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Analytic solutions of a nonlinear two variables difference
system whose eigenvalues are both 1

by Mami Suzuki (Tokyo)

Abstract. For nonlinear difference equations, it is difficult to obtain analytic solu-
tions, especially when all the eigenvalues of the equation are of absolute value 1.

We consider a second order nonlinear difference equation which can be transformed
into the following simultaneous system of nonlinear difference equations:

x(t+ 1) = X(x(t), y(t)),

y(t+ 1) = Y (x(t), y(t)),

where X(x, y) = λ1x+µy+
P

i+j≥2 cijx
iyj , Y (x, y) = λ2y+

P
i+j≥2 dijx

iyj satisfy some
conditions. For these equations, we have obtained analytic solutions in the cases “|λ1| 6= 1
or |λ2| 6= 1” or “µ = 0” in earlier studies. In the present paper, we will prove the existence
of an analytic solution for the case λ1 = λ2 = 1 and µ = 1.

1. Introduction. We start by considering the following second order
nonlinear difference equation:

(1.1)
{
u(t+ 1) = U(u(t), v(t)),
v(t+ 1) = V (u(t), v(t)),

where U(u, v) and V (u, v) are holomorphic functions of t. We suppose that
the equation (1.1) admits an equilibrium point (u∗, v∗):(

u∗

v∗

)
=
(
U(u∗, v∗)
V (u∗, v∗)

)
.

We can assume, without loss of generality, that (u∗, v∗) = (0, 0). Further-
more we suppose that U and V can be written in the form(

u(t+ 1)
v(t+ 1)

)
= M

(
u(t)
v(t)

)
+
(
U1(u(t), v(t))
V1(u(t), v(t))

)
,
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where U1(u, v) and V1(u, v) have degree greater than one with respect to
u and v, and M is a constant matrix. Let λ1, λ2 be the characteristic val-
ues of the matrix M . For some regular matrix P determined by M , put(
u
v

)
= P

( x
y

)
. Then we can transform the system (1.1) into the following

simultaneous system of first order difference equations:

(1.2)
{
x(t+ 1) = X(x(t), y(t)),
y(t+ 1) = Y (x(t), y(t)),

where X(x, y) and Y (x, y) are supposed to be holomorphic and expanded
in a neighborhood of (0, 0) as

(1.3)

{
X(x, y) = λ1x+

∑
i+j≥2 cijx

iyj = λ1x+X1(x, y),
Y (x, y) = λ2y +

∑
i+j≥2 dijx

iyj = λ2y + Y1(x, y),

or

(1.4)

{
X(x, y) = λx+ y +

∑
i+j≥2 c

′
ijx

iyj = λx+X ′1(x, y),
Y (x, y) = λy +

∑
i+j≥2 d

′
ijx

iyj = λy + Y ′1(x, y),

where λ = λ1 = λ2.

In this paper we consider analytic solutions of difference system (1.2).
In [S5] and [S6], we have obtained general analytic solutions of (1.2) in the
case |λ1| 6= 1 or |λ2| 6= 1. However, when |λ1| = |λ2| = 1, it is even difficult
to prove the existence of an analytic solution.

Kimura [K] studied the cases in which one eigenvalue is equal to 1, and
Yanagihara [Y] investigated the cases in which the absolute value of one
eigenvalue is 1. Here we will look for analytic solutions of nonlinear second
order difference equations in which the absolute values of the eigenvalues of
the matrix M are both equal to 1.

In [S7], we have proved the existence of an analytic solution and found a
solution of (1.2) in which X and Y are defined by (1.3) under the condition
λ1 = λ2 = 1. In this paper, we will consider the equation (1.2) in which X
and Y are defined by (1.4) under the condition λ = 1, i.e., we assume that

(1.5)


X(x, y) = x+ y +

∑
i+j≥2

cijx
iyj = x+X1(x, y),

Y (x, y) = y +
∑
i+j≥2

dijx
iyj = y + Y1(x, y).

Here we suppose that X1(x, y) 6≡ 0 or Y1(x, y) 6≡ 0, and we need some other
conditions. In this case, we need Theorem C (see Section 2.1) which we have
proved in [S8].

As examples of (1.2), we earlier studied some economic models and a
population model (see [S1], [S4]). However we had to exclude the case |λ1| =
|λ2| = 1. In Section 3, making use of Theorem 1.1 below, we will prove the
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existence of an analytic solution of the population model considered in [S4]
in the case of λ1 = λ2 = 1. Further we will obtain an expansion of the
solution in this case.

