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Uniqueness theorems for entire functions whose
difference polynomials share a meromorphic function

of a smaller order

by Xiao-Min Li (Qingdao and Joensuu), Wen-Li Li (Qingdao)
Hong-Xun Yi (Jinan) and Zhi-Tao Wen (Qingdao and Joensuu)

Abstract. We deal with uniqueness of entire functions whose difference polynomials
share a nonzero polynomial CM, which corresponds to Theorem 2 of I. Laine and C. C.
Yang [Proc. Japan Acad. Ser. A 83 (2007), 148–151] and Theorem 1.2 of K. Liu and L. Z.
Yang [Arch. Math. 92 (2009), 270–278]. We also deal with uniqueness of entire functions
whose difference polynomials share a meromorphic function of a smaller order, improving
Theorem 5 of J. L. Zhang [J. Math. Anal. Appl. 367 (2010), 401–408], where the entire
functions are of finite orders.

1. Introduction and main results. In this paper, by meromorphic
functions we will always mean meromorphic functions in the complex plane.
We adopt the standard notation of the Nevanlinna theory of meromorphic
functions as explained in [6], [12] and [19]. It will be convenient to let E de-
note any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence. For a nonconstant meromorphic function h,
we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying S(r, h) = o{T (r, h)} as r →∞ and r 6∈ E.

Let f and g be two nonconstant meromorphic functions, and let a be
a value in the extended plane. We say that f and g share the value a CM
provided that f and g have the same a-points with the same multiplicities.
We say that f and g share the value a IM provided that f and g have the
same a-points ignoring multiplicities (see [19]). We say that a is a small
function of f if a is a meromorphic function satisfying T (r, a) = S(r, f) (see
[19]). Throughout this paper, we denote by ρ(f) the order of f (see [6], [12]
and [19]). We also need the following two definitions.

2010 Mathematics Subject Classification: 30D35, 30D30.
Key words and phrases: entire function, order of growth, shared value, difference polyno-
mial, uniqueness.

DOI: 10.4064/ap102-2-2 [111] c© Instytut Matematyczny PAN, 2011



112 X. M. Li et al.

Definition 1.1 (see [11, Definition 1]). Let p be a positive integer and
a ∈ C ∪ {∞}. Then we denote by Np)(r, 1/(f − a)) the counting function
of those a-points of f (counted with proper multiplicities) whose multi-
plicities are not greater than p, and by Np)(r, 1/(f − a)) the correspond-
ing reduced counting function (ignoring multiplicities). Moreover we denote
by N(p(r, 1/(f − a)) the counting function of those a-points of f (counted
with proper multiplicities) whose multiplicities are not less than p, and by
N (p(r, 1/(f−a)) the corresponding reduced counting function (ignoring mul-
tiplicities). Finally Np)(r, 1/(f −a)), Np)(r, 1/(f −a)), N(p(r, 1/(f −a)) and
N (p(r, 1/(f − a)) mean Np)(r, f), Np)(r, f), N(p(r, f) and N (p(r, f) respec-
tively if a =∞.

Definition 1.2. Let a be any value in the extended complex plane, and
let k be an arbitrary nonnegative integer. We define

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+N (2

(
r,

1
f − a

)
+ · · ·+N (k

(
r,

1
f − a

)
.

Much research has been devoted to uniqueness of meromorphic functions
whose differential polynomials share one nonzero value (for example, see [3],
[13], [17] and [18]). Recently the difference variant of Nevanlinna theory has
been established in [1], [5] and [4], by Halburd–Korhonen and Chiang–Feng,
independently. Using these theories, some Finnish and Chinese mathemati-
cians began to consider uniqueness questions for meromorphic functions
sharing values with their shifts (for example, see [9], [8] and [20]). In this
paper, we will consider uniqueness of entire functions whose difference poly-
nomials share one nonzero value or a small function of a smaller order.

We recall the following result, proved by Clunie and Hayman.

Theorem A (see [2] and [7]). Let f(z) be a transcendental entire func-
tion, and let n ≥ 1 be a positive integer. Then f(z)nf ′(z)− 1 has infinitely
many zeros.

Regarding Theorem A, it is natural to ask the following question.

Question 1.1. What can be said if fn(z)f ′(z) in Theorem A is replaced
with fn(z)f(z + η) for a transcendental entire function f(z) and a nonzero
complex number η?

In 2007, Laine and Yang proved the following result.

Theorem B (see [14, Theorem 2]). Let f(z) be a transcendental entire
function of a finite order, and let η be a nonzero complex number. Then
f(z)nf(z + η) assumes every finite nonzero value a infinitely often for each
n ≥ 2.

