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Weighted pseudo almost automorphic functions with
applications to abstract dynamic equations on time scales

by Chao Wang and Yongkun Li (Kunming)

Abstract. We propose a concept of weighted pseudo almost automorphic functions
on almost periodic time scales and study some important properties of weighted pseudo
almost automorphic functions on almost periodic time scales. As applications, we obtain
the conditions for the existence of weighted pseudo almost automorphic mild solutions to
a class of semilinear dynamic equations on almost periodic time scales.

1. Introduction. The theory of time scales, which has recently received
a lot of attention, was introduced by Hilger in his 1988 Ph.D. thesis [Hi]
in order to unify continuous and discrete analysis. Several authors have
expounded on various aspects of this new theory (see [BoP1, BoP2]). A time
scale T is an arbitrary closed subset of the reals and the cases when this time
scale is equal to the reals or to the integers represent the classical theories
of differential and of difference equations. Not only does the new theory of
the so-called “dynamic equations” unify the theories of differential equations
and difference equations, but it also extends these classical cases to cases “in
between”, e.g., to the so-called q-difference equations when T = qN0 := {qt :

t ∈ N0 for q > 1} or T = qZ := qZ ∪ {0} (which has important applications
in quantum theory) and can be applied to different types of time scales
like T = hN, T = N2 and T = Tn, the space of harmonic numbers. Many
papers have been published on the theory of dynamic equations on time
scales [CasP, ErPR, LiZ, LiuX, SAO, SL, LiCZ, LiW1, LiW2]. Therefore,
dealing with problems of differential equations on time scales becomes very
important and meaningful in the research field of dynamic systems.

Almost automorphic functions are more general than almost periodic
functions and they were introduced by Bochner. For more details about
this topic we refer to the recent book [N1], where the author gave an
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important overview of the theory of almost automorphic functions and
their applications to differential equations. Almost automorphic solutions
in the context of differential equations had been studied by several authors
[EzN, GN, N2]. N’Guérékata with colaborators [EzFN], and Xiao with co-
laborators [LiaNXZ, XLZ] established existence and uniqueness theorems of
pseudo almost automorphic solutions to some semilinear abstract differen-
tial equations. Recently, N’Guérékata with colaborators [BlMN] introduced
the concept of weighted pseudo almost automorphic, which generalizes the
one of weighted pseudo almost periodicity [HaE, ZX], and they proved some
interesting properties of the space of weighted pseudo almost automorphic
functions like the completeness and the composition theorem, which have
many applications in the context of differential equations.

In fact, both continuous and discrete systems are important in imple-
mentation and applications. But it is troublesome to study the existence
and stability of weighted almost automorphic solutions for continuous and
discrete systems, separately. Therefore, it is meaningful to study that issue
on time scales, which can unify the continuous and discrete situations.

The organization of this paper is as follows. In Section 2, we introduce
some notations and definitions and state some preliminary results. In Sec-
tion 3, the concept of weighted pseudo almost automorphic functions is
introduced on almost periodic time scales and some basic properties are in-
vestigated. Based on these results, in Section 4, as applications, we study the
existence of weighted pseudo almost automorphic mild solutions to a class
of abstract semilinear dynamic equations on almost periodic time scales. To
the best of our knowledge, no similar results have appeared in the related
literature.

2. Preliminaries. Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, % : T → T and the graininess
µ : T→ R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, %(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T and %(t) = t, left-scattered
if %(t) < t, right-dense if t < supT and σ(t) = t, and right-scattered if
σ(t) > t. If T has a left-scattered maximum m, then Tk = T \ {m}; other-
wise Tk = T. If T has a right-scattered minimum m, then Tk = T \ {m};
otherwise Tk = T.

Definition 2.1 ([BoP1, BoP2, P]). Let X be a Banach space. A function
f : H → X is called (strongly) continuous at t0 ∈ H ⊆ T if for any ε > 0,
there exists U(t0, δ) such that for any s ∈ U(t0, δ),

‖f(s)− f(t0)‖ < ε.
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f is called (strongly) continuous on H provided that it is (strongly) contin-
uous at each t ∈ H.