Next we consider a functional equation

(1.6) Ψ(X(x, Ψ(x))) = Y (x, Ψ(x)),

where X(x, y) and Y (x, y) are holomorphic functions in |x| < δ1, |y| < δ1.
We assume that X(x, y) and Y (x, y) are expanded there as in (1.5).

Now we discuss the meaning of the equation (1.6).
First we consider the simultaneous system of difference equations (1.2).

Suppose (1.2) admits a solution (x(t), y(t)). If dx/dt 6= 0 for some t0, then
we can write t = ψ(x) with a function ψ in a neighborhood of x0 = x(t0),
and we can write

(1.7) y = y(t) = y(ψ(x)) = Ψ(x)

there. Then the function Ψ satisfies the equation (1.6).
Conversely, assume that a function Ψ is a solution of the functional

equation (1.6). If the first order difference equation

(1.8) x(t+ 1) = X(x(t), Ψ(x(t)))

has a solution x(t), we put y(t) = Ψ(x(t)). Then (x(t), y(t)) is a solution of
(1.2). Hence if there is a solution Ψ of (1.6), then we can reduce the system
(1.2) to a single equation (1.8).

This relation is important in order to derive analytic solutions of (1.2).
In the earlier studies [S2] , [S3] and [S5], we proved the existence of solutions
Ψ of (1.6) whenever X and Y are defined by (1.3) or λ 6= 1 in (1.4). Further
in [S8], we proved existence of solutions Ψ of (1.6) for X and Y defined by
(1.5). On the other hand, in [K], Kimura considered the first order difference
equation (1.8) under the condition λ = 1. We will prove the existence of an
analytic solution and obtain an analytic solution of (1.2) in which X and Y
are defined by (1.5).

Hereafter we consider t to be a complex variable, and concentrate on the
difference system (1.2). We define

(1.9) D1(κ0, R0) = {t : |t| > R0, |arg[t]| < κ0},

where κ0 is any constant such that 0 < κ0 ≤ π/4, and R0 is a sufficiently
large number which may depend on X and Y . Further we define

(1.10) D∗(κ, δ) = {x : |arg[x]| < κ, 0 < |x| < δ},

where δ is a small constant, and κ is a constant such that κ = 2κ0, i.e.,
0 < κ ≤ π/2.



146 M. Suzuki

We define g±0 as follows by the coefficients of X(x, y) and Y (x, y):

g+
0 (c20, d11, d30) =

−(2c20 − d11) +
√

(2c20 − d11)2 + 8d30

4
,(1.11)

g−0 (c20, d11, d30) =
−(2c20 − d11)−

√
(2c20 − d11)2 + 8d30

4
.(1.12)

Our aim in this paper is to prove the following theorem.

Theorem 1.1. Suppose X(x, y) and Y (x, y) are expanded in the forms
(1.5) such that X1(x, y) 6≡ 0 or Y1(x, y) 6≡ 0. Define A2 = g+

0 (c20, d11, d30)
+ c20 and A1 = g−0 (c20, d11, d30) + c20.

(1) Suppose

(1.13) d20 = 0,

and

(g+
0 (c20, d11, d30) + c20)n 6= c20 − d11 − g+

0 (c20, d11, d30),(1.14)

(g−0 (c20, d11, d30) + c20)n 6= c20 − d11 − g−0 (c20, d11, d30),(1.15)

for all n ∈ N (n ≥ 4). Then we have formal solutions x(t) of (1.2) of the
form

(1.16)

− 1
A2t

(
1 +

∑
j+k≥1

q̂jkt
−j
(

log t
t

)k)−1

,

− 1
A1t

(
1 +

∑
j+k≥1

q̂jkt
−j
(

log t
t

)k)−1

,

where q̂jk are constants which are determined by X and Y .
(2) Further suppose R1 = max(R0, 2/(|A2|δ)) and

(1.17) A2 < 0.

There are two solutions x1(t) and x2(t) of (1.2) such that

(i) xs(t) are holomorphic and xs(t) ∈ D∗(κ, δ) for t ∈ D1(κ0, R1), s =
1, 2,

(ii) xs(t) (s = 1, 2) are expressible in the form

(1.18) xs(t) = − 1
Ast

(
1 + bs

(
t,

log t
t

))−1

,

where bs(t, (log t)/t) has an asymptotic expansion

bs

(
t,

log t
t

)
∼
∑
j+k≥1

q̂jk(s)t
−j
(

log t
t

)k
as t → ∞ through D1(κ0, R1), and q̂jk(s) are constants which are
determined by X, Y and s.
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2. Proof of Theorem 1.1

2.1. Preparation. In [K], Kimura considered the first order difference
equation

(D1) w(t+ λ) = F (w(t)),

where F is represented in a neighborhood of ∞ by a Laurent series

(2.1) F (z) = z
(

1 +
∞∑
j=m

bjz
−j
)
, bm = λ 6= 0.

