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Some properties of solutions of complex
q-shift difference equations

by Hong-Yan Xu (Jingdezhen), Jin Tu (Nanchang) and
Xiu-Min Zheng (Nanchang)

Abstract. Combining difference and q-difference equations, we study the properties
of meromorphic solutions of q-shift difference equations from the point of view of value
distribution. We obtain lower bounds for the Nevanlinna lower order for meromorphic
solutions of such equations. Our results improve and extend previous theorems by Zheng
and Chen and by Liu and Qi. Some examples are also given to illustrate our results.

1. Introduction and main results. The purpose of this paper is to
study some growth properties of solutions of complex q-shift difference equa-
tions. The fundamental results and standard notations of Nevanlinna value
distribution theory of meromorphic functions will be used (see Hayman [6],
Yang [16]). Moreover, for a meromorphic function f , S(r, f) denotes any
quantity satisfying S(r, f) = o(T (r, f)) for all r outside a possible excep-
tional set E of finite logarithmic measure, limr→∞

	
[1,r)∩E dt/t <∞.

In recent years, there has been an increasing interest in difference equa-
tions, difference products and q-differences in the complex plane; a number
of papers (including [3, 4, 9, 12, 19, 20]) have focused on the growth of
solutions of difference equations, value distribution and uniqueness of dif-
ference analogues of Nevanlinna’s theory. Chiang and Feng [3] and Halburd
and Korhonen [5] independently established a difference analogue of the
Logarithmic Derivative Lemma, and then applied it to prove a number of
results on meromorphic solutions of complex difference equations. About the
same time, Barnett, Halburd, Korhonen and Morgan [1] also established an
analogue of the Logarithmic Derivative Lemma for q-difference operators.

In 2001, Heittokangas et al. [8] investigated the growth of transcendental
meromorphic solutions of complex difference equations and obtained the
following results.
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Theorem 1.1 (see [8, Theorem 10]). Let c1, . . . , cn ∈ C \ {0} and let
m ≥ 2. Suppose that y is a transcendental meromorphic solution of the
difference equation

(1)

m∑
i=1

ai(z)y(z + ci) =

m∑
i=0

bi(z)y(z)i

with rational coefficients ai(z), bi(z). Denote C = max{|c1|, . . . , |cn|}.

(i) If y is entire or has finitely many poles, then there exist constants
K > 0 and r0 > 0 such that logM(r, y) ≥ Kmr/C for all r ≥ r0.

(ii) If y has infinitely many poles, then there exist constants K > 0 and
r0 > 0 such that n(r, y) ≥ Kmr/C for all r ≥ r0.

(iii) Thus, all transcendental meromorphic solutions of (1) have infinite
lower order.

Theorem 1.2 (see [8, Theorem 11]). Let c1, . . . , cn ∈ C \ {0} and y be
a transcendental meromorphic solution of the difference equation

(2)
n∑
i=1

di(z)y(z + ci) =
a0(z) + a1(z)y(z) + · · ·+ ap(z)y(z)p

b0(z) + b1(z)y(z) + · · ·+ bt(z)y(z)t
,

where all coefficients are o(T (r, f)) without an exceptional set as r → ∞,
and di’s are non-vanishing. If d = max{p, t} > n, then for any 0 < ε < d−n

d+n ,
there exists an r0 > r such that

T (r, y) ≥ K
(
d

n

(
1− ε
1 + ε

))r/C
for all r ≥ r0, where C = max{|c1|, . . . , |cn|} and K > 0 is a constant.

In 2005, Laine, Rieppo and Silvennoinen [11] further investigated the
growth of transcendental meromorphic solution of complex difference equa-
tions and obtained the following theorem.

Theorem 1.3 (see [11, Theorem 2.2]). Let c1, . . . , cn be non-zero com-
plex constants and suppose that f is a transcendental meromorphic solution
of ∑

{J}

αJ(z)
(∏
j∈J

f(z + cj)
)

= R(z, f),

where the coefficients αJ are small relative to f , and where R is rational in
f with coefficients small relative to f . If degf R > n, then the lower order
µ(f) is ∞.