Definition 2.2 ([BoP1, BoP2, P]). Let D ⊂ T be an open set, f :
D → X and let t ∈ Tκ. Then we define B : T → X (provided it exists) via
the property that given any ε > 0, there exists a neighborhood U of t (i.e.,
U = (t− δ, t+ δ) ∩D for some δ > 0) such that

‖[f(σ(t))− f(s)]− [σ(t)− s]B‖ ≤ ε|σ(t)− s| for all s ∈ U .

Then we say that f is ∆-differentiable at t, B is called the ∆-derivative of
f at t, and we write B = f∆(t).

Definition 2.3 ([BoP1, BoP2, P]). A function f : T → X is called
regulated provided its right-hand limits exist (finite) at all right-dense points
in T and its left-hand limits exist (finite) at all left-dense points in T.

Definition 2.4 ([BoP1, BoP2, P]). A function f : T → X is called
rd-continuous provided it is continuous at right-dense points in T and its
left-hand limits exist (finite) at all left-dense point in T.

Let X and Y be Banach spaces. We denote by B(X,Y) the Banach space
of all bounded linear operators from X to Y. This is simply denoted as B(X)
when X = Y.

A function p : T → B(X) is called regressive provided Id + µ(t)p(t) is
invertible for all t ∈ Tk, where Id is the identity operator. The set of all
regressive and rd-continuous functions p : T → B(X) will be denoted by
R = R(T) = R(T, B(X)).

Remark 2.1. An n × n-matrix-valued function A on a time scale T is
called regressive provided Id + µ(t)A(t) is invertible for all t ∈ T, and the
class of all regressive and rd-continuous functions is denoted, similarly to
the above case, by R = R(T) = R(T,Rn×n).

Definition 2.5 ([BoP1, BoP2, P]). Let y : T → X be right-dense con-
tinuous. If Y ∆(t) = y(t), then we define the delta integral by

t�

a

y(s) ∆s = Y (t)− Y (a), where t, a ∈ T.

Definition 2.6 ([BoP1, BoP2]). If r : T → R is a regressive function,
then the generalized exponential function er is defined by

er(t, s) = exp
{ t�

s

ξµ(τ)(r(τ)) ∆τ
}

for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1 + hz)/h if h 6= 0,

z if h = 0.
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Definition 2.7 ([BoP1, BoP2]). Let p, q : T → R be two regressive
functions. Define

p⊕ q = p+ q + µp q, 	p = − p

1 + µp
, p	 q = p⊕ (	q).

Definition 2.8 ([BoP2]). For every x, y ∈ R, write [x, y) = {t ∈ R :
x ≤ t < y}, and define a countably additive measure m1 on the set

F1 = {[ã, b̃) ∩ T : ã, b̃ ∈ T, ã ≤ b̃}
that assigns to each interval [ã, b̃) ∩ T its length, that is,

m1([ã, b̃)) = b̃− ã.
The interval [ã, ã) is understood as the empty set. The measure m1 generates
the outer measure m∗1 on P(T), defined for each E ∈ P(T) as

m∗1(E) =

 inf
R̃

{ ∑
i∈IR̃

(b̃i − ãi)
}
∈ R+, b 6∈ E,

+∞, b ∈ E,

with

R̃ =
{
{[ãi, b̃i) ∩ T ∈ F1}i∈IR̃ : IR̃ ⊂ N,E ⊂

⋃
i∈IR̃

([ai, bi) ∩ T)
}
.

A set A ⊂ T is said to be ∆-measurable if

m∗1(E) = m∗1(E ∩A) +m∗1(E ∩ (T \A))

for all subsets E of T. Define

M(m∗1) = {A ⊂ T : A is ∆-measurable}.
The Lebesgue ∆-measure, denoted by µ∆, is the restriction of m∗1 toM(m∗1).

For more details about ∆-measurability, we refer the reader to Chapter 5
in [BoP2] and its further development in [CabV].

Lemma 2.1 ([BoP1, BoP2]). Assume that p, q : T→ R are two regressive
functions. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) ep(t, s) = 1/ep(s, t) = e	p(s, t);
(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e	p(t, s))

∆ = (	p)(t)e	p(t, s).