He defined the following domains:

(2.2) D(ε, R) = {t : “|t| > R and |arg[t]− θ| < π/2− ε”,
or “Im(ei(θ−ε)t) > R”, or “Im(ei(θ+ε)t) < −R”},

(2.3) D̂(ε, R) = {t : “|t| > R and |arg[t]− θ − π| < π/2− ε”,
or “Im(e−i(θ+π−ε)t) > R”, or “Im(e−i(θ+π+ε)t) < −R”},

where ε is an arbitrarily small positive number, R is a sufficiently large
number which may depend on ε and F , and θ is defined by θ = arg λ. In
this present paper, we consider the case λ = 1 in (D1). Kimura proved the
following theorems.

Theorem A. Equation (D1) admits a formal solution of the form

(2.4) t

(
1 +

∑
j+k≥1

q̂jkt
−j
(

log t
t

)k)
containing an arbitrary constant q̂m0, where q̂jk are constants determined
by F .

Theorem B. Given a formal solution of (D1) of the form (2.4), there
exists a unique solution w(t) satisfying the following conditions:

(i) w(t) is holomorphic in D(ε, R),
(ii) w(t) is expressible in the form

(2.5) w(t) = t

(
1 + b

(
t,

log t
t

))
,

where the domain D(ε, R) is defined by (2.2) and b(t, η) is holomor-
phic for t ∈ D(ε, R), |η| < 1/R, and has an expansion

b(t, η) ∼
∞∑
k=1

bk(t)ηk.

Here
bk(t) ∼

∞∑
j+k≥1

q̂jkt
−j

as t→∞ through D(ε, R), where q̂jk are constants determined by F .
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Also there exists a unique solution ŵ which is holomorphic in D̂(ε, R) and
satisfies a condition analogous to (ii), where the domain D̂(ε, R) is defined
by (2.3).

In Theorems A and B, Kimura defined the function F as in (2.1). In our
method, we do not have a Laurent series for F .

In the following, A2 and A1 will be the constants defined in Theorem 1.1.
We assume that A2 < 0 and A1 < 0.

Proposition 2.1. Suppose F̃ (t) is a formal power series

(2.6) F̃ (t) = t
(

1 +
∞∑
j=1

bjt
−j
)
, b1 = λ 6= 0.

Then the equation

(2.7) ψ(F̃ (t)) = ψ(t) + λ

has a formal solution

(2.8) ψ(t) = t

(
1 +

∞∑
j=1

qjt
−j + q

log t
t

)
,

where q1 can be arbitrarily prescribed while the other coefficients qj (j ≥ 2)
and q are uniquely determined by bj (j = 1, 2, . . .), independently of q1.

Proposition 2.2. Suppose A2 < 0 and F̃ (t) is holomorphic and has an
asymptotic expansion

F̃ (t) ∼ t
(

1 +
∞∑
j=1

bjt
−j
)
, b1 = λ 6= 0,

in {t : −1/(A2t) ∈ D∗(κ, δ)}, where D∗(κ, δ) is defined in (1.10). Then
the equation (2.7) has a solution w = ψ(t), which is holomorphic in {t :
−1/(A2t) ∈ D∗(κ/2, δ/2)} and has an asymptotic expansion

ψ(t) ∼ t
(

1 +
∞∑
j=1

qjt
−j + q

log t
t

)
there.

These propositions are proved as in [K, pp. 212–222].
Since A1 ≤ A2 < 0 and κ0 = κ/2, we see that x = −1/(A2t) ∈

D∗(κ/2, δ/2) is equivalent to t ∈ D1(κ/2, 2/(|A2|δ)) = D1(κ0, 2/(|A2|δ)).
Further we see that x = −1/(A1t) ∈ D∗(κ/2, δ/2) is equivalent to t ∈
D1(κ/2, 2/(|A1|δ)) = D1(κ0, 2/(|A1|δ)), where D1(κ0, R0) is defined in (1.9).
Since A1 ≤ A2 < 0 and D1(κ0, 2/(|A2|δ)) ⊂ D1(κ0, 2/(|A1|δ)), we have
x = −1/(A1t) ∈ D∗(κ0, δ/2) for t ∈ D1(κ0, 2/(|A2|δ)).
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We define a function φ to be the inverse of ψ, so that w = ψ−1(t) = φ(t).
Then φ◦ψ(w) = w, ψ◦φ(t) = t, and φ is a solution of the difference equation

(D) w(t+ λ) = F̃ (w(t)),

where F̃ is defined as in Proposition 2.1 (see p. 236 in [K]). Hereafter, we
put λ = 1. Since θ = 0, we then have the following Propositions 2.3 and 2.4,
analogous to Theorems A and B.