In 2002, Gundersen et al. [4] studied the growth of meromorphic solutions
of q-difference equations and obtained the following result.
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Theorem 1.4 (see [4, Theorem 3.2]). Suppose that f is a transcendental
meromorphic solution of an equation of the form

f(cz) = R(z, f(z)) =

∑p
j=0 aj(z)f(z)j∑q
j=0 bj(z)f(z)j

with meromorphic coefficients aj(z), bj(z), and a constant c 6= 0 (|c| > 1),
where we assume that d := max{p, q} ≥ 1, ap(z) 6= 0, bq(z) 6= 0, and
R(z, f(z)) is irreducible in f . Then ρ(f) = log d/log |c|.

In 2010, Zheng and Chen [20] further studied the growth of meromorphic
solutions of q-difference equations and obtained some results which extended
the theorems of Heittokangas et al. [8].

Theorem 1.5 (see [20, Theorem 1]). Suppose that f is a transcendental
meromorphic solution of the equation

n∑
j=1

aj(z)f(qjz) =
d∑
i=0

bi(z)f(z)i,

where q ∈ C, |q| > 1, d ≥ 2 and the coefficients aj(z), bi(z) are rational
functions.

(i) If f is entire or has finitely many poles, then there exist constants
K > 0 and r0 > 0 such that logM(r, f) ≥ Kdlog r/(n log |q|) for all
r ≥ r0.

(ii) If f has infinitely many poles, then there exist constants K > 0 and
r0 > 0 such that n(r, f) ≥ Kdlog r/(n log |q|) for all r ≥ r0.

(iii) Thus, all transcendental meromorphic solutions f satisfy µ(f) ≥
log d/(n log |q|).

Theorem 1.6 (see [20, Theorem 2]). Suppose that f is a transcendental
meromorphic solution of the equation

n∑
j=1

aj(z)f(qjz) = R(z, f(z) =
P (z, f(z))

Q(z, f(z))
,

where q ∈ C, |q| > 1, the coefficients aj(z), bi(z) are rational functions
and P,Q are relatively prime polynomials in f over the field of rational
functions satisfying p = degf P , t = degf Q, d = p − t ≥ 2. If f has

infinitely many poles, then for sufficiently large r, n(r, f) ≥ Kdlog r/(n log |q|)

for some constant K > 0. Thus, the lower order of f which has infinitely
many poles satisfies µ(f) ≥ log d/(n log |q|).

In 2011, Liu and Qi [13] investigated the properties of meromorphic
solutions of q-shift difference equation and obtained the following result.
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Theorem 1.7 (see [13, Theorem 4.1]). Suppose that f is a transcenden-
tal meromorphic solution of

f(cz + η) =

∑p
j=0 aj(z)f(z)j∑q
j=0 bj(z)f(z)j

,

where the coefficients aj(z), bj(z) are rational, and |c|>1. Assume R(z, f(z))
is irreducible in f and ap(z)bq(z) 6≡ 0. If p > q + 1 and m := p − q, then
λ(1/f) ≥ log |m|/log |c|, provided that f has infinitely many poles.

It is a natural question to ask what will happen when the functions
y(z + c), f(z + c), f(cz) and f(qz) are replaced by f(qz + c) in Theorems
1.1–1.6, where q ∈ C \ {0}, c ∈ C.

In this paper, we will investigate this question and obtain the following
theorems.

Theorem 1.8. Suppose that f is a transcendental meromorphic solution
of the equation

(3)

n∑
j=1

aj(z)f(qjz + cj) =

d∑
i=0

bi(z)f(z)i,

where the coefficients aj(z), bi(z) are rational functions, q ∈ C\{0}, |q| > 1,
d ≥ 2 and cj ∈ C. If f is entire or has finitely many poles, then there exist
constants K > 0 and r0 > 0 such that logM(r, f) ≥ Kdlog r/(n log |q|) for all
r ≥ r0.