Lemma 2.2 ([BoP1, BoP2]). If a, b, c ∈ T and p ∈ R, then

b�

a

p(t)ep(c, σ(t)) ∆t = ep(c, a)− ep(c, b).
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3. Weighted pseudo almost automorphic functions
on time scales

Definition 3.1 ([LiW1]). A time scale T is called almost periodic if

(3.1) Π := {τ ∈ R : t± τ ∈ T, ∀t ∈ T} 6= {0}.
Remark 3.1. In [LiW2], the following definition is given:
Let C be a collection of subsets of R. A time scale T is called almost

periodic with respect to C if

C ∗ =
{
±τ ∈

⋂
c∈C

c : t± τ ∈ T, ∀t ∈ T
}
6= ∅,

and C ∗ is called the smallest almost periodic set of T.
Obviously, if C = {R}, then C ∗ = {τ ∈ R : t ± τ ∈ T, ∀t ∈ T} = Π,

and if we require the ε-translation number set of f in C ∗ (see [LiW2, Defi-
nition 2.6]) to be a relatively dense set in T, then C ∗ is R or τZ, τ ∈ (0,∞),
that is, the set Π.

In the following, we always assume that T is an almost periodic time
scale.

Definition 3.2.

(i) Let f : T → X be a bounded continuous function. We say that f
is almost automorphic if from every sequence {sn}∞n=1 ⊂ Π, we can
extract a subsequence {τn}∞n=1 such that

g(t) = lim
n→∞

f(t+ τn)

is well defined for each t ∈ T and

lim
n→∞

g(t− τn) = f(t)

for each t ∈ T. Denote by AA(T,X) the set of all such functions.
(ii) A continuous function f : T× X→ X is said to be almost automor-

phic if f(t, x) is almost automorphic in t ∈ T uniformly in x ∈ B,
where B is any bounded subset of X. Denote by AA(T × X,X) the
set of all such functions.

Remark 3.2. In Definition 3.2, when the convergence is uniform for
t ∈ T, one can show that f is almost periodic. Hence, one can easily see that
if X = Rn, Definition 3.2 is more general than Definitions 3.9 and 3.10 in
[LiW1].

Let X be a Banach space endowed with the norm ‖ · ‖X. BC(T,X) is
the space of bounded continuous functions from T to X equipped with the
supremum norm defined by

‖u‖∞ = sup
t∈T
‖u(t)‖X.
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Let U be the set of all functions ρ : T → (0,∞) which are positive and
locally integrable over T.

For a given r ∈ [0,∞) ∩Π, set

m(r, ρ) :=

t0+r�

t0−r
ρ(s) ∆s

for each ρ ∈ U. Define

U∞ :=
{
ρ ∈ U : lim

r→∞
m(r, ρ) =∞

}
,

UB :=
{
ρ ∈ U∞ : ρ is bounded and inf

s∈T
ρ(s) > 0

}
.

It is clear that UB ⊂ U∞ ⊂ U. Now for ρ ∈ U∞ define

PAA0(T, ρ) :=
{
f ∈ BC(T,X) :

lim
r→∞

1

m(r, ρ)

t0+r�

t0−r
‖f(s)‖ρ(s) ∆s = 0, t0 ∈ T, r ∈ Π

}
.

Similarly, we define PAA0(T × X, ρ) as the collection of all functions F :
T × X → X is continuous with respect to its two arguments and F (·, y) is
bounded for each y ∈ X, and

lim
r→∞

1

m(r, ρ)

t0+r�

t0−r
‖F (s, y)‖ρ(s) ∆s = 0

uniformly in y ∈ X, where r ∈ Π.
We are now ready to introduce the sets WPAA(T, ρ) and WPAA(T×X, ρ)

of weighted pseudo almost automorphic functions:

WPAA(T, ρ) = {f = g + φ ∈ BC(T,X) :

g ∈ AA(T,X) and φ ∈ PAA0(T, ρ)},
WPAA(T× X, ρ) = {f = g + φ ∈ BC(T× X,X) : g ∈ AA(T× X,X)

and φ ∈ PAA0(T× X, ρ)}.
From the definition, one can easily show

Lemma 3.1. If f = g+φ with g ∈ AA(T,X), and φ ∈ PAA0(T, ρ) where

ρ ∈ UB, then g(T) ⊂ f(T).

Theorem 3.1. Assume that PAA0(T, ρ) is translation invariant. Then
the decomposition of a weighted pseudo almost automorphic function accord-
ing to AA⊕ PAA0 is unique for any ρ ∈ UB.

