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Finite-dimensional pullback attractors for
parabolic equations with Hardy type potentials

by Cung The Anh (Hanoi) and Ta Thi Hong Yen (Phuc Yen)

Abstract. Using the asymptotic a priori estimate method, we prove the existence of
a pullback D-attractor for a reaction-diffusion equation with an inverse-square potential in
a bounded domain of RN (N ≥ 3), with the nonlinearity of polynomial type and a suitable
exponential growth of the external force. Then under some additional conditions, we show
that the pullback D-attractor has a finite fractal dimension and is upper semicontinuous
with respect to the parameter in the potential.

1. Introduction. Let Ω be a bounded domain in RN (N ≥ 3) con-
taining the origin. In this paper we consider the nonautonomous reaction-
diffusion equation with the Hardy type potential of the form

(1.1)


ut −∆u−

µ

|x|2
u+ f(u) = g(x, t), x ∈ Ω, t > τ,

u|∂Ω = 0, t > τ,

u(x, τ) = uτ (x), x ∈ Ω,

where uτ ∈ L2(Ω) is given, 0 < µ ≤ µ∗ is a parameter, µ∗ =
(
N−2

2

)2 is the
best constant in the Hardy inequality

(1.2) µ∗
�

Ω

|u|2

|x|2
dx ≤

�

Ω

|∇u|2 dx, ∀u ∈ C∞0 (Ω),

and the nonlinearity f and the external force g satisfy some conditions spec-
ified later.

The case where g ≡ 0 and f has some special forms was studied in
[1, 2, 6, 7, 17], which focused on global existence and dependence of the
behavior of the solutions of (1.1) on the parameter µ.
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In this paper we continue the study of the long-time behavior of solu-
tions to problem (1.1) by allowing the external force g to depend on time t.
Nonautonomous equations appear in many applications in natural sciences,
so they are of great importance and interest. One way of studying the long-
time behavior of solutions of such equations is to use the theory of pullback
attractors. This theory has been developed for both nonautonomous and
random dynamical systems and has shown to be very useful in the under-
standing of the dynamics of nonautonomous dynamical systems (see [3] and
references therein).

In this paper, we assume that the nonlinearity f and the external force
g satisfy the following conditions:

(F ) f ∈ C1(R) satisfies, for some p ≥ 2,

C1|u|p − k1 ≤ f(u)u ≤ C2|u|p + k2, f ′(u) ≥ −`, ∀u ∈ R;

(G) g ∈W 1,2
loc (R;L2(Ω)) satisfies

0�

−∞
eλ1,µs(|g(s)|22 + |g′(s)|22) ds <∞,

where λ1,µ is the first eigenvalue of the operator Aµ = −∆− µ/|x|2
in Ω with the homogeneous Dirichlet condition.

To study problem (1.1), we will use the space Hµ(Ω), 0 ≤ µ ≤ µ∗, defined
as the closure of C∞0 (Ω) in the norm

‖u‖µ =
( �

Ω

(
|∇u|2 − µ |u|

2

|x|2

)
dx

)1/2

.

The aim of this paper is to prove the existence and upper semicontinuity
with respect to the parameter µ of a finite-dimensional pullback D-attractor
in the space Hµ(Ω)∩Lp(Ω) for the process associated to problem (1.1). Let
us describe the methods used in the paper. First, we apply the compactness
method [11] to prove the global existence of a weak solution and use a priori
estimates to show the existence of a family of pullback D-absorbing sets
B̂ = {B(t) : t ∈ R} in Hµ(Ω) ∩ Lp(Ω)) for the process. By the compactness
of the embedding Hµ(Ω) ↪→ L2(Ω), the process is pullback D-asymptotically
compact in L2(Ω). This immediately implies the existence of a pullback D-
attractor in L2(Ω). When proving the existence of pullback D-attractors in
Lp(Ω) and in Hµ(Ω) ∩ Lp(Ω), to overcome the difficulty due to the lack of
embedding results, we use the asymptotic a priori estimate method initiated
in [13] for autonomous equations. Finally, using the abstract theories devel-
oped recently in [8, 4], we prove that the resulting pullback D-attractor has
a finite fractal dimension and is upper semicontinuous with respect to the
parameter µ at µ = 0. In particular, we show that the pullback D-attractors
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Âµ of the singular reaction-diffusion equation converge to the pullback D-
attractor Â0 of the classical reaction-diffusion equation as the parameter µ
tends to 0. It is also worth noticing that, when µ = 0, our results recover and
improve the recent results in [16, 10, 9, 12] for the nonautonomous Laplace
equation in bounded domains.