Proposition 2.3. Suppose F̃ (t) is a formal power series as in (2.6).
Then the equation (D) has a formal solution

(2.9) w = φ(t) = t

(
1 +

∑
j+k≥1

q̂jkt
−j
(

log t
t

)k)
,

where q̂jk are constants determined by F̃ as in Theorem A.

Proposition 2.4. Suppose φ is the inverse of ψ, so w = ψ−1(t) = φ(t).
Given a formal solution of (D) of the form (2.9), there exists a unique solu-
tion w(t) = φ(t) which is holomorphic and admits an asymptotic expansion
for t ∈ D1(κ0, 2/(|A2|δ)) such that

(2.10) w = φ(t) = t

(
1 + b

(
t,

log t
t

))
,

where

b

(
t,

log t
t

)
∼
∑
j+k≥1

q̂jkt
−j
(

log t
t

)k
.

This function φ(t) is a solution of the difference equation (D).

In [S8], we have proved the following theorem.

Theorem C. Suppose X(x, y) and Y (x, y) are defined in (1.5). Assume
d20 = 0 and

(g+
0 (c20, d11, d30) + c20)n 6= c20 − d11 − g+

0 (c20, d11, d30),(2.11)

(g−0 (c20, d11, d30) + c20)n 6= c20 − d11 − g−0 (c20, d11, d30),(2.12)

for all n ∈ N (n ≥ 4), where

g+
0 (c20, d11, d30) =

−(2c20 − d11) +
√

(2c20 − d11)2 + 8d30

4
,

g−0 (c20, d11, d30) =
−(2c20 − d11)−

√
(2c20 − d11)2 + 8d30

4
,

respectively. Then we have two formal solutions Ψ+(x) =
∑∞

n≥2 a
+
n x

n,
Ψ−(x) =

∑∞
n≥2 a

−
n x

n of (1.6), where a+
n , a−n are given by X and Y . For

any κ with 0 < κ ≤ π/2 and small δ > 0, define

(1.10) D∗(κ, δ) = {x : |arg x| < κ, 0 < |x| < δ}.
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Further assume 2c20+d11±
√

(2c20−d11)2+8d30
4 ∈ R and

(2.13)
2c20 + d11 +

√
(2c20 − d11)2 + 8d30

4
< 0.

Then there is a constant δ and two solutions Ψ+(x) and Ψ−(x) of (1.6),
which are holomorphic and have asymptotic expansions

(2.14) Ψ+(x) ∼
∞∑
n=2

a+
n x

n and Ψ−(x) ∼
∞∑
n=2

a−n x
n

as x→ 0 through D∗(κ, δ).
If d20 6= 0, then (1.6) has no analytic solution.

Note that a+
2 = g+

0 , a−2 = g−0 . We have the following proposition, analo-
gous to Theorem C.

Proposition 2.5. Suppose X(x, y) and Y (x, y) are defined in (1.5).
Assume d20 = 0 and

(g−0 (c20, d11, d30) + c20)n 6= c20 − d11 − g−0 (c20, d11, d30)(2.12)

for all n ∈ N (n ≥ 4). Then (1.6) has a formal solution Ψ−(x) =
∑∞

n≥2 a
−
n x

n,

where a−n are given by X and Y . Further, assume 2c20+d11±
√

(2c20−d11)2+8d30
4

∈ R and

(2.13)
2c20 + d11 −

√
(2c20 − d11)2 + 8d30

4
< 0.

Then for any κ with 0 < κ ≤ π/2, there is a δ > 0 and a solution Ψ−(x) of
(1.6) which is holomorphic and has an asymptotic expansion

(2.14’) Ψ−(x) ∼
∞∑
n=2

a−n x
n

as x→ 0 through D∗(κ, δ) defined in (1.10).
If d20 6= 0, then there is no analytic solution of (1.6).