We recall the following two examples.
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Example A (see [13]). Let f(z) = 1+ez. Then f(z)f(z+πi)−1 = −e2z
has no zeros. This shows that Theorem B does not remain valid if n = 1.

Example B (see [15]). Let f(z) = e−e
z
. Then f(z)2f(z+η)−2 = −1 and

ρ(f) = ∞, where η is the nonzero constant satisfying eη = −2. Evidently,
f(z)2f(z+η)−2 has no zeros. This shows that Theorem B does not remain
valid if f is of infinite order.

Recently K. Liu and L. Z. Yang proved the following result.

Theorem C (see [15]). Let f(z) be a transcendental entire function of
finite order, let η be a nonzero complex number, and let n ≥ 2 be an integer.
Then f(z)nf(z+η)−P (z) has infinitely many zeros, where P (z) 6≡ 0 is any
polynomial.

We recall the following example.

Example C (see [15]). Let f(z) = e−e
z
. Then f(z)nf(z + η)− P (z) =

1− P (z) and ρ(f) =∞, where η is a nonzero constant satisfying eη = −n,
P (z) is a nonconstant polynomial, and n is a positive integer. Evidently,
f(z)nf(z + η)− P (z) has finitely many zeros. This example shows that the
condition “ρ(f) <∞” in Theorem C is necessary.

Regarding Theorem C, it is natural to ask the following question.

Question 1.2. What can be said if f(z)nf(z+η)−P (z) and g(z)ng(z+η)
−P (z) share 0 CM for two transcendental entire functions f, g and a poly-
nomial P 6≡ 0?

We will prove the following uniqueness theorem which deals with Ques-
tion 1.2.

Theorem 1.1. Let f and g be distinct transcendental entire functions
of finite orders, and let P 6≡ 0 be a polynomial. Suppose that η is a nonzero
complex number and n ≥ 4 is an integer such that 2 deg(P ) < n+1. Suppose
that f(z)nf(z + η)− P (z) and g(z)ng(z + η)− P (z) share 0 CM.

(I) If n ≥ 4 and f(z)nf(z + η)/P (z) is a Möbius transformation of
g(z)ng(z + η)/P (z), then either

(i) f = tg, where t 6= 1 is a constant satisfying tn+1 = 1, or
(ii) f = eQ and g = te−Q, where P reduces to a nonzero constant c,

t is a constant such that tn+1 = c2, and Q is a nonconstant
polynomial.

(II) If n ≥ 6, then (I)(i) or (I)(ii) holds.

From Theorem 1.1 we get the following corollary.

Corollary 1.1. Let f and g be distinct nonconstant entire functions
of finite orders. Suppose that η is a nonzero complex number and n ≥ 6 is
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an integer. If f(z)nf(z + η) − z and g(z)ng(z + η) − z share 0 CM, then
f = tg, where t is a constant satisfying tn+1 = 1 and t 6= 1.

Recently J. L. Zhang proved the following result.

Theorem D (see [20]). Let f and g be transcendental entire func-
tions of finite orders, and let α be a small function relative to f and g.
Suppose that η is a nonzero complex number and n ≥ 7 is an integer. If
f(z)n(f(z) − 1)f(z + η) − α(z) and g(z)n(g(z) − 1)g(z + η) − α(z) share
0 CM, then f = g.

We will prove the following result, which improves Theorem D.

Theorem 1.2. Let f and g be transcendental entire functions of finite
orders, and let α be a meromorphic function such that ρ(α) < ρ(f) and
α 6≡ 0,∞. Suppose that η is a nonzero complex number, and n and m are
positive integers, where n ≥ m+ 6. If f(z)n(f(z)m − 1)f(z + η)− α(z) and
g(z)n(g(z)m − 1)g(z + η) − α(z) share 0 CM, then f = tg, where t is a
constant satisfying tm = 1.

2. Some lemmas

Lemma 2.1 (see [19, proof of Theorem 1.12]). Let f be a nonconstant
meromorphic function in the complex plane, and let

(2.1) P (f) = anf(z)n + an−1f(z)n−1 + · · ·+ a1f(z) + a0,

where a0, a1, . . . , an are constants and an 6= 0. Then

m(r, P (f)) = nm(r, f) +O(1).

Lemma 2.2 (see [1, Corollary 2.5]). Let f(z) be a meromorphic function
of order ρ(f) <∞, and let η be a nonzero complex number. Then

m

(
r,
f(z + η)
f(z)

)
+m

(
r,

f(z)
f(z + η)

)
= O(rρ(f)−1+ε);

here and in what follows, ε is an arbitrary positive number.

Lemma 2.3. Let f(z) be a nonconstant meromorphic function of order
ρ(f) <∞, let η be a nonzero complex number, and let P (f) be as in (2.1).
Suppose that F (z) = P (f(z))f(z + η). Then

m(r, F (z)) = (n+ 1)m(r, f(z)) +O(rρ(f)−1+ε) +O(log r).

