line and Φ 6∈ δ2, we find that l0Φ is rotund, h0

Φ

is not proximinal in l0Φ (see [9]), and consequently, the quotient space l0Φ/h
0
Φ

is not rotund. This explains the role of the proximinality of M in X in
Theorem 1.

As we will see below, the situation for weakly nearly uniform convexity
is different than for rotundity. However, we first need the following result.

Theorem 3. A Banach space X is weakly nearly uniformly convex if
and only if it is reflexive and has the weakly uniform Kadec–Klee property.

Proof. Necessity. We first prove thatX is reflexive whenever it is WNUC.
Assume that, on the contrary, X is WNUC but nonreflexive. Then by the
James Theorem (see [6]) there exist {xn} in S(X) and {x∗n} in S(X∗) such
that

x∗i (xj) =
{
θ if i ≤ j,
0 if i > j,

where θ ∈ (max{ε, δ}, 1), with ε arbitrary in (0, 1), and δ from the definition
of WNUC. Hence, for n > m we get

‖xn − xm‖ ≥ x∗n(xn − xm) = x∗n(xn) = θ ≥ ε,
which gives sep({xn}) ≥ ε. But for any x ∈ conv({xn}) we have

‖x‖ =
∥∥∥

m∑

i=1

λixi

∥∥∥ ≥ x∗m
( m∑

i=1

λixi

)
=

m∑

i=1

λix
∗
m(xi) =

m∑

i=1

λiθ = θ > δ

for some m ∈ N and every λi ≥ 0 (i = 1, . . . ,m) with
∑m
i=1 λi = 1. This

contradicts the condition conv({xn}) ∩ δB(X) 6= ∅ from the definition of
WNUC.

Let us prove that X has WUKK whenever it is WNUC. Assume that
X ∈WNUC, {xn} is a sequence in B(X) with sep({xn}) ≥ ε, x ∈ B(X) and
xn

w→ x as n →∞. We have sep({xn}∞n=m) ≥ sep({xn}) ≥ ε for all m ∈ N.
Fix m = 1. There is y1 ∈ conv({xn}∞n=m)∩δB(X), i.e. there are m1 ∈ N and
λi ≥ 0 for i = 1, . . . ,m1 such that

∑m1
i=1 λi = 1 and y1 :=

∑m1
i=1 λixi satisfies

‖y1‖ ≤ δ. Fix m = m1 + 1. There is y2 ∈ conv({xn}∞n=m1+1) ∩ δB(X), i.e.
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there are m2 ∈ N, m2 ≥ m1 + 1 and λi ≥ 0 for i = m1 + 1, . . . ,m2 with∑m2
i=m1+1 λi = 1 such that y2 =

∑m2
i=1 λixi satisfies ‖y2‖ ≤ δ. In such a way

we get, by induction, a sequence {yn} in B(X) ∩ conv({xn}) of the form

yn =
mn+1∑

i=mn+1

λixi, mn+1 ≥ mn + 1 (n = 1, 2, . . .)

with ‖yn‖ ≤ δ for all n ∈ N. Since

x∗(yn) =
mn+1∑

i=mn+1

λix
∗(xi)→

mn+1∑

i=mn+1

λix
∗(x) = x∗(x) as n→∞

for any x∗ ∈ X∗, and ‖yn‖ ≤ δ for all n ∈ N, we get ‖x‖ ≤ δ. Therefore X
has the weakly uniform Kadec–Klee property.

Sufficiency. Since X has WUKK, there exist ε ∈ (0, 1) and δ ∈ (0, 1)
such that for every sequence {xn} with sep({xn}) ≥ ε and x ∈ B(X) such
that xn

w→ x, we have ‖x‖ ≤ δ.
Assume that {xn} is a sequence in B(X) with sep({xn}) ≥ ε. By the

reflexivity of X there exist a subsequence {xni} of {xn} and x ∈ B(X) such
that xni

w→ x. It is obvious that sep({xni}) ≥ sep({xn}) ≥ ε. Hence ‖x‖ ≤ δ.
Since xni

w→ x, we see that if {yn} is a sequence in conv({xn1}), then yn
w→ x.

By the Mazur theorem we conclude that x ∈ conv({xn}) ∩ δB(X), which
means that X is NUC. This finishes the proof of the theorem.