2.2. Proof of Theorem 1.1. We first prove (1). From Theorem C, we
have formal solutions

(2.15) Ψ(x) =
∞∑
n=2

anx
j

of (1.6), where a2 = g±0 (c20, d11, d30). We write the formal solutions as

(2.16) Ψs(x) =
∞∑
n=2

an(s)x
n (s = 1, 2),

where a2(1) = g+
0 (c20, d11, d30), a2(2) = g−0 (c20, d11, d30).
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On the other hand putting w1(t) = − 1
A1x(t)

and w2(t) = − 1
A2x(t)

in (1.8),
we have

(2.17) ws(t+ 1) = − 1
Asx(t+ 1)

= − 1
AsX(x(t), Ψs(x(t)))

= − 1
AsX

(
− 1

Asw(t) , Ψs
(
− 1

Asw(t)

))
for s = 1, 2. From (1.5), we have

X(x(t), Ψs(x(t))) = x(t) + Ψs(x(t)) +
∑

i+j≥2, i≥1

cijx(t)i(Ψs(x(t)))j

= x(t)
{

1 +
∑

(i+j≥2, i≥1)
or (i=0, j=1)

cijx(t)i−1(Ψs(x(t)))j
}
.

where c01 = 1. Thus
1

X(x(t), Ψs(x(t)))
=

1
x(t){1−

∑
(i+j≥2, i≥1)
or (i=0, j=1)

−cijx(t)i−1(Ψs(x(t)))j}

=
1
x(t)

[
1 +

∞∑
k=1

( ∑
(i+j≥2, i≥1)
or (i=0, j=1)

−cijx(t)i−1(Ψs(x(t)))j
)k]

.

Since ws(t) = − 1
Asx(t)

(s = 1, 2), we have

1
X(x(t), Ψs(x(t)))

= −Asws(t)
[
1+

∞∑
k=1

( ∑
(i+j≥2, i≥1)
or (i=0, j=1)

−cij
(
− 1
Asws(t)

)i−1(
Ψs

(
− 1
Asws(t)

))j)k]
.

Since Ψs(x) are formal solutions of (1.6) such that

Ψs(x) = Ψs

(
− 1
Asws

)
=
∞∑
n=2

an(s)

(
− 1
Asws

)n
(s = 1, 2),

we have

(2.18) − 1
AsX(x, Ψs(x))

= ws

[
1 +

a2(s) + c20

As
w−1
s +

∑
k≥2

c̃k(s)(ws)
−k
]
,

where c̃k(s) are determined by cij and ak(s) (i+j ≥ 2, i ≥ 1, k ≥ 2, s = 1, 2).
From (2.18) and the definition of As, we have a2(s) + c20 = As. Therefore
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we can write (2.17) in the form

(2.19) ws(t+ 1) = F̃s(ws(t)) = ws(t)
{

1 + ws(t)−1 +
∑
k≥2

c̃k(s)(ws(t))
−k
}
.

On the other hand, putting λ = 1 and m = 1 in (2.1), i.e. θ = arg[λ] =
arg[1] = 0, then making use of Proposition 2.3, we have the following formal
solutions of the first order difference equation (2.19):

(2.20) ws(t) = t

(
1 +

∑
j+k≥1

q̂jk(s)t
−j
(

log t
t

)k)
(s = 1, 2),

where q̂jk(s) are determined by F̃s in (2.19). From (2.18), (2.19) and (1.6),
F̃s is defined by X and Y . Hence q̂jk(s) are determined by X and Y .

Since x(t) = − 1
Asws(t)

, we have formal solutions x(t) of (1.2) such that

(2.21) x(t) = − 1
Ast

(
1 +

∑
j+k≥1

q̂jk(s)t
−j
(

log t
t

)k)−1

(s = 1, 2).

From the relation of (1.2) and (1.8) to (1.6), we have proved (1) of Theorem
1.1.

Next we will prove (2) of Theorem 1.1, that is, the existence of solutions
x+(t) and x−(t) of (1.2). We suppose that R0 > R and κ0 < π/4− ε. Since
θ = 0, we have

(2.22) D1(κ0, R0) ⊂ D(ε, R).

For x ∈ D∗(κ, δ), making use of Theorem C, we have solutions Ψ(s)(x)
(s = 1, 2) of (1.6) which are holomorphic and can be expanded asymptoti-
cally in D∗(κ, δ) such that

Ψ(s)(x) ∼
∞∑
j=k

aj(s)x
j (s = 1, 2).

From the assumption R1 = max(R0, 2/(|A2|δ)) in Theorem 1.1, making
use of Proposition 2.4, we have solutions ws(t) (s = 1, 2) of (2.19) which
have an asymptotic expansion

ws(t) = t

(
1 + bs

(
t,

log t
t

))
,

in t ∈ D1(κ0, R1), where

bs

(
t,

log t
t

)
∼ t
(

1 +
∑
j+k≥1

q̂jk(s)t
−j
(

log t
t

)k)
(s = 1, 2).
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Thus we have solutions xs(t) of (1.2) which have asymptotic expansions

xs(t) = − 1
Ast

(
1 + bs

(
t,

log t
t

))−1

(s = 1, 2)