Proof. First of all, by Lemmas 2.1 and 2.2, the assumptions of Lemma 2.3
and the standard Valiron–Mokhon’ko lemma (see [16]) we get
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(n+ 1)m(r, f(z)) = m(r, f(z)P (f(z))) +O(1)

≤ m
(
r,
f(z)P (f(z))

F (z)

)
+m(r, F (z)) +O(1)

= m

(
r,

f(z)
f(z + η)

)
+m(r, F (z)) +O(1)

≤ m(r, F (z)) +O(rρ−1+ε) +O(1),

i.e.,

(2.2) m(r, F (z)) ≥ (n+ 1)m(r, f(z)) +O(rρ−1+ε) +O(1).

Next from Lemmas 2.1 and 2.2 and the standard Valiron–Mokhon’ko lemma
we get

m(r, F (z)) ≤ m(r, P (f(z))) +m

(
r, f(z)

f(z + η)
f(z)

)
(2.3)

≤ nm(r, f(z)) +m(r, f(z)) +m

(
r,
f(z + η)
f(z)

)
+O(1)

= (n+ 1)m(r, f(z)) +O(rρ−1+ε) +O(log r).

From (2.2) and (2.3) we get the conclusion of Lemma 2.3.

Lemma 2.4 (see [1, Theorem 2.1]). Let f(z) be a meromorphic function
of order ρ(f) <∞, and let η be a nonzero complex number. Then

T (r, f(z + η)) = T (r, f(z)) +O(rρ(f)−1+ε) +O(log r).

Lemma 2.5. Let f and g be transcendental entire functions of finite
orders, and let P 6≡ 0 be a polynomial. Suppose that η is a nonzero complex
number and n ≥ 2 is an integer. If f(z)nf(z + η)− P (z) and g(z)ng(z + η)
− P (z) share 0 CM, then ρ(f) = ρ(g).

Proof. Set

(2.4) F (z) =
f(z)nf(z + η)

P (z)
, G(z) =

g(z)ng(z + η)
P (z)

for all z ∈ C. First of all, from (2.4), Lemma 2.3 and the condition that f
and g are entire functions we get

T (r, F (z)) = (n+ 1)T (r, f(z)) +O(rρ(f)−1+ε) +O(log r),(2.5)

T (r,G(z)) = (n+ 1)T (r, g(z)) +O(rρ(g)−1+ε) +O(log r).(2.6)

Since f, g are of finite orders, it follows from (2.5) and (2.6) that the same is
true for F and G as well. Hence it follows from Lemma 2.4, the assumptions
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of Lemma 2.5 and the second fundamental theorem that

T (r, F (z)) ≤ N(r, F (z)) +N

(
r,

1
F (z)

)
+N

(
r,

1
F (z)− 1

)
+O(log r)

≤ N
(
r,

1
f(z)

)
+N

(
r,

1
f(z + η)

)
+N

(
r,

1
G(z)− 1

)
+O(log r)

≤ 2T (r, f(z)) + T (r,G(z)) +O(rρ(f)−1+ε) +O(log r),

which together with (2.5) and (2.6) gives

(n+ 1)T (r, f(z)) ≤ 2T (r, f(z)) + (n+ 1)T (r, g(z)) +O(rρ(f)−1+ε)

+O(rρ(g)−1+ε) +O(log r),

i.e.,

(n− 1)T (r, f(z)) ≤ (n+ 1)T (r, g(z)) +O(rρ(f)−1+ε)(2.7)

+O(rρ(g)−1+ε) +O(log r).

From (2.7) and n ≥ 2 we get

(2.8) ρ(f) ≤ ρ(g).

Similarly

(2.9) ρ(g) ≤ ρ(f).

Thus ρ(f) = ρ(g), proving Lemma 2.5.

Lemma 2.6 (see [10, Lemma 2.2]). Let ϕ(r) be a nondecreasing, contin-
uous function on R+. Suppose that

0 < ρ < lim sup
r→∞

logϕ(r)
log r

,

and set
G := {r ∈ R+ | ϕ(r) ≥ rρ}.

Then

log densG = lim sup
r→∞

	
G∩[1,r]

dr
r

log r
> 0.