Example 1.1. The function f(z) = ez/z satisfies the equation

n∑
j=1

2jz + cj

ecjz2j
f(2jz + cj) =

n∑
i=1

f(z)2
j

with rational coefficients, where |q| = 2 > 1, d = 2n and cj ∈ C. Since n <
2n = d for all n ∈ N , we have logM(r, f) = r− log r ≥ 1

2r = 1
2d

log r/(n log |q|)

(r → ∞) and µ(f) = σ(f) = 1 = log d/(n log |q|). This shows that in the
inequality µ(f) ≥ log d/(n log |q|) following from Theorem 1.8, equality can
be attained.

Example 1.2. The function f(z) = z satisfies the equation

n∑
j=1

f(2jz + cj) =
(

2(2n − 1)z +

n∑
j=1

cj

)
+

2

z
f(z)− 1

z2
f(z)2 − 1

z3
f(z)3

with rational coefficients, where q = 2, d = 3 > 2 and cj ∈ C. This shows
that (3) in Theorem 1.8 may have non-transcendental solutions.
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Theorem 1.9. Suppose that f is a transcendental meromorphic solution
of the equation

(4)

n∑
j=1

aj(z)f(qjz + cj) = R(z, f(z)) =
P (z, f(z))

Q(z, f(z))
,

where the coefficients aj(z), bi(z) are rational functions, q ∈ C \ {0}, |q| >
1, d ≥ 2 and cj ∈ C and P , Q are relatively prime polynomials in f
over the field of rational functions satisfying s = degf P , t = degf Q,
d = s − t ≥ 2. If f has infinitely many poles, then for sufficiently large r,
n(r, f) ≥ Kdlog r/(n log |q|) for some constant K > 0. Thus, the lower order
of f which has infinitely many poles satisfies µ(f) ≥ log d/(n log |q|).

Remark 1.1. For Theorem 1.9, the equation (3) is a special form of (4).
So, we get the following conclusions.

Under the assumptions of Theorem 1.8, if f is a solution of (3) with
infinitely many poles, then there exist constants K > 0 and r0 > 0 such
that n(r, f) ≥ Kdlog r/(n log |q|) for all r ≥ r0. Thus, all transcendental mero-
morphic solutions f satisfy µ(f) ≥ log d/(n log |q|).

Theorem 1.10. Suppose that f is a transcendental meromorphic solu-
tion of the equation

(5)

∑
λ∈I dλ(z)f(qz + c1)

iλ1f(q2z + c2)
iλ2 · · · f(qnz + cn)iλn∑

µ∈J eµ(z)f(qz + c1)
jµ1f(q2z + c2)

jµ2 · · · f(qnz + cn)jµn

=

∑s
j=0 aj(z)f(z)j∑t
j=0 bj(z)f(z)j

,

where I = {(iλ1 , . . . , iλn)}, J = {jµ1 , . . . , jµn} are finite index sets satisfying

max
λ,µ
{iλ1 + · · ·+ iλn , jµ1 + · · ·+ jµn} = σ,

q ∈ C \ {0}, |q| > 1, d ≥ 2 and cj ∈ C, and all coefficients of (5) are of
growth S(r, f). If d = max{s, t} > 2nσ, then for sufficiently large r,

T (r, f) ≥ K
(

d

2nσ

) log r
n log |q|

,

where K > 0 is a constant. Thus, the lower order of f satisfies

µ(f) ≥ log d− log 2nσ

n log |q|
.
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Example 1.3. The function f(z) = ez
2

satisfies the equation

f(4z + c2) + f(2z + c1)f(4z + c2)

f(2z + c1)

= e−8c2z−c
2
2f(z)16 + e(4c1−8c2)z+(c21−c22)f(z)12

with small function coefficients, where q = n = σ = 2, d = 16 > 2nσ and
c1, c2 ∈ C. It is clear that µ(f) = σ(f) = 2, showing that the conclusion of
Theorem 1.10 can hold.