The paper is organized as follows. In Section 2, for the convenience of the
reader, we recall some concepts and results on function spaces and pullback
attractors which we will use. In Section 3, we prove the existence of a pullback
D-attractor Âµ = {Aµ(t) : t ∈ R} in Hµ(Ω)∩Lp(Ω) by using the asymptotic
a priori estimate method. In Section 4, we give some estimates on the fractal
dimension of the pullback D-attractor. The upper semicontinuity of Âµ at
µ = 0 is discussed in the last section.

Notation. For brevity, we denote by | · |2, (·, ·) and ‖ · ‖µ, ((·, ·))µ the
norms and scalar products in L2(Ω) and Hµ(Ω), respectively, and by | · |p
the norm in Lp(Ω). We also frequently use the notation

ΩM = Ω(u(t) ≥M) = {x ∈ Ω : u(x, t) ≥M}.

2. Preliminaries

2.1. Function spaces and operators. For each 0 ≤ µ ≤ µ∗, we define
the space Hµ(Ω) as the closure of C∞0 (Ω) in the norm

‖u‖2µ =
�

Ω

(
|∇u|2 − µ |u|

2

|x|2

)
dx.

Then Hµ(Ω) is a Hilbert space with respect to the scalar product

〈u, v〉µ =
�

Ω

(
∇u∇v − µ uv

|x|2

)
dx for all u, v ∈ Hµ(Ω).

It is known (see [17]) that if 0 ≤ µ < µ∗, thenHµ(Ω) ≡ H1
0 (Ω). In the critical

case, i.e., when µ = µ∗, we recall the improved Hardy–Poincaré inequality
of [17],

(2.1)
�

Ω

(
|∇u|2 − µ∗ |u|

2

|x|2

)
dx ≥ C(q,Ω)‖u‖2W 1,q(Ω), 1 ≤ q < 2,

and for 0 ≤ s < 1, 1 ≤ r < r∗ = 2N
N−2(1−s) ,

(2.2)
�

Ω

(
|∇u|2 − µ∗ |u|

2

|x|2

)
dx ≥ C(s, r,Ω)‖u‖2W s,r(Ω)

for all u ∈ C∞0 (Ω). These imply that the following continuous embeddings
hold for 1 ≤ q < 2 and 0 ≤ s < 1:

(2.3) Hµ(Ω) ↪→W 1,q
0 (Ω), Hµ(Ω) ↪→ Hs

0(Ω).
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Moreover, since W 1,q
0 (Ω) is compactly embedded in Hs

0(Ω) for a suitable
q = q(s) close enough to 2, and Hs

0(Ω) is compactly embedded in L2(Ω), we
infer that the embeddings

(2.4) Hµ(Ω) ↪→ L2(Ω), Hµ(Ω) ↪→ Hs
0(Ω), 0 ≤ s < 1,

are compact.
Recall that the embedding W 1,q(Ω) ↪→ Lp(Ω) is continuous for 1 ≤ p ≤

Nq/(N − q) and q < N . Thus by denoting p∗ = Nq/(N − q) for 1 ≤ q < 2,
it follows from (2.3) that the continuous embedding Hµ(Ω) ↪→ Lp(Ω) holds
for any 1 ≤ p ≤ p∗.

We now consider the boundary value problem

(2.5)

{
−∆u− µ

|x|2
u = λu for x ∈ Ω,

u = 0 for x ∈ ∂Ω.
In order to apply the Friedrichs extension of symmetric operators (see [18])
we recall the improved Hardy inequality of [17],

(2.6)
�

Ω

|∇u|2 dx ≥
(
N − 2

2

)2 �

Ω

|u|2

|x|2
dx+ λΩ

�

Ω

|u|2 dx,

where λΩ is a positive constant depending onΩ, and setX = L2(Ω),D(Ã) =
C∞0 (Ω), Ãu = −∆u − (µ/|x|2)u. Then it follows that the operator Ã is a
positive and self-adjoint operator and the energy space XE equals Hµ(Ω)
since XE is the completion of D(Ã) = C∞0 (Ω) with respect to the scalar
product

〈u, v〉µ =
�

Ω

(
∇u∇v − µ uv

|x|2

)
dx.