there. First we take a small δ > 0. For sufficiently large R, since R1 ≥ R0

> R, we have∣∣∣∣ 1
A1t

∣∣∣∣∣∣∣∣ 1 + b1

(
t,

log t
t

)∣∣∣∣−1

<
1

|A1|R
(1 + 1) <

1
|A2|R

(1 + 1) < δ,∣∣∣∣ 1
A2t

∣∣∣∣∣∣∣∣1 + b2

(
t,

log t
t

)∣∣∣∣−1

<
1

|A2|R
(1 + 1) < δ(2.23)

for t ∈ D1(κ0, R1). Since A1 ≤ A2 < 0 by (1.17),

arg
[
− 1
A1t

(
1 + b1

(
t,

log t
t

))−1]
= − arg[t]− arg

[
1 + b1

(
t,

log t
t

)]
,

arg
[
− 1
A2t

(
1 + b2

(
t,

log t
t

))−1]
= − arg[t]− arg

[
1 + b2

(
t,

log t
t

)]
.

For sufficiently large R1, we then have∣∣∣∣arg
[
1 + b1

(
t,

log t
t

)]∣∣∣∣, ∣∣∣∣arg
[
1 + b2

(
t,

log t
t

)]∣∣∣∣ < κ0 for t ∈ D1(κ0, R1).

Hence

− κ0 − κ0 ≤ arg
[
− 1
Ast

(
1 + bs

(
t,

log t
t

))−1]
≤ κ0 + κ0 (s = 1, 2).

From the assumption κ = 2κ0, we have

(2.24)
∣∣∣∣ arg

[
− 1
Ast

(
1 + bs

(
t,

log t
t

))−1]∣∣∣∣ < κ ≤ π

2
for t ∈ D1(κ0, R1) (s = 1, 2).

From (2.23) and (2.24), we obtain

x1(t) = − 1
A1t

(
1 + b1

(
t,

log t
t

))−1

, x2(t) = − 1
A2t

(
1 + b1

(
t,

log t
t

))−1

such that xs(t) ∈ D∗(κ, δ) for some κ (0 < κ ≤ π/2). Hence we have
Ψ(s)(x(t)) (s = 1, 2) which satisfies the equation (1.6).

Therefore from existence of solutions Ψ(s) (s = 1, 2) of (1.6) and Propo-
sition 2.4, we have holomorphic solutions ws(t) of the first order difference
equation (2.19) for t ∈ D1(κ0, R1). Hence we obtain solutions xs(t) of (1.2)
for t there, which satisfy the following conditions:

(i) xs(t) are holomorphic and xs(t) ∈ D∗(κ, δ) for t ∈ D1(κ0, R1), s =
1, 2,
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(ii) xs(t) (s = 1, 2) are expressible in the form

(2.25) xs(t) = − 1
Ast

(
1 + bs

(
t,

log t
t

))−1

.

Here bs(t, (log t)/t) has an asymptotic expansion

bs

(
t,

log t
t

)
∼
∑
j+k≥1

q̂jk(s)t
−j
(

log t
t

)k
as t→∞ through D1(κ0, R1).

Finally, we have a solution (u(t), v(t)) of (1.1) by the transformation(
u(t)
v(t)

)
= P

(
x1(t)

Ψ(s)(x1(t))

)
and P

(
x2(t)

Ψ(s)(x2(t))

)
.

From Proposition 2.5 and Theorem 1.1, we obtain

Lemma 2.6. Suppose X(x, y) and Y (x, y) are expanded in the forms
(1.5) such that X1(x, y) 6≡ 0 or Y1(x, y) 6≡ 0. Define A2 = g+

0 (c20, d11, d30)
+ c20, A1 = g−0 (c20, d11, d30) + c20 (A1 ≤ A2).

(1) Suppose d20 = 0 and

(g−0 (c20, d11, d30) + c20)n 6= c20 − d11 − g−0 (c20, d11, d30)(2.26)

for all n ∈ N (n ≥ 4). Then we have a formal solution x(t) of (1.2) of the
form

(2.27) − 1
A1t

(
1 +

∑
j+k≥1

q̂jkt
−j
(

log t
t

)k)−1

,

where q̂jk are constants determined by X and Y .
(2) Further suppose R1 = max(R0, 2/(|A1|δ)), and assume

(2.28) A1 < 0.