Lemma 2.7 (see [19, Lemma 7.1]). Let F and G be nonconstant mero-
morphic functions such that G is a Möbius transformation of F. Suppose
that there exists a subset I ⊂ R+ with linear measure mes I = +∞ such that

N(r, 1/F ) +N(r, F ) +N(r, 1/G) +N(r,G) < (λ+ o(1))T (r, F )

as r ∈ I and r → ∞, where λ < 1. If there exists a point z0 ∈ C such that
F (z0) = G(z0) = 1, then F = G or FG = 1.
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Let F and G be nonconstant meromorphic functions, let a ∈ C ∪ {∞},
and let NE(r, a) “count” those points in N(r, 1/(F − a)), where a is taken
by F and G with the same multiplicity, and each point is counted only once;
N(r, 1/(F − ∞)) means N(r, f). We say that F and G share the value a
CM ∗ if

N

(
r,

1
F − a

)
−NE(r, a) = S(r, F ),

N

(
r,

1
G− a

)
−NE(r, a) = S(r,G).

Lemma 2.8 (see [19, proof of Theorems 1.48 and 7.10]). Let F and G
be nonconstant meromorphic functions that share 1, ∞ CM ∗. Suppose that
there exists a subset I ⊂ R+ with mes I = +∞ such that

N2(r, 1/F ) +N2(r, 1/G) + 2N(r, F ) < λT (r) + S(r)

as r → ∞ and r ∈ I, where λ < 1, T (r) = max{T (r, F ), T (r,G)} and
S(r) = o{T (r)}. Then F = G or FG = 1.

3. Proofs of theorems

Proof of Theorem 1.1. First of all, we define F and G by (2.4). From
(2.4), Lemma 2.3 and the assumptions of Theorem 1.1 we get (2.5) and
(2.6). Suppose that z0 ∈ C is a zero of F − 1 of multiplicity µ. Then, since
P 6≡ 0 is a polynomial, we can see that z0 is a zero of f(z)nf(z + η)− P (z)
of multiplicity µ + ν, where ν ≥ 0 is the multiplicity of z0 as a zero of
P (z). Hence z0 is a zero of g(z)ng(z + η) − P (z) of multiplicity µ + ν by
the value sharing assumption. Now (2.4) shows that z0 is a zero of G− 1 of
multiplicity µ. This also works in the other direction. Therefore, F and G
indeed share 1 CM. Since f, g are of finite orders, it follows from (2.5) and
(2.6) that so are F and G. We discuss the following two cases.

Case 1. Suppose that F is a Möbius transformation of G. Then it fol-
lows from (2.4) and the standard Valiron–Mokhon’ko lemma that

(3.1) T (r, f(z)nf(z + η)) = T (r, g(z)ng(z + η)) +O(log r).

From (2.5), (2.6), Lemmas 2.5, 2.6 and the condition that f, g are tran-
scendental entire functions we deduce that there exists a subset I ⊂ R+

with mes I = +∞ such that T (r, f) ≥ rρ(f)−1+2ε and T (r, g) ≥ rρ(g)−1+2ε as
r →∞ and r ∈ I, and moreover

(3.2) lim
r→∞
r∈I

T (r, f)
T (r, g)

= 1, lim
r→∞
r∈I

T (r, F )
T (r, f)

= n+ 1.

From Lemma 2.4, the left equality of (2.4) and the condition that f, g are
transcendental entire functions we get
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N(r, F (z)) +N

(
r,

1
F (z)

)
≤ N

(
r,

1
f(z)

)
+N

(
r,

1
f(z + η)

)
(3.3)

+O(log r)
≤ T (r, f(z)) + T (r, f(z + η)) +O(log r)

≤ 2T (r, f(z)) +O(rρ(f)−1+ε) +O(log r)

as r →∞. Similarly

(3.4) N(r,G(z)) +N

(
r,

1
G(z)

)
≤ 2T (r, g(z)) +O(rρ(g)−1+ε) +O(log r)

as r →∞. By the property of I introduced in (3.2) we know that

rρ(f)−1+ε + log r = rρ(g)−1+ε + log r = o{T (r, f)}
as r →∞ and r ∈ I. This together with (3.2)–(3.4) gives

(3.5) N

(
r,

1
F

)
+N(r, F ) +N

(
r,

1
G

)
+N(r,G) ≤ 4

n+ 1
T (r, F )(1 + o(1))

as r →∞ and r ∈ I. From (2.4) and the second fundamental theorem,

T (r, F (z)) ≤ N(r, F (z)) +N

(
r,

1
F (z)

)
+N

(
r,

1
F (z)− 1

)
+O(log r)

≤ N
(
r,

1
f(z)

)
+N

(
r,

1
f(z + η)

)
+N

(
r,

1
F (z)− 1

)
+O(log r)

≤ 2T (r, f(z)) +N

(
r,

1
F (z)− 1

)
+O(rρ(f)−1+ε) +O(log r),

which together with (2.5) and Lemma 2.6 implies that there exists a subset
I ⊂ R+ with mes I = +∞ such that

(3.6) (n− 1)T (r, f) ≤ N
(
r,

1
F − 1

)
+ o{T (r, f)}

as r → ∞ and r ∈ I. From (3.6) and the fact that F, G share 1 CM∗ we
know that there exists z0 ∈ C such that F (z0) = G(z0) = 1. Hence from
(3.5), Lemma 2.7 and the condition n ≥ 4 we get FG = 1 or F = G. We
discuss the following two subcases.