Moreover,
Ã ⊂ A ⊂ AE ,

where AE : Hµ(Ω) → H−1
µ (Ω) is the energetic extension (H−1

µ (Ω) is the
dual space of Hµ(Ω)), and A = −∆ − µ/|x|2 is the Friedrichs extension of
Ã with the domain of definition

D(A) = {u ∈ Hµ(Ω) : A(u) ∈ X}.
We also have the evolution triple Hµ(Ω) ↪→↪→ L2(Ω) ↪→↪→ H−1

µ (Ω) with
compact and dense embeddings. Hence, for each 0 < µ ≤ µ∗, there exists
a complete orthonormal system of eigenvectors (ej,µ, λj,µ) depending on µ
such that

(ej,µ, ek,µ) = δj,k and −∆ej,µ −
µ

|x|2
ej,µ = λj,µej,µ, j, k = 1, 2, . . . ,

0 < λ1,µ ≤ λ2,µ ≤ λ3,µ ≤ · · · , λj,µ → +∞ as j → +∞.
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Finally we observe that for all u ∈ Hµ(Ω),

(2.7) ‖u‖2µ ≥ λ1,µ|u|22.

2.2. Pullback attractors. Let (X, d) be a metric space. For A,B ⊂ X,
we define the Hausdorff semi-distance between A and B by

dist(A,B) = sup
x∈A

inf
x∈B

d(x, y).

Let {U(t, τ) : t, τ ∈ R} be a process in X, i.e., a two-parameter family of
mappings U(t, τ) : X → X such that U(τ, τ) = Id and U(t, s)U(s, τ) =
U(t, τ) for all t ≥ s ≥ τ in R. The process {U(t, τ)} is said to be norm-
to-weak continuous on X if U(t, τ)xn converges weakly to U(t, τ)x as xn
converges strongly to x in X, for all t ≥ τ in R. Now, we recall a useful
method to verify that a process is norm-to-weak continuous.

Lemma 2.1 ([19]). Let X and Y be two Banach spaces, and X∗, Y ∗ be
their respective dual spaces. Assume that X is dense in Y , the injection
i : X → Y is continuous and its adjoint i∗ : Y ∗ → X∗ is dense, and
{U(t, τ)} is a continuous or weakly continuous process on Y . Then {U(t, τ)}
is norm-to-weak continuous on X iff for all t ≥ τ in R, U(t, τ) maps compact
subsets of X to bounded subsets of X.

Let B(X) be the family of all nonempty bounded subsets of X, and D
be a nonempty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂ B(X).

Definition 2.2. A process {U(t, τ)} is said to be pullback D-asymptoti-
cally compact if for all t ∈ R, D̂ ∈ D and any τn → −∞ and xn ∈ D(τn),
the sequence {U(t, τn)xn} is relatively compact in X.

Definition 2.3. A process {U(t, τ)} is said to be pullback ω-D-limit
compact if for any ε > 0, t ∈ R, and D̂ ∈ D, there exists a τ0(D, ε, t) ≤ t
such that

α
( ⋃
τ≤τ0

U(t, τ)D(τ)
)
≤ ε,

where α is the Kuratowski measure of noncompactness of B ∈ B(X), defined
by

α(B) = inf{δ > 0 : B has a finite open cover of sets of diameter < δ}.
Lemma 2.4 ([10]). A process {U(t, τ)} is pullback D-asymptotically com-

pact iff it is pullback ω-D-limit compact.

Definition 2.5. A family of bounded sets B̂ ∈ D is said to be pullback
D-absorbing for the process {U(t, τ)} if for any t ∈ R and D̂ ∈ D, there
exists τ0 = τ0(D̂, t) such that⋃

τ≤τ0

U(t, τ)D(τ) ⊂ B(t).
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Definition 2.6. A family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be a
pullback D-attractor for the process U(t, τ) if

(i) A(t) is compact for all t ∈ R.
(ii) Â is invariant, i.e., U(t, τ)A(τ) = A(t) for all t ≥ τ .
(iii) Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0

for all D̂ ∈ D and all t ∈ R.
(iv) If {C(t) : t ∈ R} is another family of closed attracting sets, then

A(t) ⊂ C(t) for all t ∈ R.

Theorem 2.7 ([10]). Let {U(t, τ)} be a norm-to-weak continuous process
such that {U(t, τ)} is pullback D-asymptotically compact. If there exists a
family of pullback D-absorbing sets B̂ = {B(t) : t ∈ R} ∈ D, then {U(t, τ)}
has a unique pullback D-attractor A = {A(t) : t ∈ R} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ).