Proof. Assume that f = g1 + φ1 and f = g2 + φ2. Then 0 = (g1 − g2) +
(φ1 − φ2). Since g1 − g2 ∈ AA(T,X), and φ1 − φ2 ∈ PAA0(T, ρ), in view of
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Lemma 3.1, we deduce that g1− g2 = 0. Consequently, φ1− φ2 = 0, that is,
φ1 = φ2.

Theorem 3.2. Assume that PAA0(T, ρ) is translation invariant and
ρ ∈ UB, then (WPAA(T, ρ), ‖ · ‖∞) is a Banach space.

Proof. Assume that {fn}n∈N is a Cauchy sequence in WPAA(T, ρ). We
can write uniquely fn = gn+φn. Using Lemma 3.1, we see that ‖gp−gq‖∞ ≤
‖fp − fq‖∞, from which we deduce that {gn}n∈N is a Cauchy sequence in
AA(T,X). So, φn = fn−gn is a Cauchy sequence in PAA0(T, ρ). We deduce
that gn → g ∈ AA(T,X), φn → φ ∈ PAA0(T, ρ), and finally fn → g + φ ∈
WPAA(T, ρ).

Definition 3.3. Let ρ1, ρ2 ∈ U∞. One says that ρ1 equivalent to ρ2,
written ρ1 ∼ ρ2, if ρ1/ρ2 ∈ UB.

Let ρ1, ρ2, ρ3 ∈ U∞. It is clear that ρ1 ≺ ρ1 (reflexivity); if ρ1 ≺ ρ2, then
ρ2 ≺ ρ1 (symmetry); and if ρ1 ≺ ρ2 and ρ2 ≺ ρ3, then ρ1 ≺ ρ3 (transitivity).
So, ≺ is an equivalence relation on U∞.

Theorem 3.3. Let ρ1, ρ2 ∈ U∞. If ρ1 ∼ ρ2, then WPAA(T, ρ1) =
WPAA(T, ρ2).

Proof. Assume that ρ1 ∼ ρ2. There exist a, b > 0 such that aρ1 ≤ ρ2

≤ bρ1. So,

am(r, ρ1) ≤ m(r, ρ2) ≤ bm(r, ρ1),

where r ∈ Π, and

a

b

1

m(r, ρ1)

t0+r�

t0−r
‖φ(s)‖ρ1(s) ∆s ≤ 1

m(r, ρ2)

t0+r�

t0−r
‖φ(s)‖ρ2(s)∆s

≤ b

a

1

m(r, ρ1)

t0+r�

t0−r
‖φ(s)‖ρ1(s) ∆s.

Lemma 3.2. Let f ∈ BC(T,X). Then f ∈ PAA0(T, ρ) where ρ ∈ UB if
and only if for every ε > 0,

lim
r→∞

1

m(r, ρ)
µ∆(Mr,ε(f)) = 0,

where r ∈ Π and Mr,ε(f) := {t ∈ [t0 − r, t0 + r] ∩ T : ‖f(t)‖ ≥ ε}.

Proof. (a) Necessity. For contradiction, suppose that there exists ε0 > 0
such that

lim
r→∞

1

m(r, ρ)
µ∆(Mr,ε0(f)) 6= 0.
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Then there exists δ > 0 such that for every n ∈ N, 1
m(rn,ρ)µ∆(Mrn,ε0(f))

≥ δ for some rn > n, where rn ∈ Π. So we get

1

m(rn, ρ)

t0+rn�

t0−rn

‖f(s)‖ρ(s) ∆s

=
1

m(rn, ρ)

�

Mrn,ε0 (f)

‖f(s)‖ρ(s) ∆s

+
1

m(rn, ρ)

�

([t0−r,t0+r]∩T)\Mrn,ε0 (f)

‖f(s)‖ρ(s) ∆s

≥ 1

m(rn, ρ)

�

Mrn,ε0 (f)

‖f(s)‖ρ(s) ∆s

≥ ε0

m(rn, ρ)

�

Mrn,ε0 (f)

‖f(s)‖ρ(s) ∆s ≥ ε0δγ,

where γ = infs∈T ρ(s). This contradicts the assumption.