Subcase 1.1. Suppose that F = G. Then it follows from (2.4) that

(3.7) f(z)nf(z + η) = g(z)ng(z + η)

for all z ∈ C. Let

(3.8) h = f/g.

From (3.7) and (3.8) we get

(3.9) h(z)nh(z + η) = 1
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for all z ∈ C. First suppose that h is rational. If h has a zero at some
point z0, then h has a pole at z0 + η by (3.9). Continuing, h(z0 + 2η) = 0,
h(z0 + 3η) = ∞, and so on. Therefore, h would have infinitely many zeros
and poles, which is impossible. Hence, h has neither zeros nor poles, meaning
that it is a constant, say h = t. By (3.9), tn+1 = 1. This together with (3.8)
gives the conclusion (I)(i) of Theorem 1.1.

Next suppose that h is transcendental meromorphic. Since f, g are of
finite order, the same is true for h as well. Thus it follows from (3.9) and
Lemma 2.4 that

nT (r, h) = T (r, h) +O(rρ(h)−1+ε) +O(log r),

and so

(3.10) (n− 1)T (r, h(z)) = O(rρ(h)−1+ε) +O(log r),

as r →∞. From (3.10) and the condition n ≥ 4, we get ρ(h) ≤ ρ(h)− 1, a
contradiction.

Subcase 1.2. By substituting (2.4) into FG = 1 we get

(3.11) f(z)nf(z + η)g(z)ng(z + η) = P (z)2

for all z ∈ C. From (3.11) and the condition that f, g are transcendental
entire functions, one can immediately see that f, g each have at most finitely
many zeros, and so we may write

(3.12) f = SeU , g = TeV ,

where S, T, U, V are polynomials, and U, V are nonconstant. Substituting
(3.12) into (3.11) we obtain

(3.13) Sn(z)S(z + η)Tn(z)T (z + η)enU(z)+U(z+η)+nV (z)+V (z+η) = P (z)2

for all z ∈ C. To avoid a contradiction, from (3.13) we must have

(3.14) nU(z) + U(z + η) + nV (z) + V (z + η) = A

for all z ∈ C, where A is a constant. Let

(3.15) U + V = W.

Then it follows from (3.15) that (3.14) can be rewritten as

(3.16) nW (z) +W (z + η) = A

for all z ∈ C. From (3.16) we know that W = B, where B is a constant.
This together with (3.15) gives

(3.17) V = B − U.
From (3.12) and (3.17) we conclude that f = SeU , g = TeBe−U . Now (3.13)
can be rewritten as

(3.18) {S(z)T (z)}n{S(z + η)T (z + η)} = eAP (z)2
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for all z ∈ C. If ST is not a constant, then the degree of the left side of (3.18)
is not less than n+ 1. But the condition 2 deg(P ) < n+ 1 implies that the
degree of the right side of (3.18) is less than n+ 1, which is a contradiction.
Hence ST and P reduce to nonzero constants, say ST = t and P = c. The
assertion (I)(ii) of Theorem 1.1 now follows from (3.12).

Case 2. Suppose that n ≥ 6. From (2.4), Lemma 2.4 and the assump-
tions of Theorem 1.1 we get

2N(r, F (z)) +N2

(
r,

1
F (z)

)
≤ 2N

(
r,

1
f(z)

)
+N

(
r,

1
f(z + η)

)
(3.19)

+O(log r)

≤ 3T (r, f(z)) +O(rρ(f)−1+ε) +O(log r)

= 3T (r, F (z))/(n+ 1) +O(rρ(f)−1+ε)
+O(log r)

and

(3.20) N2

(
r,

1
G(z)

)
≤ 3
n+ 1

T (r,G(z)) +O(rρ(g)−1+ε) +O(log r)

as r →∞. From (3.19), (3.20) and Lemmas 2.5 and 2.6 we know that there
exists a subset I ⊂ R+ with mes I = +∞ such that

(3.21) N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F ) ≤ 6

n+ 1
T (r) + o{T (r)}

as r → ∞ and r ∈ I, where T (r) = max{T (r, F ), T (r,G)}. From (3.21),
Lemma 2.8 and the condition n ≥ 6 we have FG = 1 or F = G. Next in
the same manner as in Subcases 1.1 and 1.2 we get the conclusion (II) of
Theorem 1.1. This completes the proof of Theorem 1.1.

Proof of Corollary 1.1. We discuss the following three cases.

