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Representations of non-negative polynomials via KKT ideals

by Dang Tuan Hiep (Da Lat and Bari)

Abstract. This paper studies the representation of a non-negative polynomial f on a
non-compact semi-algebraic set K modulo its KKT (Karush–Kuhn–Tucker) ideal. Under
the assumption that f satisfies the boundary Hessian conditions (BHC) at each zero of f
in K, we show that f can be represented as a sum of squares (SOS) of real polynomials
modulo its KKT ideal if f ≥ 0 on K.

1. Introduction. We know that if a polynomial in one variable f(X) ∈
R[X] satisfies f(X) ≥ 0, for all X ∈ R, then f(X) =

∑m
i=1 g

2
i (X), where

gi(X) ∈ R[X], i.e., f is a sum of squares in R[X] (SOS for short). However, in
the multi-variable case, this is false. A counterexample was given by Motzkin
in 1967. If f(X,Y ) = 1 +X4Y 2 +X2Y 4 − 3X2Y 2, then f(X,Y ) ≥ 0 for all
X,Y ∈ R, but f is not a SOS in R[X,Y ]. To remedy that, we will consider
the polynomials that are positive on K, where K is a semi-algebraic set
in Rn. For example, Schmüdgen’s famous theorem [Schm] says that for a
compact semi-algebraic set, every strictly positive polynomial belongs to
the corresponding finitely generated preordering. Putinar [Pu] simplified
this representation under an additional assumption by using the quadratic
module instead of the preordering. However, these results of Schmüdgen
and Putinar have two restrictions. Firstly, the polynomials are positive, not
merely non-negative. Secondly,K must be a compact semi-algebraic set. One
would like to have results for representations of nonnegative polynomials on
non-compact semi-algebraic sets.

The results of this paper are similar to those of James Demmel, Jiawang
Nie and Victoria Powers in [DNP]. But we use another condition of Murray
Marshall in [M], that is, the boundary Hessian condition (BHC for short).
Our main result is an extension of Theorem 2.1 in [M] in the same way as
Theorems 3.1 and 3.2 are extensions of the corresponding results in [NDS].
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2. Preliminaries. In this section, we present some notions and results
from algebraic geometry and real algebra needed for our discussion. The
reader may consult [BCR], [CLO], and [PD] for more details.

Throughout this section, denote by R[z] the ring of polynomials in z =
(z1, . . . , zm) with real coefficients. Given an ideal I ⊆ R[z], define its variety
to be the set

V (I) = {z ∈ Cm | p(z) = 0, ∀p ∈ I},
and its real variety to be

V R(I) = V (I) ∩ Rm.

A nonempty variety V = V (I) ⊆ Cm is irreducible if there do not exist
two proper subvarieties V1, V2 ⊂ V such that V = V1 ∪ V2. The reader
should note that in this paper, “irreducible” means that the set of complex
zeros cannot be written as a proper union of subvarieties defined by real
polynomials.

Given any ideal I of R[z], its radical
√
I is defined to be the ideal

√
I = {q ∈ R[z] | ql ∈ I for some l ∈ N}.

Clearly, I ⊆
√
I; I is a radical ideal if

√
I = I. As usual, for a variety

V ⊆ Cm, I(V ) denotes the ideal in C[z] of polynomials vanishing on V . We
will write IR(V ) for the ideal R[z] ∩ I(V ).

We need versions of the Nullstellensatz for varieties defined by polyno-
mials in R[z]. The following two theorems are normally stated for ideals in
C[z]; however, keeping in mind that V (I) lies in Cm, they hold as stated for
ideals in R[z].

Theorem 2.1 ([CLO]). If I is an ideal in R[z] such that V (I) = ∅, then
1 ∈ I.

Theorem 2.2 ([CLO]). If I is an ideal in R[z], then IR(V (I)) =
√
I.