Theorem 1.11. Suppose that f is a transcendental meromorphic solu-
tion of the equation

(6)
n∑
j=1

aj(z)f(qjz + cj) = R(z, f(z)) =
P (z, f(z))

Q(z, f(z))
,

where the coefficients aj(z) are non-vanishing small functions relative to
f and P , Q are relatively prime polynomials in f over the field of small
functions relative to f . Moreover, assume that t = degf Q > 0,

n = max{s, t} := max{degf P,degf Q}
and that, without restricting generality, Q is a monic polynomial. If there
exists α ∈ [0, n) such that for all sufficiently large r,

(7) N
(
r,

n∑
j=1

aj(z)f(qjz + cj)
)
≤ αN(|q|nr + C, f(z)) + S(r, f),

where q ∈ C \ {0}, |q| > 1, d ≥ 2 and cj ∈ C, C := max{|c1|, . . . , |cn|},
then either ρ(f) > 0, or Q(z, f(z)) ≡ (f(z) + h(z))t, where h(z) is a small
meromorphic function.

Remark 1.2. The ideas and formulations of Theorems 1.8–1.11 come
from [17] and [13], respectively, with the q-difference f(qz) replaced by the
q-shift difference f(qz + c). However, the case of q-shift difference is more
intricate than the cases of f(qz) and f(z + c).

Remark 1.3. In this paper, we combine difference and q-difference equa-
tions, and only study the properties of meromorphic solutions of q-shift dif-
ference equations from the point of view of value distribution theory. How-
ever, the existence of meromorphic solutions to these equations remains an
open problem.

2. Some lemmas

Lemma 2.1 (Valiron–Mohon’ko, see [10]). Let f(z) be a meromorphic
function. Then for all irreducible rational functions in f ,
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R(z, f(z)) =

∑m
i=0 ai(z)f(z)i∑n
j=0 bj(z)f(z)j

,

with meromorphic coefficients ai(z), bj(z), the characteristic function of
R(z, f(z)) satisfies

T (r,R(z, f(z))) = dT (r, f) +O(Ψ(r)),

where d = max{m,n} and Ψ(r) = maxi,j{T (r, ai), T (r, bj)}.
Lemma 2.2 (see [15]). Let f be a meromorphic function, and let φ =

fn + an−1f
n−1 + · · · + a0, where a0, a1, . . . , an−1 are small meromorphic

functions relative to f . Then either

φ =

(
f +

an−1
n

)n
or T (r, f) ≤ N(r, 1/φ) +N(r, f) + S(r, f).

Lemma 2.3 (see [11]). Let f be a non-constant meromorphic function
and let P (z, f), Q(z, f) be polynomials in f with meromorphic coefficients
small relative to f . If P and Q have no common factors of positive degree
in f over the field of small functions relative to f , then

N

(
r,

1

Q(z, f)

)
≤ N

(
r,
P (z, f)

Q(z, f)

)
+ S(r, f).

From Lemma 4 in [7], we can get the following lemma.

Lemma 2.4 (see [7, 20]). Let f be a non-constant meromorphic function,
let β > 1 and α < 1 be given constants, and let F ⊂ R+ be the set of all r
such that N(r, f) ≤ αN(βr, f). If the logarithmic density of F is non-zero,
that is, logdensF > 0, then the exponent of convergence of distinct poles
λ(1/f) is non-zero. Thus, ρ(f) is non-zero.

Lemma 2.5 (see [20]). Let f1, . . . , fn be meromorphic functions. Then

T

(
r,
∑
λ∈I

f
iλ1
1 · · · f iλnn

)
≤ σ

n∑
i=1

T (r, fi) + log s,

where I = {(iλ1 , . . . , iλn)} is an index set consisting of s elements, and
σ = maxλ∈I{iλ1 + · · ·+ iλn}.

Lemma 2.6 (see [3, Theorem 2.1]). Let f(z) be a meromorphic function
of finite order ρ, and c a non-zero complex constant. Then, for each ε > 0,

T (r, f(z + c)) = T (r, f(z)) +O(rρ−1+ε) +O(log r).

Lemma 2.7 (see [19, Theorems 1.1 and 1.3]). Let f(z) be a transcen-
dental meromorphic function of zero order and q be a non-zero complex
constant. Then

T (r, f(qz)) = T (r, f(z)) + S(r, f)

on a set of logarithmic density 1.
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3. Proofs of Theorems 1.8 and 1.9

3.1. The proof of Theorem 1.8. Since aj(z), bi(z) in (3) are rational,
we can multiply out the denominators of the coefficients aj(z), bi(z) to get
the equation

(8)

n∑
j=1

Aj(z)f(qjz + cj) =

d∑
i=0

Bi(z)f(z)i,

where the coefficients Aj(z), Bi(z) are polynomials.
Suppose that f is a transcendental entire function solution of (3) (or (8)).