(b) Sufficiency. Assume that limr→∞
1

m(r,ρ)µ∆(Mr,ε(f)) = 0. Then for

every ε > 0, there exists r0 > 0 such that for every r > r0,

1

m(r, ρ)
µ∆(Mr,ε(f)) <

ε

KM
,

where M := supt∈T ‖f(t)‖ <∞ and K := supt∈T ρ(t) <∞.
Now, we have

1

m(r, ρ)

t0+r�

t0−r
‖f(s)‖∆s

=
1

m(r, ρ)

( �

Mr,ε(f)

‖f(s)‖ρ(s) ∆s+
�

([t0−r,t0+r]∩T)\Mr,ε(f)

‖f(s)‖ρ(s) ∆s
)

≤ MK

m(r, ρ)
µ∆(Mr,kε(f)) +

ε

m(r, ρ)

�

([t0−r,t0+r]∩T)\Mr,ε(f)

ρ(s) ∆s ≤ 2ε.

Therefore, limr→∞
1

m(r,ρ)

	t0+r
t0−r ‖f(s)‖ρ(s) ∆s = 0, that is, f ∈ PAA0(T, ρ).

Lemma 3.3. If g(t, x) ∈ AA(T × X,X) and α(t) ∈ AA(T,X), then
G(t) := g(t, α(t)) ∈ AA(T,X).

Proof. As g(t, x) ∈ AA(T×X,X), from every sequence {sn}∞n=1 ⊂ Π we
can extract a subsequence {τn}∞n=1 such that

g∗(t, x) := lim
n→∞

g(t+ τn, x)

is well defined for each t ∈ T. In view of assumption (i) and α ∈ AA(T,X),
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one can extract {τ ′n}∞n=1 ⊂ {τn}∞n=1 such that

lim
n→∞

g(t+ τ ′n, α(t+ τ ′n)) = lim
n→∞

g(t+ τ ′n, α
∗(t)) = g∗(t, α∗(t)).

Hence, G(t) ∈ AA(T,X).

We make the following assumptions:

(H1) f(t, x) is uniformly continuous in any bounded subset K ⊂ X uni-
formly in t ∈ T.

(H2) g(t, x) is uniformly continuous in any bounded subset K ⊂ X uni-
formly in t ∈ T.

Theorem 3.4. Let f = g + φ ∈ WPAA(T × X, ρ) where g ∈ AA(T ×
X,X), φ ∈ PAA0(T × X, ρ), ρ ∈ U∞ and assume that (H1) and (H2) are
satisfied. Then L(·) := f(·, h(·)) ∈WPAA(T, ρ) if h ∈WPAA(T, ρ).

Proof. We have f = g + φ where g ∈ AA(T× X,X) and φ ∈ PAA0(T×
X, ρ) and h = µ0 + ν0 where µ0 ∈ AA(T,X) and ν0 ∈ PAA0(T, ρ).

Now let us write

L(·) = g(·, µ0(·)) + f(·, h(·))− g(·, µ0(·))
= g(·, µ0(·)) + f(·, h(·))− f(·, µ0(·)) + φ(·, µ0(·)).

By Lemma 3.3, g(·, µ0(·)) ∈ AA(T,X). Consider now the function

Ψ(·) := f(·, h(·))− f(·, µ0(·)).
Clearly Ψ ∈ BC(T,X). For Ψ to be in PAA0(T, ρ), it is sufficient to show
that

lim
r→∞

1

m(r, ρ)
µ∆(Mr,ε(Ψ)) = 0.

By Lemma 3.1, µ(T) ⊂ h(T) is a bounded set. Using assumption (H1) with
K = h(T), we see that for every ε > 0, there exists δ > 0 such that

x, y ∈ K, ‖x− y‖ < δ ⇒ ‖f(t, x)− f(t, y)‖ < ε, t ∈ T.
Thus we can obtain

1

m(r, ρ)
µ∆(Mr,ε(Ψ(t)))

=
1

m(r, ρ)
µ∆

(
Mr,ε(f(t, h(t))− f(t, µ0(t)))

)
≤ 1

m(r, ρ)
µ∆

(
Mr,δ(h(t)− µ0(t))

)
=

1

m(r, ρ)
µ∆(Mr,δ(ν0(t))).

Now since ν0 ∈ PAA0(T, ρ), Lemma 3.2 yields limr→∞
1

m(r,ρ)µ∆(Mr,ε(ν0(t)))

= 0. Consequently, limr→∞
1

m(r,ρ)µ∆(Mr,ε(Ψ)(t))=0. Thus, Ψ ∈PAA0(T,X).