Let g1, . . . , gs ∈ R[x1, . . . , xn] and set

K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , s},
and

P =
{ ∑
e∈{0,1}s

σeg
e1
1 . . . ges

s

}
,

where e = (e1, . . . , es) ∈ {0, 1}s and σe are sums of squares of polynomials
in R[x1, . . . , xn].

Finally, we need the following real algebra version of Theorem 2.1; see
Remark 4.2.13 in [PD].

Theorem 2.3 ([PD]). Suppose K and P are defined as above. Then
K = ∅ if and only if −1 ∈ P .
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3. Sum of squares modulo KKT ideals. Fix f, g1, . . . , gs ∈
R[x1, . . . , xn], and set

K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , s}.
Let f∗ denote the minimum value of f on K, i.e., the solution to the opti-
mization problem

(3.1) f∗ = min
x∈K

f(x).

The KKT system associated to this optimization problem is

∇f −
s∑
j=1

λj∇gj = 0,(3.2)

gj ≥ 0, λjgj = 0, j = 1, . . . , s,(3.3)

where the variables λ = [λ1 · · · λs]T are called Lagrange multipliers and ∇f
denotes the gradient of f , i.e., the vector of first-order partial derivatives
of f . A point (x, λ) in K ×Rs is said to be a KKT point if the KKT system
holds at that point.

We work in the polynomial rings C[x, λ] = C[x1, . . . , xn, λ1, . . . , λs] and
R[x, λ]. Let

Fi =
∂f

∂xi
−

s∑
j=1

λj
∂gj
∂xi

,

and define the KKT ideal IKKT in R[x, λ] and the varieties associated with
the KKT system as follows:

IKKT = 〈F1, . . . , Fn, λ1g1, . . . , λsgs〉,
VKKT = {(x, λ) ∈ Cn × Cs | p(x, λ) = 0, ∀p ∈ IKKT},
V R

KKT = {(x, λ) ∈ Rn × Rs | p(x, λ) = 0, ∀p ∈ IKKT}.
Keeping in mind that we are now working in the larger polynomial ring,
we use P to denote the preordering in R[x, λ] generated by g1, . . . , gs. The
associated KKT preordering PKKT in R[x, λ] is defined as

PKKT = P + IKKT.

Finally, set

H = {(x, λ) ∈ Rn × Rs | gj(x) ≥ 0, j = 1, . . . , s}.
Theorem 3.1 (Demmel–Nie–Powers [DNP]). Assume IKKT is radical.

If f(x) is nonnegative on V R
KKT ∩H, then f(x) belongs to PKKT.

The assumption that IKKT is radical is needed in Theorem 3.1, as shown
by an example due to Claus Scheiderer, presented in Example 1 of [NDS].
However, when IKKT is not radical, the conclusion also holds if f(x) is
strictly positive on V R

KKT.
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Theorem 3.2 (Demmel–Nie–Powers [DNP]). If f > 0 on V R
KKT ∩ H,

then f belongs to PKKT.

The main result of this paper is the following: if f satisfies the BHC
at each zero of f in K (see definition in Section 4 below), and f ≥ 0 on
V R

KKT ∩ H, then f ∈ PKKT. This is an extension of Theorem 2.1 in [M] in
the same way as Theorems 3.1 and 3.2 are extensions of the corresponding
results in [NDS].

4. Boundary Hessian conditions. We sayf satisfies the BHC (bound-
ary Hessian condition) at the point p in K if there is some k ∈ {1, . . . , n},
and v1, . . . , vk ∈ N with 1 ≤ v1 < · · · < vk ≤ s such that gv1 , . . . , gvk

are
parts of a system of local parameters at p, and the standard sufficient con-
ditions for a local minimum of f |L at p hold, where L is the subset of Rn

defined by gv1(x) ≥ 0, . . . , gvk
(x) ≥ 0. This means that if t1, . . . , tn are local

parameters at p chosen so that ti = gvi for i ≤ k, then in the completion
R[[t1, . . . , tn]] of R[x] at p, f decomposes as f = f0 + f1 + f2 + · · · (where fi
is homogeneous of degree i in the variables t1, . . . , tn with coefficients in R),
f1 = a1t1 + · · ·+ aktk with ai > 0, i = 1, . . . , k, and the (n− k)-dimensional
quadratic form f2(0, . . . , 0, tk+1, . . . , tn) is positive definite.