Case 1. Suppose that one of f and g is a polynomial, and the other is a
transcendental entire function. Without loss of generality, we suppose that f
is transcendental and g is a polynomial. Then, on the one hand, Theorem C
shows that f(z)nf(z + η) − z has infinitely many zeros in C. On the other
hand, as g is a polynomial, so is g(z)ng(z+ η)− z, and hence it has at most
finitely many zeros in C, contrary to the assumption that f(z)nf(z+ η)− z
and g(z)ng(z + η)− z share 0 CM.

Case 2. Suppose f and g are transcendental entire functions. Then The-
orem 1.1 and the assumptions of Corollary 1.1 yield the desired conclusion.

Case 3. Suppose that f and g are nonconstant polynomials. Then

(3.22) f(z)nf(z + η)− z = c{g(z)ng(z + η)− z}
for all z ∈ C, where c is some nonzero complex number.
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If c = 1, then f(z)nf(z + η) = g(z)ng(z + η) for all z ∈ C; then in
the same manner as in Subcase 1.1 of the proof of Theorem 1.1 we get the
conclusion.

If c 6= 1, then (3.22) can be rewritten as

(3.23) f(z)nf(z + η)− cg(z)ng(z + η) = (1− c)z

for all z ∈ C. From (3.23) and the condition n ≥ 6 we can deduce that
deg(f) = deg(g). Let

f(z) = a0z
m + a1z

m−1 + · · ·+ am−1z + am,(3.24)

g(z) = b0z
m + b1z

m−1 + · · ·+ bm−1z + bm,(3.25)

where aj (0 ≤ j ≤ m) and bk (0 ≤ k ≤ m) are complex numbers, a0 6= 0 and
b0 6= 0, and

(3.26) deg(f) = deg(g) = m.

By (3.24)–(3.26) and the standard Valiron–Mokhon’ko lemma we have

(3.27) T (r, f(z)) = T (r, g(z))+O(1) = m log r+O(1) = deg(f) log r+O(1).

By rewriting (3.23) we get

(3.28) F1(z) + 1 = G1(z),

where

(3.29) F1(z) =
f(z)nf(z + η)

(c− 1)z
, G1(z) =

cgn(z)g(z + η)
(c− 1)z

.

By (3.29), the condition n ≥ 6 and the standard Valiron–Mokhon’ko lemma
we can deduce that F1(z) is not a constant. Therefore, from (3.27)–(3.29)
and the second fundamental theorem we get

n deg(f) log r ≤ T (r, F1(z)) +O(1)

≤ N(r, F1(z)) +N

(
r,

1
F1(z)

)
+N

(
r,

1
F1(z) + 1

)
+O(1)

≤ N
(
r,

1
(c− 1)z

)
+N

(
r,

1
f(z)

)
+N

(
r,

1
f(z + η)

)
+N

(
r,

1
G1

)
+O(1)

≤ N
(
r,

1
(c− 1)z

)
+N

(
r,

1
f(z)

)
+N

(
r,

1
f(z + η)

)
+N

(
r,

1
g(z)

)
+N

(
r,

1
g(z + η)

)
+O(1)

≤ [4 deg(f) + 1] log r +O(1)
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as r →∞, i.e.,

(3.30) [(n− 4) deg(f)− 1] log r = O(1).

Since deg(f) ≥ 1 and n ≥ 6, this yields a contradiction.
Corollary 1.1 is thus completely proved.

Proof of Theorem 1.2. First of all, we set

(3.31)
F (z) =

f(z)n(f(z)m − 1)f(z + η)
α(z)

,

G(z) =
g(z)n(g(z)m − 1)g(z + η)

α(z)
for all z ∈ C. From Lemma 2.3 and the condition that ρ(α) < ρ(f) we get

T (r, F ) = (n+m+ 1)T (r, f) +O(rρ(f)−1+ε) +O(rρ(α)+ε),(3.32)

T (r,G) = (n+m+ 1)T (r, g) +O(rρ(g)−1+ε) +O(rρ(α)+ε).(3.33)

From (3.32) and (3.33) we get

ρ(F ) ≤ max{ρ(f), ρ(α)}, ρ(f) ≤ max{ρ(F ), ρ(α)},(3.34)
ρ(G) ≤ max{ρ(g), ρ(α)}, ρ(g) ≤ max{ρ(G), ρ(α)}.(3.35)

From (3.34) and ρ(α) < ρ(f) we have

(3.36) ρ(F ) = ρ(f).