Set pj = degAj (j = 1, . . . , n), qi = degBi (i = 0, 1, . . . , d) and C =
max{|c1|, . . . , |cn|}. Take m = max{p1, . . . , pn} + 1. Since |q| > 1 and since
M(r, f(qjz + cj)) ≤ M(|q|jr + |cj |, f), from (8) and Aj(z), Bi(z) are poly-
nomials, we get

M
(
r,

d∑
i=0

Bi(z)f(z)i
)

= M
(
r,

n∑
j=1

Aj(z)f(qjz + cj)
)

(9)

≤ nrmM(|q|nr + C, f),

when r is sufficiently large. Since Bi (i = 0, 1, . . . , d) are polynomials and f
is a transcendental entire function, we have

M
(
r,

d−1∑
i=0

Bi(z)f(z)i
)

= o(M(r, f(z)d)).

From the above inequality, for sufficiently large r, we have

(10) M
(
r,

d∑
i=0

Bi(z)f(z)i
)
≥ 1

2M(r,Bd(z)f(z)d).

From (9) and (10), we get

(11) logM(|q|nr + C, f) ≥ d logM(r, f) + g(r),

where |g(r)| < K log r for some K > 0 and sufficiently large r. Iterating
(11), we have

(12) logM(|q|nkr + (|q|n(k−1) + · · ·+ |q|n + |q|0)C, f)

≥ dk logM(r, f) + Ek(r),

where k ∈ N+ and

(13) |Ek(r)|

=
∣∣∣dk−1g(r) + dk−2g(|q|nr + C) + · · ·+ g

(
|q|n(k−1)r + C

k−2∑
j=0

|q|jn
)∣∣∣
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≤ Kdk−1
k−1∑
s=0

log(|q|snr + C
∑s−1

j=0 |q|jn)

ds

≤ Kdk−1
∞∑
s=0

log(|q|snr + C
∑s−1

j=0 |q|jn)

ds
.

Since |q| > 1 and log(r+ sC) ≤ (log r)(log sC) for r and s sufficiently large,
we have

log
(
|q|snr + C

s−1∑
j=0

|q|jn
)
≤ (log(|q|snr))(log(sC))(log(|q|(s−1)n))(14)

≤ n2(log |q|)2(logC)(log r)s(s− 1) log s,

for sufficiently large r and s. From (13) and (14), we have

(15) |Ek(r)| ≤ K ′dk−1 log r

∞∑
s=0

s(s− 1) log s

ds
,

where K1 = Kn2(log |q|)2(logC). We can easily deduce that the series∑∞
s=0 s(s− 1)(log s)/ds is convergent when d ≥ 2. Therefore, from (15),

(16) |Ek(r)| ≤ K2d
k log r,

where K2 > 0 is a constant. Since f is a transcendental entire function, for
sufficiently large r, we have

(17) logM(r, f) ≥ 2K2 log r.

By (12), (16) and (17), we see that there exists an r0 ≥ e such that for
r ≥ r0,
(18) logM

(
|q|nkr + (|q|n(k−1) + · · ·+ |q|n + |q|0)C, f

)
≥ K2d

k log r.

Thus, for each sufficiently large γ, since |q| > 1, there exists a k ∈ N+ such
that

γ ∈
[
|q|nkr0 + C

k−1∑
s=0

|q|sn, |q|n(k+1)r0 + C

k∑
s=0

|q|sn
]
,

i.e.

(19) k >
log γ + log[(|q|n − 1)(1 + o(1))]− log[|q|n(r0(|q|n − 1) + C)]

n log |q|
.

Hence, from (18) and (19), we have

(20)

logM(γ, f) ≥ logM
(
|q|nkr0 + C

k−1∑
s=0

|q|sn, f
)
≥ K2d

k log r0 ≥ K3d
log γ
n log |q| ,
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where

K3 = K2 log r0d
log[(|q|n−1)(1+o(1))]−log[|q|n(r0(|q|

n−1)+C)]
n log |q| .