Theorem 4.1 (Marshall [M]). If f satisfies the BHC at each zero of f
in K, then f ∈ P + (f2), where P denotes the preordering in R[x] generated
by g1, . . . , gs.

Example 4.2. Let f, g1 ∈ R[x, y] be given by f(x, y) = x and g1(x, y) =
x− y2. Then

K = {(x, y) ∈ R2 | x− y2 ≥ 0}.

Clearly, f ≥ 0 on K, and the unique zero of f in K occurs at (0, 0). Further-
more, f satisfies the BHC at (0, 0). Indeed, let t1 = g1 = x− y2 and t2 = y.
These form a system of local parameters at (0, 0). Then f = x = (x−y2)+y2,
so f = f1 + f2, where f1(t1, t2) = t1, and f2(t1, t2) = t22. Also, the coefficient
of t1 in f1 is positive (it is 1), t2 does not appear in f1, and the quadratic
form f2(0, t2) = t22 is positive definite (when viewed as a quadratic form in
the single variable t2). So, according to the definition, f satisfies the BHC
at (0, 0). Here f has a representation as follows:

f = σ0 + σ1g1 + hf2,

where σ0 = y2, σ1 = 1, h = 0.

5. Representation of nonnegative polynomials. In this section,
we present our main result. It is similar to Theorem 3.1, but without the
assumption that IKKT is radical. It is replaced by the BHC condition.
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Theorem 5.1. Suppose that

(i) f ≥ 0 on V R
KKT ∩H,

(ii) f satisfies the BHC at each zero of f in K.

Then f ∈ PKKT.

Remark 5.2. The radical condition and the BHC condition are differ-
ent. The following example exhibits polynomials which satisfy the radical
condition, but do not satisfy the BHC condition and conversely.

Example 5.3 (Marshall [M]).

1. Let n = 1 and s = 0 (so that K = R). Then the polynomial f(x) =
6x2 + 8x3 + 3x4 satisfies the hypothesis of Theorem 5.1, but its KKT
ideal is not radical. Indeed, ∂f/∂x = 12x(x + 1)2, f(x) ≥ 0 on R, f
has a zero at x = 0, and (∂2f/∂x2)(0) = 12 > 0. However, its KKT
ideal I = 〈12x(x+ 1)2〉 is not radical, because g = x(x+ 1) ∈

√
I, but

g 6∈ I.
2. Let n = 2 and s = 0 (so that K = R2). Then the polynomial f(x, y) =
x2 does not satisfy the hypothesis of Theorem 5.1, but its KKT ideal
is radical. Indeed, the Hessian matrix of f is not positive definite at
any zero of f in K. However, its KKT ideal I = 〈2x〉 is radical.

To prove Theorem 5.1, we need the following lemma.

Lemma 5.4. Let W be an irreducible component of VKKT and suppose
W ∩ Rn+s 6= ∅. Then f(x) is constant on W .

Proof. This follows from the proof of Lemma 3.3 in [DNP].

Proof of Theorem 5.1. Decompose VKKT into its irreducible components
and let W0 be the union of all the components whose intersection with H is
empty. We note that this includes all components W with WR = ∅. Thus,
by Lemma 5.4, f is constant on each of the remaining components. We
group together all components for which f takes the same value. Then we
have pairwise disjoint subsets W1, . . . ,Wr of W such that for each i, f takes
a constant value ai on Wi, with the ai being distinct. Further, since each
contains a real point and f is non-negative on V R

KKT ∩ H, the value of f
on each Wi is real and non-negative. We assume a1 > · · · > ar ≥ 0. If
ar > 0 then f ∈ PKKT (see Theorem 3.2). In case ar = 0, fix a primary
decomposition of IKKT. For each i ∈ {0, 1, . . . , r}, let Ji be the intersection
of those primary components corresponding to the irreducible components
occurring in Wi. Thus, V (Ji) = Wi.