2.3. Fractal dimension of pullback attractors. Consider a given
separable Hilbert space H, with scalar product (·, ·) and norm | · |. Given a
compact set K ⊂ H and ε > 0, we denote by Nε(K) the minimum number
of open balls in H with radii < ε that are necessary to cover K.

Definition 2.8. For any nonempty compact K ⊂ H, the fractal dimen-
sion of K is the number

(2.8) dF (K) = lim sup
ε→0

log(Nε(K))
log(1/ε)

.

Consider a separable real Hilbert space V ⊂ H such that the injection of
V in H is continuous, and V is dense in H.

We identify H with its topological dual H ′, identifying v ∈ V with the
element fv ∈ H ′ defined by

fv(h) = (v, h), h ∈ H.

Let F : V × R→ V ′ be a given family of nonlinear operators such that,
for all τ ∈ R and u0 ∈ H, there exists a unique function u(t) = u(t; τ, u0)
satisfying
(2.9)

u ∈ L2(τ, T ;V ) ∩ C([τ, T ];H), F (u(t), t) ∈ L1(τ, T ;V ′) for all T > τ,
du

dt
= F (u(t), t), t > τ,

u(τ) = u0.
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Define

(2.10) U(t, τ)u0 = u(t, τ ;u0), τ ≤ t, u0 ∈ H.
Fix T ∗ ∈ R. We assume that there exists a family {K(t) : t ≤ T ∗} of

nonempty compact subsets of H with the invariance property

(2.11) U(t, τ)K(τ) = K(t) for all τ ≤ t ≤ T ∗,
and such that, for all τ ≤ t ≤ T ∗ and u0 ∈ K(τ), there exists a continuous
linear operator L(t, τ, u0) ∈ L(H) such that

(2.12) |u(t, τ)u0−U(t, τ)u0−L(t, τ, u0)(u0−u0)| ≤ γ(t−τ, |u0−u0|)|u0−u0|
for all u0 ∈ K(τ), where γ : R+ × R+ → R+ is such that γ(s, ·) is nonde-
creasing for all s ≥ 0, and

(2.13) lim
r→0

γ(s, r) = 0 for any s ≥ 0.

We assume that, for all t ≤ T ∗, the mapping F (·, t) is Gateaux differ-
entiable in V , i.e., for any u ∈ V there exists a continuous linear operator
F ′(u, t) ∈ L(V, V ′) such that

lim
ε→0

1
ε
(F (u+ εv, t)− F (u, t)− εF ′(u, t)v) = 0 ∈ V ′.

Moreover, we suppose that the mapping F ′ : (u, t) ∈ V × (−∞, T ∗] 7→
F ′(u, t) ∈ L(V ;V ′) is continuous (thus, in particular, for each t ≤ T ∗, the
mapping F (·, t) is continuously Fréchet differentiable in V ).

Then, for all τ ≤ T ∗ and u0, v0 ∈ H, there exists a unique v(t) =
v(t; τ, u0, v0), which is a solution of

(2.14)


v ∈ L2(τ, T ;V ) ∩ C([τ, T ];H) for all τ < T ≤ T ∗,
dv

dt
= F ′(U(t, τ)u0, t)v, τ < t < T ∗,

v(τ) = v0.

We make the assumption that

(2.15) v(t; τ, u0, v0) = L(t, τ, u0)v0 for all τ ≤ t ≤ T ∗, u0, v0 ∈ K(τ).

Let us write, for j = 1, 2, . . . ,

(2.16) q̃j = lim sup
T→+∞

sup
τ≤T ∗

sup
u0∈K(τ−T )

1
T

τ�

τ−T
Trj(F ′(U(s, τ − T )u0, s)) ds,

where

Trj(F ′(U(s, τ)u0, s)) = sup
vi0∈H, |vi0|≤1, i≤j

j∑
i=1

(F ′(U(s, τ)u0, s)ei, ei),

e1, . . . , ej being an orthonormal basis for the subspace of H spanned by

v(s; τ, u0, v
1
0), . . . , v(s; τ, u0, v

j
0).
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Theorem 2.9 ([8]). Under the assumptions above, and in particular
(2.11)–(2.13) and (2.15), suppose that

(2.17)
⋃
τ≤T ∗

K(τ) is relatively compact in H,

and there exist qj, j = 1, 2, . . . , such that

q̃j ≤ qj for any j ≥ 1,(2.18)
qn0 ≥ 0, qn0+1 < 0,(2.19)

for some n0 ≥ 1, and

(2.20) qj ≤ qn0 + (qn0 − qn0+1)(n0 − j) for all j = 1, 2, . . . .
Then
(2.21) dF (K(τ)) ≤ d0 := n0 +

qn0

qn0 − qn0+1
for all τ ≤ T ∗.