Theorem 4. If a Banach space X is weakly nearly uniformly convex and
M is a closed subspace of X, then X/M has the weakly uniform Kadec–Klee
property , and X/M is reflexive, so nearly uniformly convex as well.

Proof. By Theorem 3, X is reflexive. So X/M is also reflexive, and to
prove that it is WNUC, we need only show that X/M has WUKK. Since
X has WUKK, there exist ε ∈ (0, 1) and δ ∈ (0, 1) such that if {xn} is a
sequence in B(X) with sep({xn}) ≥ ε and xn

w→ x ∈ B(X), then ‖x‖ ≤ δ.
Assume that {[xn]} is a sequence in B(X/M) with sep({[xn]}) ≥ ε and
x ∈ B(X/M) is such that [xn] w→ [x]. Since X is reflexive, there is x′ ∈ B(X)
such that xni

w→ x′. Therefore [x′] = [x], which shows that xni
w→ x. By

the double subsequence theorem, we get xn
w→ x. Note that sep({xn}) ≥

sep({[xn]}) ≥ ε. By the assumption that X ∈ WNUC we get ‖x‖ ≤ δ,
whence ‖[x]‖ ≤ ‖x‖ ≤ δ, which shows that X/M is WNUC.

Theorem 5. If X is a Köthe sequence space with the semi-Fatou prop-
erty and the weakly uniform Kadec–Klee property , then X is absolutely con-
tinuous.

Proof. Since X has WUKK there are ε, δ ∈ (0, 1) such that for every
sequence {xn} in B(X) with sep({xn}) ≥ ε and xn

w→ x ∈ B(X), we have
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‖x‖ ≤ δ. Suppose that X is not absolutely continuous. Since Xa is a closed
subspace of X, by the Riesz Lemma, defining η = max(ε, δ) one can find
x0 ∈ S(X) such that

‖x0 − y‖ > η1/2 for all y ∈ Xa.

Hence, by the inequality η < η1/2, we have

lim
n→∞

‖(
n−1 times︷ ︸︸ ︷
0, . . . , 0 , x0(n), x0(n+ 1), . . .)‖ > η.

Since X has the semi-Fatou property, there is n1 ∈ N such that
∥∥∥
n1∑

i=1

x0(i)ei
∥∥∥ ≥ η.

Notice that

lim
m→∞

∥∥∥
m∑

i=n1+1

x0(i)ei
∥∥∥ = ‖(

n1 times︷ ︸︸ ︷
0, . . . , 0, x0(n1 + 1), x0(n1 + 2), . . .)‖ > η.

So, there exists n2 > n1 such that
∥∥∥

n2∑

i=n1+1

x0(i)ei
∥∥∥ ≥ η.

In such a way, we get by induction an increasing sequence {ni} of natural
numbers such that

∥∥∥
ni+1∑

i=ni+1

x0(i)ei
∥∥∥ ≥ η (i = 1, 2, . . .).

Define xi =
∑ni+1
i=ni+1 x0(i)ei. Then

(2) ‖xi‖ ≥ η for all i ∈ N.
We will show that

(3) xi
w→ x0 as i→∞.

It is well known that for any Köthe sequence space (see [12]) we have

X∗ = X ′ ⊕ S,
where S is the space of all singular functionals over X, i.e. the functionals
which vanish on the subspace Xa, and

X ′ =
{
y ∈ l0 :

∞∑

i=1

|x(i)y(i)| <∞ for any x ∈ X
}
,
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that is, X ′ is the Köthe dual of X. This means that every x∗ ∈ X∗ is
uniquely represented in the form

x∗ = Ty + φ,

where φ ∈ S and Ty is the functional generated by an element y ∈ X ′ by
the formula

Ty(x) =
∞∑

i=1

x(i)y(i) (∀x = {x(i)}∞i=1 ∈ X).

It is obvious that φ(xi) = 0 for any φ ∈ S and all i ∈ N. Moreover

Ty(xi) =
ni+1∑

j=ni+1

x0(j)y(j)→ 0 as i→∞

because the series
∑∞
j=1 x0(j)y(j) converges. This means that xi

w→ 0, i.e.
condition (3) holds. Defining zi = x0−xi (i = 1, 2, . . .), we have ‖zi‖ ≤ 1 for
i = 1, 2, . . . , zi

w→ x0, sep({zi}) ≥ sup{‖xi‖ : i ∈ N} ≥ η ≥ ε and x0 ∈ S(X),
a contradiction finishing the proof.