Hence, we have proved the conclusion when f is an entire function.

Suppose that f is a meromorphic solution of (3) (or (8)) with finitely
many poles. Then there exists a polynomial P (z) such that g(z) = P (z)f(z)
is entire. Substituting f(z) = g(z)/P (z) into (8) and again multiplying away
the denominators, we get an equation similar to (8). For g(z), by using the
same argument as above, for sufficiently large r, we get

logM(r, f) = logM(r, g) +O(1) ≥ (K3 − ε)d
log r

n log |q| = K4d
log r

n log |q|

where K4 > 0 is a constant.

Therefore, the proof of Theorem 1.8 is complete.

3.2. The proof of Theorem 1.9. Since the coefficients of R(z, f) are
rational functions and f has infinitely many poles, we can take a sufficiently
large constant R > 0 such that the coefficients of R(z, f) have no zeros
or poles in {z ∈ C : |z| > R} and that we can choose a pole z0 of f of
multiplicity ν ≥ 1 satisfying |z0| > R. Since d = s − t ≥ 2, and the right
hand side of (4) has a pole of multiplicity dν at z0, there exists j1 ∈ {1, . . . , n}
such that qj1z0 + cj1 is a pole of f of multiplicity ν1 ≥ dν. Replacing z by
qj1z0 + cj1 in (4), we have

(21)

n∑
j=1

aj(q
j1z0 + cj1)f(qj+j1z0 + qjcj1 + cj)

= R
(
qj1z0 + cj1 , f(qj1z0 + cj1)

)
.

Since the coefficients of R(z, f) are rational and have just finitely many zeros
and poles, there exists j2 ∈ {1, . . . , n} such that qj1+j2z0 + qj2cj1 + cj2 is a
pole of f of multiplicity ν2 ≥ dν1 ≥ d2ν.

We now continue inductively to construct poles

ϑk =

k∏
i=1

qjiz0 +

k∏
i=2

qjicj1 + · · ·+ qjkcjk−1
+ cjk

of f of multiplicity νk for all k ∈ N+, satisfying νk ≥ dkν → ∞ (k → ∞),
where ji ∈ {1, . . . , n}, i = 1, . . . , k. Obviously, we have |ϑk| → ∞ as k →∞.
Then there exists a positive integer k0 ∈ N+ such that for sufficiently large
k ≥ k0,

νdk ≤ ν(1 + d+ · · ·+ dk) ≤ n(|ϑk|, f)(22)

≤ n
(
|q|nk|z0|+ C

(
(|q|n(k−1) + · · ·+ |q|n + |q|0)

)
, f
)
,

where C := max{|c1|, . . . , |cn|}. Thus, for each sufficiently large r, there
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exists a k ∈ N+ such that

r ∈
[
|q|nk|z0|+ C

k−1∑
i=0

|q|in, |q|n(k+1)r0 + C

k∑
i=0

|q|in
]
.

By the same argument as in the proof of Theorem 1.8, from (22) we get

n(r, f) ≥ νdk ≥ νd
log r+log[(|q|n−1)(1+o(1)]−n log |q|−log[|z0|(|q|

n−1)+C]
n log |q| ≥ K5d

log r
n log |q| ,

where

K5 = νd
log[(|q|n−1)(1+o(1)]−n log |q|−log[|z0|(|q|

n−1)+C]
n log |q| .

Moreover there exists an r0 > 0 such that for all r ≥ r0, we have

K5d
log r

n log |q| ≤ n(r, f) ≤ 1

log 2
T (2r, f).

From this inequality, we get µ(f) ≥ log d/(n log |q|) easily.
This completes the proof of Theorem 1.9.