2.4. The upper semicontinuity of the pullback D-attractor

Definition 2.10. Let {Uε(t, τ) : ε ∈ [0, 1]} be a family of evolution
processes in a Banach space X with corresponding pullback D-atractors
{Aε(t) : ε ∈ [0, 1]}. For any bounded interval I ⊂ R, we say {Aε(·)} is upper
semicontinuous at ε = 0 for t ∈ I if

lim
ε→0

sup
t∈I

dist(Aε(t), A0(t)) = 0.

Theorem 2.11 ([4]). Let {Uε(t, τ) : ε ∈ [0, ε0]} be a family of processes
with corresponding pullback D-atractors {Aε(t) : ε ∈ [0, ε0]}. Then, for any
bounded I ⊂ R, {Uε(t, τ) : ε ∈ [0, ε0]} is upper semicontinuous at 0 for t ∈ I
if for each t ∈ R, each compact subset K and each T > 0, the following
conditions hold:

(i) supτ∈[t−T,t] supχ∈K d(Uε(t, τ)χ,U0(t, τ)χ)→ 0 as ε→ 0.
(ii)

⋃
ε∈[0,ε0]

⋃
t≤t0 Aε(t) is bounded for any given t0.

(iii)
⋃

0<ε≤ε0 Aε(t) is compact for each t ∈ R.

3. Existence of a pullback D-attractor in Hµ(Ω)∩Lp(Ω). We denote
X = L2(τ, T ;Hµ(Ω)) ∩ Lp(τ, T ;Lp(Ω)),

X∗ = L2(τ, T ;H−1
µ (Ω)) ∩ Lp′(τ, T ;Lp

′
(Ω)),

where p′ is the conjugate of p and µ ∈ [0, µ∗].

Definition 3.1. A function u(·) is said to be a weak solution of problem
(1.1) on (τ, T ) if u ∈ X, du/dt ∈ X∗, u|t=τ = uτ for a.e. x ∈ Ω and

T�

τ

�

Ω

(
∂u

∂t
ϕ+∇u∇ϕ− µ

|x|2
uϕ+ f(u)ϕ

)
dx dt =

T�

τ

�

Ω

g(t)ϕdx dt

for all test functions ϕ ∈ X.
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It is known (see, for example, [5, Theorem 1.8, p. 33]) that if u ∈ X and
du/dt ∈ X∗, then u ∈ C([τ, T ];L2(Ω)). This makes the initial condition in
problem (1.1) meaningful.

Theorem 3.2. Under assumptions (F ) and (G), for any T > τ in R,
and uτ given, problem (1.1) has a unique weak solution u on (τ, T ). Moreover,
the solution u can be extended to [τ,+∞) and for all t > τ ,

(3.1) |u(t)|22 ≤ e−λ1,µ(t−τ)|uτ |22 +
2k1

λ1,µ
|Ω|+ e−λ1,µt

λ1,µ

t�

−∞
eλ1,µs|g(s)|22 ds.

Proof. The proof of existence and uniqueness of solution is classical, using
the compactness method (see e.g. [15]), so we omit it here. We now show
that inequality (3.1) holds. Multiplying (1.1) by u and integrating over Ω,
we have

1
2
d

dt
|u|22 + ‖u‖2µ +

�

Ω

f(u)u dx =
�

Ω

g(t)u dx.

Using hypothesis (F ) and the Cauchy inequality, we deduce that

(3.2)
d

dt
|u|22 + 2‖u‖2µ + 2C1|u|pp ≤ 2k1|Ω|+

1
λ1,µ
|g(t)|22 + λ1,µ|u|22.

Combining this with the fact that ‖u‖2µ ≥ λ1,µ|u|22, we have

d

dt
|u|22 + λ1,µ|u|22 ≤ 2k1|Ω|+

1
λ1,µ
|g(t)|22.

Hence applying the Gronwall lemma we get (3.1).

Thanks to Theorem 3.2, we can define a process Uµ(t, τ) : L2(Ω) →
Hµ(Ω) ∩ Lp(Ω), t ≥ τ , where Uµ(t, τ)uτ is the unique weak solution of
problem (1.1) with uτ as initial datum at time τ .