Theorem 6. For the Orlicz sequence space l0Φ the following assertions
are equivalent :

(i) l0Φ has the uniform Kadec–Klee property ,
(ii) l0Φ has the weakly uniform Kadec–Klee property ,
(iii) Φ ∈ δ2.

Proof. The implication (i)⇒(ii) is trivial. Since, by Theorem 5 and the
fact that l0Φ has the semi-Fatou property, the weakly uniform Kadec–Klee
property implies order continuity (see Theorem 5), and since order continu-
ity of l0Φ is equivalent to Φ ∈ δ2, the implication (ii)⇒(iii) is true. So, we
need only prove the implication (iii)⇒(i).

We first prove that if x ∈ l0Φ \ {0} and K(x) = ∅, then Card(N(x)) <∞,
where N(x) = suppx, and

(4) ‖x‖0 = A
∑

i∈N(x)

|x(i)|,

where A = limu→∞ Φ(u)/u. Note that if K(x) = ∅ we must have A < ∞.
It is clear that if Card(N(x)) = ∞, then there exists k > 0 such that
IΨ (p◦k|x|) ≥ 1, i.e. k∗x <∞. Hence K(x) 6= ∅, a contradiction, which proves
that K(x) = ∅ implies that Card(N(x)) <∞. The fact that K(x) = ∅ yields
(4) has been proved in [4].

Take an arbitrary ε > 0, any sequence {xn} in B(l0Φ) with sep({xn}) > ε

and any x ∈ l0Φ with xn
w→ x. It is clear that sep({∑∞i=m xn(i)ei}) > ε for any

m ∈ N. Without loss of generality, we may assume that ‖∑∞i=m xn(i)ei‖0 >
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ε/2 for all m ∈ N. Since Φ ∈ δ2, there exists ε1 ∈ (0, ε) depending only on ε
such that IΦ(

∑∞
i=m xn(i)ei) > ε1 for all m ∈ N.

Take m so large that ‖∑∞i=m xn(i)ei‖0 > ‖x‖0 − ε1/4. Since xn(i) →
x(i) for i = 1, 2, . . . , we conclude that there exists m0 ∈ N such that
‖∑m

i=1 xn(i)ei‖0 > ‖x‖0 − ε1/4 for all n > m0.
We divide the remaining part of the proof into two cases.

Case I: K(xn) 6= ∅ for n = 1, 2, . . . Then for kn ∈ K(xn) we have

1 ≥ ‖xn‖0 =
1
kn

(
1 +

m∑

i=1

Φ(knxn(i)) +
∞∑

i=m+1

Φ(knxn(i))
)

=
1
kn

(
1 +

m∑

i=1

Φ(knxn(i))
)

+
1
kn

∞∑

i=m+1

Φ(knxn(i))

≥
∥∥∥

m∑

i=1

xn(i)ei
∥∥∥

0
+

∞∑

i=m+1

Φ(xn(i)) > ‖x‖0 − ε1

4
+ ε1,

whence ‖x‖0 < 1− 3
4ε1 for n > m.

Case II: K(xn) = ∅ for n = 1, 2, . . . Then

1 ≥ ‖xn‖0 =
∥∥∥

m∑

i=1

xn(i)ei
∥∥∥

0
+
∥∥∥

∞∑

i=m+1

xn(i)ei
∥∥∥

0

> ‖x‖0 − ε1

4
+
ε1

2
= ‖x‖0 +

ε1

4
,

whence ‖x‖0 < 1− ε1/4 for all n > m.
Notice that it is enough to consider only cases I and II because defining

N1 = {n ∈ N : K(xn) 6= ∅} and N2 = N \ N1, we have Card(N1) = ∞ or
Card(N2) =∞. If Card(Ni) =∞, we can assume without loss of generality
that Ni = N. The proof is finished.

Let us recall here that property UKK for Musielak–Orlicz sequence
spaces equipped with the Luxemburg norm has been characterized in [5].
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