4. Proof of Theorem 1.10. Since |q| > 1, cj ∈ C and T (r, f(qjz+ cj))
= T (|q|jr+ |cj |, f) +O(1), from (5) and Lemmas 2.1 and 2.5, for any given
0 < ε < d−2nσ

d+2nσ , we have

d(1− ε)T (r, f) ≤ dT (r, f) + S(r, f)(23)

≤ 2σ
n∑
j=1

T (|q|jr + |cj |, f) + S(r, f)

≤ 2nσT (|q|nr + C, f) + S(r, f)

≤ 2nσ(1 + ε)T (|q|nr + C, f),

outside of a possible exceptional set of finite linear measure. Then there
exists an r0 > 0 such that

(24) T (|q|nr + C, f) ≥ d(1− ε)
2nσ(1 + ε)

T (r, f)

for all r > r0. Iterating (24), for any k ∈ N+, we have

(25) T
(
|q|nkr + C

k−1∑
i=0

|q|in, f
)
≥
(

d(1− ε)
2nσ(1 + ε)

)k
T (r, f), r ≥ r0.

For sufficiently large %, by using the same argument as in the proof of The-
orem 1.8, from (25) we get

(26)

T (%, f) ≥ T (r0, f)

(
d(1− ε)

2nσ(1 + ε)

) log %+log[(|q|n−1)(1+o(1)]−n log |q|−log[|z0|(|q|
n−1)+C]

n log |q|
.
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Letting ε→ 0, from (26) we have

T (%, f) ≥ T (r0, f)

(
d

2nσ

) log %+log[(|q|n−1)(1+o(1)]−n log |q|−log[|z0|(|q|
n−1)+C]

n log |q|
(27)

= K

(
d

2nσ

) log %
n log |q|

,

where K is a constant satisfying

K = T (r0, f)

(
d

2nσ

) log[(|q|n−1)(1+o(1)]−n log |q|−log[|z0|(|q|
n−1)+C]

n log |q|
(> 0).

Hence, from (27) we get µ(f) ≥ log d− log 2nσ/(n log |q|) easily.

This completes the proof of Theorem 1.10.

5. Proof of Theorem 1.11. Suppose that the assertion Q(z, f(z)) ≡
(f(z) + h(z))t does not hold; we will prove that then ρ(f) > 0. By Lemmas
2.2 and 2.3, we have

T (r, f) ≤ N
(
r,

1

Q

)
+N(r, f) + S(r, f)(28)

≤ N
(
r,
P (z, f)

Q(z, f)

)
+N(r, f) + S(r, f).

From (6), (7) and (28), we get

T (r, f)−N(r, f) ≤ N
(
r,
P (z, f)

Q(z, f)

)
+ S(r, f)(29)

= N
(
r,

n∑
j=1

aj(z)f(qjz + cj)
)

+ S(r, f)

≤ αN(|q|nr + C, f) + S(r, f).

From Lemmas 2.6 and 2.7, we have

(30) T (r, f(qjz + cj)) = T (r, f) + S(r, f), j = 1, . . . , n,

on a set of logarithmic density 1.

If a set is of finite linear measure, then it is of logarithmic density 0.
Thus, from (30), we have

(31) S(r, f(qjz + cj)) = o(T (r, f(z)), j = 1, . . . , n,

on a set of logarithmic density 1. From (31), replacing f(z) by f(qjz + cj)
(j = 1, . . . , n) in (29), we have
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(32) T (r, f(qjz + cj))−N(r, f(qjz + cj))

≤ αN(|q|nr + C, f(qjz + cj)) + o(T (r, f))

on a set of logarithmic density 1. Applying Lemma 2.1 on both sides of (6),
from (7), we have

(33) nT (r, f) = T
(
r,

n∑
j=1

aj(z)f(qjz + cj)
)

+ o(T (r, f))

= T
(
r,

n∑
j=1

aj(z)f(qjz + cj)
)
−N

(
r,

n∑
j=1

aj(z)f(qjz + cj)
)

+N
(
r,

n∑
j=1

aj(z)f(qjz + cj)
)

+ o(T (r, f))

≤ m
(
r,

n∑
j=1

aj(z)f(qjz + cj)
)

+N1

(
r,

n∑
j=1

aj(z)f(qjz + cj)
)

+ αN(|q|nr + C, f(z)) + o(T (r, f))

≤
n∑
j=1

(
m(r, f(qjz + cj)) +N1(r, f(qjz + cj))

)
+ αN(|q|nr + C, f(z))

+ o(T (r, f))