Finally, we need to show φ(t, µ0(t)) ∈ PAA0(T, ρ). Note that φ(t, µ0(t)) is
uniformly continuous on [t0−r, t0+r]∩T, and µ0([t0−r, t0+r]∩T) is compact
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since µ0 is continuous on T as an almost automorphic function. Thus given
ε > 0, there exists δ > 0 such that µ0([t0 − r, t0 + r] ∩ T) ⊂

⋃m
k=1Bk where

Bk = {x ∈ X : ‖x− xk‖ < δ} for some xk ∈ µ0([t0 − r, t0 + r] ∩ T), and

(3.2) ‖φ(t, µ0(t))− φ(t, xk)‖ < ε/2, µ0(t) ∈ Bk, t ∈ [t0 − r, t0 + r] ∩ T.

It is easy to see that the set Uk := {t ∈ [t0 − r, t0 + r] ∩ T : µ0(t) ∈ Bk} is
open in [t0 − r, t0 + r] ∩ T, and [t0 − r, t0 + r] ∩ T =

⋃m
k=1 Uk. Define

V1 = U1, Vk = Uk \
k−1⋃
i=1

Ui, 2 ≤ k ≤ m.

Then it is clear that Vi ∩ Vj = ∅ if i 6= j, 1 ≤ i, j ≤ m. So we get

{t ∈ [t0 − r, t0 + r] ∩ T : ‖φ(t, µ0(t))‖ ≥ ε/2}

⊂
m⋃
k=1

{t ∈ Vk : ‖φ(t, µ0(t))− φ(t, xk)‖+ ‖φ(t, xk)‖ ≥ ε}

⊂
m⋃
k=1

({t ∈ Vk : ‖φ(t, µ0(t))− φ(t, xk)‖ ≥ ε/2}

∪ {t ∈ Vk : ‖φ(t, xk)‖ ≥ ε/2}).

In view of (3.2), it follows that

{t ∈ Vk : ‖φ(t, µ0(t))− φ(t, xk)‖ ≥ ε/2} = ∅, k = 1, . . . ,m.

Thus we get

1

m(r, ρ)
µ∆(Mr,ε(φ(t, α(t)))) ≤

m∑
k=1

1

m(r, ρ)
µ∆(Mr,ε(φ(t, xk))).

Since φ(t, x) ∈ PAA0(T × X, ρ) and limr→∞
1

m(r,ρ)µ∆(Mr,ε/2(φ(t, xk)))

= 0, it follows that limr→∞
1

m(r,ρ)µ∆(Mr,ε/2(φ(t, µ0(t)))) = 0, i.e., φ(t, µ0(t))

∈ PAA0(T, ρ).

Theorem 3.4 has the following consequence:

Corollary 3.1. Let f = g + φ ∈WPAA(T, ρ) where ρ ∈ U∞. Assume
that both f and g are Lipschitzian in x ∈ X uniformly in t ∈ T. Then
L(·) := f(·, h(·)) ∈WPAA(T, ρ) if h ∈WPAA(T, ρ).

4. Applications. Let T be an almost periodic time scale, and consider
the linear dynamic equation

(4.1) x∆ = A(t)x,

where A(t) (t ∈ T) is a linear operator in the Banach space X.
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Definition 4.1 ([P]). T (t, s) : T×T→ B(X) is called the linear evolu-
tion operator associated to (4.1) if it satisfies the following conditions:

(1) T (s, s) = Id, the identity operator in X;
(2) T (t, s)T (s, r) = T (t, r);
(3) the mapping (t, s) 7→ T (t, s)x is continuous for any fixed x ∈ X.
Definition 4.2. An evolution system T (t, s) is called exponentially stable

if there exist K0 ≥ 1 and ω > 0 such that

‖T (t, s)‖B(X) ≤ K0e	ω(t, σ(s)), t ≥ s.
Remark 4.1. By Definition 4.2, if an evolution system T (t, s) is expo-

nentially stable, then there exist projections P (t), Q(t) : T→ B(X) for each
t ∈ T such that P (t) +Q(t) = Id,

‖Q(t)T (t, s)P (s)‖B(X) ≤ K0e	ω(t, σ(s)), t ≥ s,
since

‖Q(t)T (t, s)P (s)‖ ≤ ‖T (t, s)‖B(X) ≤ K0e	ω(t, σ(s)), t ≥ s.
Consider the abstract differential equation