Then there is a solution x1(t) of (1.2) such that

(i) x1(t) is holomorphic and x1(t) ∈ D∗(κ, δ) for t ∈ D1(κ0, R1),
(ii) x1(t) is expressible in the form

(2.29) x1(t) = − 1
A1t

(
1 + b1

(
t,

log t
t

))−1

,

where b1(t, (log t)/t) has an asymptotic expansion

b1

(
t,

log t
t

)
∼
∑
j+k≥1

q̂jk(1)t
−j
(

log t
t

)k
as t→∞ through D1(κ0, R1).
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3. An application. Consider the following population model:

(P) u(t+ 2) = αu(t+ 1) + β
u(t+ 1)− αu(t)

αu(t)
,

where α = 1 + r and β are constants. This model was proposed by Prof.
D. S. Dendrinos [D]. Here r is the net (births minus deaths) endogenous
population (stock) growth rate. The second term on the right hand side is
a function depicting net in-migration (immigration) at t + 1, which should
be considered as a “momentum” to grow from t to t+ 1. We assume that α
and β are constants such that α > 0 (r > −1) and β > 0 in (P).

Let

u(t+ 2) = u1(t+ 2) + u2(t+ 2),

where u1(t + 2) = αu(t + 1), u2(t + 2) = β u(t+1)−αu(t)
αu(t) . Then u1(t + 2) is a

term for endogenous population growth rate from t+1 to t+2, and u2(t+2)
is due to net in-migration (immigration) rate. Indeed we can write

u1(t+ 2) = αu(t+ 1) = α{u1(t+ 1) + u2(t+ 1)},

u2(t+ 2) = β
u(t+ 1)− αu(t)

αu(t)
= β

u(t+ 1)− u1(t+ 1)
u1(t+ 1)

= β
u2(t+ 1)
u1(t+ 1)

,

and we see that u1(t+ 1) is the endogenous population growth rate from t
to t+1, and u2(t+1) is due to net in-migration (immigration) ratio at t+1.

We may write (P) as

u(t+ 2)− αu(t+ 1) =
c

u(t)
{u(t+ 1)− αu(t)}, c =

β

α
.

When α 6= 1, (P) admits the unique equilibrium value c = β/α, and we
have eigenvalues λ1 and λ2 of this equation such that |λ1| 6= 1 and |λ2| 6= 1.
Therefore we can have general analytic solutions such that u(t+ n)→ c as
n→∞ (n ∈ N), making use of Theorems of [S6].

If α = 1, then any value can be an equilibrium point of (P). Suppose the
equation (P) has a solution u(t) such that u(t + n) → u0 > 0 as n → ∞.
From [S4], we have the following three cases.

1) u(t0 + n) ↓ u0 ≥ c as n→∞,
2) u(t0 + n) ↑ u0 > c as n→∞,
3) there is n0 such that u(t0 + n0) ≤ 0 (extermination).

However in [S4] we have not been able to prove the existence of a solution
of (P) under this condition. In this paper, we will obtain a solution of (P)
by Lemma 2.6 for the case α = 1.
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Putting u(t) = v(t) + β/α, we have

v(t+ 2) +
β

α

= αv(t+ 1) + β +
v(t+ 1)− αv(t) + β

α − β
1 + α

β v(t)

= αv(t+ 1) + β

+
{
v(t+ 1)− αv(t) +

β

α
− β

}
×
{

1− α

β
v(t) +

α2

β2
v(t)2 − α3

β3
v(t)3 +

α4

β4
v(t)4 − · · ·

}
= (1 + α)v(t+ 1) + (−α− 1 + α)v(t) + β +

β

α
− β + F (v(t), v(t+ 1)),

i.e.,
v(t+ 2) = (1 + α)v(t+ 1)− v(t) + F (v(t), v(t+ 1)),

where

(3.1) F (v(t), v(t+ 1)) = −α
β
v(t)v(t+ 1) +

α2

β
v(t)2

+
(
v(t+ 1)− αv(t) +

β

α
− β

) ∞∑
i=2

(
−α
β

)i
v(t)i.

Next put v(t+ 1) = ξ(t), v(t) = η(t). Then(
ξ(t+ 1)
η(t+ 1)

)
=
(
α+ 1 −1

1 0

)(
ξ(t)
η(t)

)
+
(
F (η(t), ξ(t))

0

)
.

Set

M =
(
α+ 1 −1

1 0

)
.

When α = 1, the eigenvalues λ1 and λ2 of M are λ1 = λ2 = 1. Further put
P =

(
1 2
1 1

)
and

(
ξ
η

)
= P

( x
y

)
. Then we obtain the difference equation

(3.2)
(
x(t+ 1)
y(t+ 1)

)

=
(

1 1
0 1

)(
x(t)
y(t)

)
+ P−1

(
F (x(t) + y(t), x(t) + 2y(t))

0

)
.