=

n∑
j=1

(
T (r, f(qjz + cj))−N(r, f(qjz + cj))

)
+ αN(|q|nr + C, f(z))

+ o(T (r, f))

on a set of logarithmic density 1, where N1(r, f) = N(r, f)−N(r, f). From
(32) and (33), we have

(34) nT (r, f)

≤
n∑
j=1

αN
(
|q|nr + C, f(qjz + cj)

)
+ αN(|q|nr + C, f(z)) + o(T (r, f))

≤ nαN
(
|q|2nr + C(1 + |q|n), f(z)

)
+ αN(|q|nr + C, f(z)) + o(T (r, f))

≤ (n+ 1)αN
(
|q|2nr + C(1 + |q|n), f(z)

)
+ o(T (r, f))

≤ (n+ 1)αN
(
|q|2nr + 2C|q|2n, f(z)

)
+ o(T (r, f))

on a set of logarithmic density 1. From (34), we have

T (r, f)−N(r, f) ≤ n+ 1

n
αN
(
|q|2nr + 2C|q|2n, f(z)

)
−N(r, f)(35)

+ o(T (r, f))
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on a set of logarithmic density 1. We now proceed inductively to prove

T (r, f)−N(r, f) ≤ n+m

n
αN(|q|2mnr + 2mC|q|2mn, f(z))(36)

−mN(r, f) + o(T (r, f))

on a set of logarithmic density 1.
From (35), we can see that the case m = 1 has already been proved.

We now turn to the inductive step. Observe that the above reasoning also
applies to the functions f(qjz+ cj), j = 1, . . . , n, instead of f(z). Therefore,
since |q| > 1, we may apply the inductive assertion to infer by (33) that

(37) nT (r, f)

≤
n∑
j=1

(
T (r, f(qjz + cj))−N(r, f(qjz + cj))

)
+ αN(|q|nr + C, f(z))

+ o(T (r, f))

≤
n∑
j=1

n+m

n
αN
(
|q|2mnr + 2mC|q|2mn, f(qjz + cj)

)
−

n∑
j=1

mN(r, f(qjz + cj)) + αN(|q|nr + C, f(z)) + o(T (r, f))

≤
n∑
j=1

n+m

n
αN
(
|q|(2m+1)nr + (2m+ 1)C|q|2mn, f

)
−

n∑
j=1

mN(r − C, f) + αN(|q|nr + C, f) + o(T (r, f))

≤ (n+m+ 1)αN
(
|q|(2m+1)nr + (2m+ 1)C|q|2mn, f

)
−mnN(r − C, f) + o(T (r, f))

on a set of logarithmic density 1.
Since T (r, f) ≤ T (r + C, f), from (37), we have

(38) nT (r, f) ≤ nT (r + C, f)

≤(n+m+ 1)αN(|q|(2m+1)nr + C|q|2mn[(2m+ 1) + |q|n], f)

−mnN(r, f) + o(T (r, f))

≤(n+m+ 1)αN(|q|2(m+1)nr + 2(m+ 1)C|q|2(m+1)n, f)

−mnN(r, f) + o(T (r, f))

on a set of logarithmic density 1. From this inequality, we get

T (r, f)−N(r, f) ≤ n+m+ 1

n
αN
(
|q|2(m+1)nr+ 2(m+ 1)C|q|2(m+1)n, f(z)

)
− (m+ 1)N(r, f) + o(T (r, f))

on a set of logarithmic density 1. This completes the induction.
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Thus, since T (r, f)− o(T (r, f)) ≥ 0, from (36), we immediately get

N(r, f) ≤ n+m

n(m− 1)
αN(|q|2mnr + 2mC|q|2mn, f)(39)

≤ n+m

n(m− 1)
αN(2m|q|2mnr, f)

on a set of logarithmic density 1. Since |q| > 1 and α ∈ [0, n), we see that
for sufficiently large m,

(40)
n+m

n(m− 1)
α =

(
1

m− 1
+

1

n

m

m− 1

)
α < 1.

Then, from (39), (40) and Lemma 2.4, we get ρ(f) > 0, a contradiction.
Thus, the proof of Theorem 1.11 is complete.
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