By Lemma 2.4, the condition ρ(α) < ρ(f) and the standard Valiron–Mo-
khon’ko lemma we can deduce that F is not a constant. Proceeding as at
the beginning of the proof of Theorem 1.1, we can deduce from (3.31) and
the assumptions of Theorem 1.2 that F and G share 1 CM. This together
with the second fundamental theorem gives

T (r, F ) ≤ N(r, F ) +N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
+O(log r)

≤ N
(
r,

1
f(z)

)
+N

(
r,

1
fm(z)− 1

)
+N

(
r,

1
f(z + η)

)
+N

(
r,

1
G− 1

)
+O(rρ(α)+ε) +O(log r)

≤ (m+ 2)T (r, f) + T (r,G) +O(rρ(f)−1+ε) +O(rρ(α)+ε) +O(log r),
i.e.,

T (r, F ) ≤ (m+ 2)T (r, f) + T (r,G)(3.37)

+O(rρ(f)−1+ε) +O(rρ(α)+ε) +O(log r).
Similarly

T (r,G) ≤ (m+ 2)T (r, g) + T (r, F )(3.38)

+O(rρ(g)−1+ε) +O(rρ(α)+ε) +O(log r).
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From (3.32), (3.36), (3.37) and the conditions n ≥ m + 6 and ρ(α) < ρ(f)
<∞ we get

(3.39) ρ(F ) ≤ ρ(G).

From (3.35), (3.36), (3.39) and the condition ρ(α) < ρ(f) <∞ we get

(3.40) ρ(G) = ρ(g).

From (3.33), (3.36), (3.38)–(3.40) and the condition ρ(α) < ρ(f) < ∞ we
get

(3.41) ρ(G) ≤ ρ(F ).

From (3.36) and (3.39)–(3.41) we get

(3.42) ρ(f) = ρ(g) = ρ(F ) = ρ(G).

From (3.31)–(3.33), (3.37)-(3.38), Lemma 2.6, the condition ρ(α) < ρ(f) <
∞ and the assumptions of Theorem 1.2 we know that there exists a subset
I ⊆ R+ with mes I =∞ such that

O(rρ(α)+ε) +O(rρ(f)−1+ε) +O(rρ(g)−1+ε) = o{T (r, f)},(3.43)

O(rρ(α)+ε) +O(rρ(f)−1+ε) +O(rρ(g)−1+ε) = o{T (r, g)},(3.44)

N

(
r,

1
F − 1

)
−NE(r, 1) = 0,(3.45)

N

(
r,

1
G− 1

)
−NE(r, 1) = 0,(3.46)

as r →∞ and r ∈ I, and such that

(3.47) N2

(
r,

1
F

)
+ 2N(r, F )

≤ 2N
(
r,

1
f(z)

)
+N

(
r,

1
f(z)m − 1

)
+N

(
r,

1
f(z + η)

)
+ o{T (r, f)}

≤ (m+ 2)T (r, f(z)) + T (r, f(z + η)) + o{T (r, f)}
= (m+ 3)T (r, f(z)) +O(rρ(f)−1+ε) + o{T (r, f)}
= (m+ 3)T (r, f(z)) + o{T (r, f)}

=
m+ 3

m+ n+ 1
T (r, F (z)) + o{T (r, F (z))}

and

(3.48) N2

(
r,

1
G

)
≤ m+ 3
m+ n+ 1

T (r,G) + o{T (r,G)}
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as r →∞ and r ∈ I. From (3.47) and (3.48) we get

(3.49) N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+ 2N(r, F ) ≤ 2m+ 6

m+ n+ 1
T (r) + o{T (r)}

as r → ∞ and r ∈ I, where T (r) = max{T (r, F ), T (r,G)}. From (3.49),
Lemma 2.8 and the condition n ≥ m + 6 we have F = G or FG = 1. We
discuss the following two cases.

Case 1. Suppose that F = G. Then it follows from (3.31) that

(3.50) f(z)n(f(z)m − 1)f(z + η) = g(z)n(g(z)m − 1)g(z + η)

for all z ∈ C. Let h be as in (3.8). From (3.8) and (3.50) we get

(3.51) {h(z)m+nh(z + η)− 1}g(z)m = h(z)nh(z + η)− 1

for all z ∈ C. First suppose that h is rational. If h(z)m+nh(z + η) − 1 6≡ 0,
then (3.51) can be rewritten as

(3.52) g(z)m =
h(z)nh(z + η)− 1
h(z)m+nh(z + η)− 1

for all z ∈ C. From (3.52) and the above supposition we know that g is
a polynomial, which is impossible. Hence h(z)m+nh(z + η) − 1 ≡ 0; this
together with (3.51) gives h(z)nh(z + η)− 1 ≡ 0, and so hm = 1, which by
(3.8) yields the conclusion of Theorem 1.2.