Since

P−1

(
F (x(t) + y(t), x(t) + 2y(t))

0

)
=
(
−F (x(t) + y(t), x(t) + 2y(t))
F (x(t) + y(t), x(t) + 2y(t))

)
,
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we can write the equations (3.2) as follows:

(1.3)
{
x(t+ 1) = X(x(t), y(t)),
y(t+ 1) = Y (x(t), y(t)),

where

(1.2′)



X(x, y) = x+ y − F (x+ y, x+ 2y)

= x+
(
y +

∑
i+j≥2

cijx
iyj
)

= x+X1(x, y),

Y (x, y) = y + F (x+ y, x+ 2y)

= y +
( ∑
i+j≥2

dijx
iyj
)

= y + Y1(x, y),

with dij = −cij .
From the definition (3.1) of F , when α = 1, we have

F (η, ξ) =
1
β
η2 − 1

β
ηξ − 1

β2
η3 +

1
β2
η2ξ +

∑
i≥3

1
βi

(−1)iηi(ξ − η).(3.3)

Thus

(3.4) F (x+y, x+2y) = − 1
β

(xy+y2)+
1
β2

(x2y+2xy2+y3)+
∑

i+j≥4,j≥1

γijx
iyj ,

where γij = γij(β) are constants. From (3.4), we have c20 = d20 = 0, cn0 =
dn0 = 0 (n ≥ 3), d11 = −1/β < 0, d02 = −1/β < 0, d21 = 1/β2. Thus

A1 = g−0 (c20, d11, d30) + c20 =
−(2c20 − d11)−

√
(2c20 − d11)2 + 8d30

4
+ c20

=
−(0 + 1/β)−

√
(0 + 1/β)2 + 0

4
+ 0

= − 1
2β

< 0,

A2 = g+
0 (c20, d11, d30) + c20 =

−(2c20 − d11) +
√

(2c20 − d11)2 + 8d30

4
+ c20

=
−(0 + 1/β) +

√
(0 + 1/β)2 + 0

4
+ 0 = 0,

c20 − d11 − g−0 (c20, d11, d30) =
3

2β
> 0.

Here we cannot have A1 ≤ A2 < 0, but we have A1 < A2 = 0, which is the
condition (2.28) in Lemma 2.6. Thus putting a2 = g−0 (c20, d11, d30), we have
a2 + c20 < 0. Further

(g−0 (c20, d11, d30) + c20)n 6= c20 − d11 − g−0 (c20, d11, d30)
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for all n ∈ N. By Proposition 2.5, the functional equation (1.6) with X and
Y defined by (1.2′) has a formal solution Ψ−(x) =

∑∞
n≥2 a

−
n x

n, where a−n
are given by X and Y . Here the function F is defined by (3.3). Further, for
any κ with 0 < κ ≤ π/2, there are a δ > 0 and a solution Ψ−(x) of (1.6),
which is holomorphic and can be expanded asymptotically as

Ψ−(x) ∼
∞∑
n=2

a−n x
n

in the domain D∗(κ, δ) defined in (1.10).
Making use of Lemma 2.6, we have a formal solution x(t) of (3.2),

(3.5) − 1
A1t

(
1 +

∑
j+k≥1

q̂jkt
−j
(

log t
t

)k)−1

=
2β
t

(
1 +

∑
j+k≥1

q̂jkt
−j
(

log t
t

)k)−1

,

where q̂jk are constants determined by X and Y in (1.2′). Further suppose
R1 = max(R0, 2/(|A1|δ)). Since A1 = −1/(2β) < A2 = 0, there is a solution
x(t) of (3.2) such that

(i) x(t) is holomorphic and x(t) ∈ D∗(κ, δ) for t ∈ D1(κ0, R1),
(ii) x(t) is expressible in the form

(3.6) x(t) = − 1
A1t

(
1 + b

(
t,

log t
t

))−1

=
2β
t

(
1 + b

(
t,

log t
t

))−1

,

where b(t, (log t)/t) has an asymptotic expansion

b

(
t,

log t
t

)
∼
∑
j+k≥1

q̂jk(1)t
−j
(

log t
t

)k
as t→∞ through D1(κ0, R1).

By the definition (1.7), we have y(t) = Ψ(x(t)). Since(
u(t+ 1)− β/α
u(t)− β/α

)
=
(
v(t+ 1)
v(t)

)
=
(
ξ

η

)
= P

(
x

y

)
=
(

1 2
1 1

)(
x

y

)
,

we have a solution u(t) of the population model (P) such that

u(t) = x(t) + y(t) +
β

α
= x(t) + Ψ(x(t)) +

β

α
,

where x(t) is given in the equation (3.6) as t→∞ through D1(κ0, R1).
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