(4.2) x∆(t) = A(t)x(t) + f(t, x(t)), t ∈ T,
with the following assumptions:

(H1) The family {A(t) : t ∈ T} of operators in X generates an expo-
nentially stable evolution system {T (t, s) : t ≥ s}, i.e., there exist
K0 ≥ 1 and δ > 0 such that

‖T (t, s)‖B(X) ≤ K0e	ω(t, σ(s)), t ≥ s.
(H2) f = g + φ ∈WPAA(T, ρ) where ρ ∈ U∞.
(H3) ‖f(t, x)− f(t, y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ X.
(H4) ‖g(t, x)− g(t, y)‖ ≤ Lg‖x− y‖, ∀x, y ∈ X.
Definition 4.3. A mild solution to (4.2) is a continuous function x(t) :

T→ X satisfying

x(t) = T (t, c)x(c) +

t�

c

T (t, s)f(s, x(s)) ∆s for all t ≥ c and all c ∈ T.

To investigate the existence and uniqueness of a weighted pseudo almost
automorphic solution to (4.2), we need the following two lemmas:

Lemma 4.1. Let v ∈ AA(T,X) and suppose (H1) is satisfied. If u :
T→ X is defined by

u(t) =

t�

−∞
T (t, s)v(s) ∆s, t ≥ s,

then u(·) ∈ AA(T,X).
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Proof. Obviously, u(t) is a continuous function. Let {sn}∞n=1 ⊂ Π. Since
v is almost automorphic, there exists a subsequence {τn}∞n=1 ⊂ {sn}∞n=1 such
that h(t) := limn→∞ v(t+ τn) is well defined for each t ∈ T.

Now, we consider

u(t+ τn) =

t+τn�

−∞
T (t+ τn, s)v(s) ∆s =

t�

−∞
T (t+ τn, s+ τn)v(s+ τn) ∆s

=

t�

−∞
T (t+ τn, s+ τn)vn(s) ∆s,

where vn(s) = v(s+ τn), n = 1, 2, . . . . Also we have

‖u(t+ τn)‖ ≤
t�

−∞
‖T (t+ τn, s+ τn)vn(s)‖∆s

≤
t�

−∞
K0e	ω(t, σ(s))‖vn(s)‖∆s

≤ K0‖v‖
t�

−∞
e	ω(t, σ(s)) ∆s

=
K0‖v‖
	ω

[e	ω(t,−∞)− e	ω(t, t)] =
K0‖v‖(1 + µ̄ω)

ω
,

where µ̄ = supt∈T µ(t).

It is easy to see that vn(s) → h(s) as n → ∞ for each s ∈ T fixed and
any t ≥ s, and we get

lim
n→∞

u(t+ τn) =

t�

−∞
T (t, s)h(s) ∆s,

by Lebesgue’s dominated convergence theorem. Analogously to the above
proof, we can obtain

lim
n→∞

t−τn�

−∞
T (t− τn, s)h(s) ∆s = u(t).

This shows that u(t) is an almost automorphic function.

Lemma 4.2. Let f = g + φ ∈WPAA(T, ρ) where ρ ∈ U∞ and {T (t, s) :
t ≥ s} is exponentially stable. Then

F (t) :=

t�

−∞
T (t, s)f(s) ∆s ∈WPAA(T, ρ).
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Proof. Let F (t) = G(t) + Φ(t), where

G(t) :=

t�

−∞
T (t, s)g(s) ∆s and Φ(t) :=

t�

−∞
T (t, s)φ(s) ∆s.

ThenG(·)∈AA(T,X) by Lemma 4.1. Now let us show that Φ(·)∈PAA0(T, ρ).
It follows from Theorem 2.15 in [BoG] that

1

m(r, ρ)

t0+r�

t0−r
‖Φ(s)‖∆s =

1

m(r, ρ)

t0+r�

t0−r

∥∥∥ s�

−∞
T (s, θ)φ(θ) ∆θ

∥∥∥∆s

≤ 1

m(r, ρ)

t0+r�

t0−r
∆s

s�

−∞
K0e	ω(s, σ(θ))‖φ(θ)‖∆θ

=
1

m(r, ρ)

t0+r�

t0−r
∆s
(( t0−r�
−∞

+

s�

t0−r

)
K0e	ω(s, σ(θ))‖φ(θ)‖∆θ

)

=
1

m(r, ρ)

t0−r�

−∞
‖φ(θ)‖∆θ

t0+r�

t0−r
K0e	ω(s, σ(θ)) ∆s

+
1

m(r, ρ)

t0+r�

t0−r
‖φ(θ)‖∆θ

t0+r�

θ

K0e	ω(s, σ(θ)) ∆s =: I1 + I2.