Since Wi ∩Wj = ∅, we have Ji +Jj = R[x, λ] by Theorem 2.1. Therefore
the Chinese Remainder Theorem (see, e.g., [E]) implies that there is an
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isomorphism

ϕ : R[x, λ]/IKKT → R[x, λ]/J0 × R[x, λ]/J1 × · · · × R[x, λ]/Jr.

Lemma 5.5. There is q0 ∈ P such that f ≡ q0 mod J0.

Proof. By assumption, V (J0) ∩ H = ∅, hence there exists u0 ∈ P such
that −1 ≡ u0 mod J0. This result is a special case of Theorem 8.6 in [Lam].

We write f = f1 − f2 for SOS polynomials f1 = (f + 1/2)2 and f2 =
f2 + 1/4. Hence f ≡ f1 + u0f2 mod J0. Let q0 = f1 + u0f2 ∈ P . Then
f ≡ q0 mod J0.

Lemma 5.6. f is a sum of squares modulo Ji for all i = 1, . . . , r − 1.

Proof. By assumption, on each Wi, 1 ≤ i ≤ r− 1, f = ai > 0, and hence
the polynomial u = f/ai − 1 vanishes on Wi. Then by Theorem 2.2 there
exists some integer k ≥ 1 such that uk ∈ Ji. From the binomial identity, it
follows that

1 + u =
( k−1∑
j=0

(
1/2
j

)
uj
)2

+ quk.

This is explained in Lemma 7.24 in [Lau]. Thus f = ai(u + 1) is a sum of
squares modulo Ji.

Lemma 5.7. There is qr ∈ P such that f ≡ qr mod Jr.

Proof. By the assumption that f satisfies the BHC at each zero of f
on K and by Theorem 4.1, there exist g ∈ P and h ∈ R[x] such that
f = g + hf2, i.e., f(1 − hf) = g. Since f vanishes on Wr, fm ∈ Jr for
some positive integer m. Let t = hf and v =

∑m−1
i=0 ti. Then t, v ∈ R[x],

tm ∈ Jr, and (1 − t)v ≡ 1 mod Jr. By the binomial theorem, there exist
ci ∈ Q, i = 0, 1, . . . ,m− 1, such that

v ≡
(m−1∑
i=0

cit
i
)2

mod Jr.

This yields qr ∈ P satisfying

f ≡ f(1− hf)v = gv ≡ qr mod Jr.

To finish the proof of Theorem 5.1, we need the following lemma.

Lemma 5.8. Given q0, q1, . . . , qr ∈ R[x, λ], there exists q ∈ P such that
q − qi ∈ Ji for all i = 0, 1, . . . , r.

Proof. By the Chinese Remainder Theorem there exist e0, e1, . . . , er ∈
R[x, λ] such that ei ≡ 1 mod Ji and ei ≡ 0 mod Jj for j 6= i. Set q =∑
e2i qi.

Lemmas 5.5–5.8 imply that there is q ∈ P such that f ≡ q mod IKKT,
i.e., f ∈ PKKT.
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Remark 5.9. The assumption that f satisfies the BHC at each zero of
f in K is needed in Theorem 5.1 and cannot be removed, as the following
example shows.

Example 5.10. Let K = R3, PKKT =
∑

R[x]2 + 〈∂f∂x ,
∂f
∂y ,

∂f
∂z 〉 and con-

sider the polynomial

f(x, y, z) = x8 + y8 + z8 +M(x, y, z),

where M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 is the Motzkin polynomial,
which is non-negative but not a sum of squares.

It is easy to see that f does not satisfy the BHC at (0, 0, 0), which is a
zero of f in R3. Furthermore, f 6∈ PKKT. Indeed, this is shown in Example 1
of [NDS].