Next suppose that h is transcendental meromorphic. Since f, g are of
finite order, the same is true for h as well. If h(z)m+nh(z + η)− 1 ≡ 0, then
from Lemma 2.4, Lemma 2.6 and the standard Valiron–Mokhon’ko lemma
we get

(3.53) (m+ n)T (r, h(z)) = T (r, h(z)) + S(r, h)

as r →∞ and r ∈ I, where I ⊂ R+ is a subset with mes I =∞. From (3.53)
we have T (r, h) = S(r, h) as r →∞ and r ∈ I, and so h is a constant, which
is impossible. Thus h(z)m+nh(z+ η)− 1 6≡ 0, and so (3.51) can be rewritten
as (3.52). Set

(3.54) H(z) = h(z)m+nh(z + η)

for all z ∈ C. From (3.52) and the condition that g is an entire function we
know that h(z)m+nh(z + η) − 1 = 0 implies h(z)nh(z + η) − 1 = 0, and so
h(z)m = 1. Since h is of finite order, it follows from Lemma 2.4 that the
same is true for H as well. Hence from (3.54), Lemma 2.4 and the second



Uniqueness theorems for entire functions 125

fundamental theorem we get

T (r,H) ≤ N(r,H) +N

(
r,

1
H

)
+N

(
r,

1
H − 1

)
+O(log r)(3.55)

≤ N(r, h(z)) +N(r, h(z + η)) +N

(
r,

1
h(z)

)
+N

(
r,

1
h(z + η)

)
+N

(
r,

1
h(z)m − 1

)
+O(log r)

≤ (m+ 4)T (r, h(z)) +O(rρ(h)−1+ε) +O(log r)

as r →∞. From Lemma 2.4 and the standard Valiron–Mokhon’ko lemma,

(m+ n+ 1)T (r, h(z)) = T (r, h(z)m+n+1) +O(1)

≤ T (r,H(z)) + T

(
r,
h(z)m+n+1

H(z)

)
+O(1)

= T (r,H(z)) + T

(
r,

h(z)
h(z + η)

)
+O(1)

≤ T (r,H(z)) + 2T (r, h(z)) +O(rρ(h)−1+ε) +O(log r)

as r →∞, which together with (3.55) gives

(3.56) (n− 5)T (r, h) ≤ O(rρ(h)−1+ε) +O(log r)

as r →∞. From (3.56) and the condition n ≥ m+ 6 we get ρ(h) ≤ ρ(h)−1,
which is impossible.

Case 2. Suppose that FG = 1 and F 6≡ G. Then it follows from (3.31)
that

(3.57) f(z)n(f(z)m − 1)f(z + η)g(z)n(g(z)m − 1)g(z + η) = α(z)2

for all z ∈ C. From the condition ρ(α) < ρ(f) and Lemma 2.6 we know that
there exists a subset I ⊆ R+ with mes I =∞ such that

(3.58) T (r, α) = o{T (r, f)}
as r →∞ and r ∈ I. By rewriting (3.57) we have

(3.59) f(z)n(f(z)m − 1)f(z + η) =
α(z)2

g(z)n(g(z)m − 1)g(z + η)

for all z ∈ C. Since f, g are entire functions, from (3.58) and (3.59) we get

N

(
r,

1
f

)
+N

(
r,

1
fm − 1

)
= N

(
r,

1
f

)
+

m∑
j=1

N

(
r,

1
f − ωj

)
(3.60)

≤ 2N
(
r,

1
α

)
= o{T (r, f)}
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as r →∞ and r ∈ I, where ωj ’s stand for the roots of ωm = 1. From (3.60)
and the second fundamental theorem we have

mT (r, f) ≤ N
(
r,

1
f

)
+

m∑
j=1

N

(
r,

1
f − ωj

)
+O(log r) = o{T (r, f)}

as r →∞ and r ∈ I, which is impossible.
Theorem 1.2 is thus completely proved.

4. Concluding remarks. Now we give the following example.

Example 4.1. Let f(z) = ez and g(z) = e−z. Then f(z)jf(z + πi) =
−e(j+1)z and g(z)jg(z+πi) = −e−(j+1)z for 1 ≤ j ≤ 5, and ρ(f) = ρ(g) = 1.
Moreover, we can verify that f(z)jf(z+πi) and g(z)jg(z+πi) share 1 CM.

From Example 4.1 we know that Theorem 1.1 holds possibly for 1 ≤ n
≤ 5, so we give the following conjecture.

Conjecture 4.1. The conclusion (I) of Theorem 1.1 still holds for 1 ≤
n ≤ 3, and the conclusion (II) of Theorem 1.1 still holds for 1 ≤ n ≤ 5.

Regarding Theorem 1.2, we pose the following question.

Question 4.1. What can be said if the condition “n ≥ m+ 6” in The-
orem 1.2 is replaced with “1 ≤ n ≤ m+ 5”?
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