Then

I1 =
1

m(r, ρ)

t0−r�

−∞
‖φ(θ)‖∆θ

t0+r�

t0−r
K0e	ω(s, σ(θ)) ∆s

=
1

m(r, ρ)

t0−r�

−∞
‖φ(θ)‖∆θ

t0+r�

t0−r

K0

1 + µ(s)	 ω
e	ω(σ(s), σ(θ)) ∆s

≤ 1

m(r, ρ)
K0(1 + µ̄ω)

t0−r�

−∞
‖φ(θ)‖∆θ

t0+r�

t0−r
eω(σ(θ), σ(s)) ∆s

=
1

m(r, ρ)

K0(1 + µ̄ω)

ω

t0−r�

−∞
‖φ(θ)‖[eω(σ(θ), t0 − r)− eω(σ(θ), t0 + r)] ∆θ

≤ 1

m(r, ρ)

K0(1 + µ̄ω)

ω
‖φ‖

( t0−r�
−∞

e	ω(t0 − r, σ(θ)) ∆θ

−
t0−r�

−∞
e	ω(t0 + r, σ(θ)) ∆θ

)
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=
1

m(r, ρ)

K0(1 + µ̄ω)

ω

1

	ω
(e	ω(t0 − r,−∞)

− e	ω(t0 − r, t0 − r)− e	ω(t0 + r,−∞)

+ e	ω(t0 + r, t0 − r))→ 0 as r →∞,
and

I2 =
1

m(r, ρ)

t0+r�

t0−r
‖φ(θ)‖∆θ

t0+r�

θ

K0e	ω(s, σ(θ)) ∆s

=
1

m(r, ρ)

t0+r�

t0−r
‖φ(θ)‖∆θ

t0+r�

θ

K0

1 + µ(s)	 ω
e	ω(σ(s), σ(θ)) ∆s

≤ 1

m(r, ρ)
K0(1 + µ̄ω)

t0+r�

t0−r
‖φ(θ)‖∆θ

t0+r�

θ

eω(σ(θ), σ(s)) ∆s

=
1

m(r, ρ)

K0(1 + µ̄ω)

ω

t0+r�

t0−r
‖φ(θ)‖[eω(σ(θ), θ)− eω(σ(θ), t0 + r)] ∆θ

≤ 1

m(r, ρ)

K0(1 + µ̄ω)2

ω

t0+r�

t0−r
‖φ(θ)‖∆θ.

Since φ ∈ PAA0(T, ρ), we have limr→∞
1

m(r,ρ)

	t0+r
t0−r ‖φ(s)‖∆s = 0. Hence

limr→∞ I2 = 0.

Theorem 4.1. Under assumptions (H1)–(H4) above. Equation (4.2) has
a unique mild solution in WPAA(T, ρ) provided K0Lf (1 + µ̄ω)/ω < 1, where
µ̄ = supt∈T µ(t).

Proof. Consider the nonlinear operator Γ given by

(Γx)(t) :=

t�

−∞
T (t, s)f(s, x(s)) ∆s.

By Lemma 4.2, we see that Γ maps WPAA(T, ρ) into WPAA(T, ρ).

Now if x, y ∈WPAA(T, ρ), we have

‖(Γx)(t)− (Γy)(t)‖ =
∥∥∥ t�

−∞
T (t, s)(f(s, x(s))− f(s, y(s))) ∆s

∥∥∥
≤ K0Lf

t�

−∞
e	ω(t, σ(s))‖x(s)− y(s)‖∆s

≤ −
K0Lf
	ω

‖x− y‖∞ ≤
K0Lf (1 + µ̄ω)

ω
‖x− y‖∞, ∀t ∈ T.
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Thus

‖Γx− Γy‖∞ ≤
K0Lf (1 + µ̄ω)

ω
‖x− y‖∞.

The conclusion follows by the contraction principle.
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Boston, Boston, MA, 2001.

[BoP2] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales,
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