6. Applications in optimization. In this section, we present a result
that is similar to Theorem 4.1 in [DNP]. But instead of the assumption that
IKKT is radical, we assume that f satisfies the BHC at each zero of f − f∗
in K. Throughout this section, we always assume that the minimum value
f∗ of f on K is attained at some KKT point.

Recall the KKT system corresponding to (3.1):

∇f(x)−
s∑
j=1

λj∇gj(x) = 0,(6.1)

gj(x) ≥ 0, λjgj = 0, j = 1, . . . , s.(6.2)

Let f∗KKT be the global minimum value of f(x) over the KKT system de-
fined by (6.1) and (6.2). Assume the KKT system holds at at least one
global optimizer. Then we claim that f∗ = f∗KKT. First, f∗ ≤ f∗KKT follows
immediately from the fact that all solutions to the KKT system are feasible.
By assumption, there exists (x∗, λ∗) satisfying the above KKT system such
that f(x∗) = f∗. Thus f∗ ≥ f∗KKT and hence they are equal.

In order to implement membership in PKKT as an SDP, we need a bound
on the degrees of the sums of squares involved. Thus, for d ∈ N, we define
the truncated KKT ideal

Id,KKT =
{ n∑
k=1

φkFk +
s∑
j=1

ψjλjgj

∣∣∣ deg(φkFk), deg(ψjλjgj) ≤ 2d
}
,

and the truncated preorder

Pd,KKT =
{ ∑
e∈{0,1}s

σeg
e
∣∣∣ deg(σege) ≤ 2d

}
+ Id,KKT.

Then we define a sequence {f∗d} of SOS relaxations of the optimization
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problem (3.1) as follows:

f∗d = max
γ∈R

γ such that(6.3)

f(x)− γ ∈ Pd,KKT.(6.4)

Obviously each γ feasible in (6.4) is a lower bound of f∗. So f∗d ≤ f∗. When
we increase d, the feasible region defined by (6.4) is increasing, and hence
the sequence {f∗d} of lower bounds is also increasing. Thus

f∗1 ≤ f∗2 ≤ · · · ≤ f∗.

It can be shown that the sequence {f∗d} of lower bounds obtained from (6.3)
and (6.4) converges to f∗ in (3.1), provided that f∗ is attained at one KKT
point. We have the following theorem.

Theorem 6.1. Assume f(x) has a minimum f∗ := f(x∗) at one KKT
point x∗ of (3.1). Then limd→∞ f

∗
d = f∗. Furthermore, if f satisfies the BHC

at each zero of f −f∗ in K, then there exists some d ∈ N such that f∗d = f∗,
i.e., the SOS relaxations (6.3) and (6.4) converge in finitely many steps.

Proof. The sequence {f∗d} is increasing, and f∗d ≤ f∗ for all d ∈ N, since
f∗ is attained by f(x∗) in the KKT system (3.2) and (3.3) by assumption
and the constraint (6.4) implies that γ ≤ f∗. Now for arbitrary ε > 0, let
γε = f∗−ε and replace f(x) by f(x)−γε in (3.1). The KKT system remains
unchanged, and f(x)− γε is strictly positive on V R

KKT ∩H. By Theorem 3.2,
f(x) − γε ∈ PKKT. Since f(x) − γε is fixed, there must exist some integer
d1 such that f(x) − γε ∈ Pd1,KKT. Hence f∗ − ε ≤ f∗d1 ≤ f∗. Therefore
limd→∞ f

∗
d = f∗.

Now assume that f satisfies the BHC at each zero of f−f∗ in K. Replace
f(x) by f(x) − f∗ in (3.1). The KKT system still remains the same, and
f(x)− f∗ is now nonnegative on V R

KKT ∩H. Moreover, f − f∗ also satisfies
the BHC at each zero of f − f∗ in K. By Theorem 5.1, f(x)− f∗ ∈ PKKT.
So there exists some integer d2 such that f(x) − f∗ ∈ Pd2,KKT, and hence
f∗d2 ≥ f

∗. Then f∗d ≤ f∗ for all d implies that f∗d2 = f∗.
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