Define R as the set of all functions r : R→ (0,+∞) such that

lim
t→−∞

eλ1,µtr2(t) = 0,

and denote by D the class of families D̂ = {D(t) : t ∈ R} ⊂ B(L2(Ω))
satisfying D(t) ⊂ B(r(t)) for some function r ∈ R, where B(r(t)) is the
closed ball in L2(Ω) with radius r(t).

Lemma 3.3. Assume that hypotheses (F ) and (G) are satisfied, and u(t)
is a weak solution of problem (1.1). Then for all t > τ ,

(3.3) ‖u(t)‖2µ+|u(t)|pp ≤ C
(
e−λ1,µ(t−τ)|uτ |22+1+e−λ1,µt

t�

−∞
eλ1,µs|g(s)|22 ds

)
,

where C is a positive constant. Hence, there exists a family of pullback D-
absorbing sets in Hµ(Ω) ∩ Lp(Ω) for the process Uµ(t, τ).
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Proof. Multiplying (1.1) by u and integrating on Ω, we have

(3.4)
1
2
d

dt
|u|22 + ‖u‖2µ +

�

Ω

f(u)u dx =
�

Ω

g(t)u dx ≤ 1
λ1,µ
|g(t)|22 +

λ1,µ

4
|u|22.

Using hypothesis (F ) and ‖u‖2µ ≥ λ1,µ|u|22, we have

(3.5)
d

dt
|u|22 + λ1,µ|u|22 + C(‖u‖2µ + |u|pp) ≤ C(1 + |g(t)|22).

Let F (s) =
	s
0 f(r) dr. By (F ) we get

(3.6) C(|u|pp − 1) ≤
�

Ω

F (u) dx ≤ C(|u|pp + 1).

Now multiplying (3.5) by eλ1,µt and using (3.6) we get

(3.7)
d

dt
(eλ1,µt|u(t)|22) + Ceλ1,µt

(
‖u(t)‖2µ + 2

�

Ω

F (u(t)) dx
)

≤ C(eλ1,µt + eλ1,µt|g(t)|22).

Integrating (3.7) from τ to s ∈ [τ, t− 1] and from s to s+ 1 respectively, we
obtain

(3.8) eλ1,µs|u(s)|22

≤ eλ1,µτ |uτ |22 + Ceλ1,µs + C

s�

τ

eλ1,µr|g(r)|22, ∀s ∈ [τ, t− 1],

and

(3.9) C

s+1�

s

eλ1,µr
(
‖u(r)‖2µ + 2

�

Ω

F (u(r) dx)
)
dr

≤ eλ1,µs|u(s)|22 + C

s+1�

s

(eλ1,µr + eλ1,µr|g(r)|22) dr

≤ eλ1,µτ |uτ |22 + Ceλ1,µs + C

s�

τ

eλ1,µr|g(r)|22 dr

+ Ceλ1,µ(s+1) + C

s+1�

s

eλ1,µr|g(r)|22dr (by (3.8))

≤ C
(
eλ1,µτ |uτ |22 + eλ1,µt +

t�

τ

eλ1,µr|g(r)|22 dr
)
.
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Multiplying (1.1) by ut(s) and integrating over Ω we have

(3.10) |ut(s)|22 +
1
2
d

ds

(
‖u(s)‖2µ + 2

�

Ω

F (u(s)) dx
)

=
�

Ω

g(s)ut(s) ≤
1
2
|g(s)|22 +

1
2
|ut(s)|22,

thus

(3.11) eλ1,µs|ut(s)|22 +
d

ds

(
eλ1,µs

(
‖u(s)‖2µ + 2

�

Ω

F (u(s)) dx
))

≤ λ1,µe
λ1,µs

(
‖u(s)‖2 + 2

�

Ω

F (u(s)) dx
)

+ eλ1,µs|g(s)|22.

Combining (3.9) and (3.11) and using the uniform Gronwall inequality, we
have

(3.12) eλ1,µt
(
‖u(t)‖2µ + 2

�

Ω

F (u(t)) dx
)

≤ C
(
eλ1,µτ |uτ |22 + eλ1,µt +

t�

−∞
eλ1,µs|g(s)|22 ds

)
.

Using (3.6) again, we get (3.3).

From Lemma 3.3 we see that the process Uµ(t, τ) maps compact sub-
sets of Hµ(Ω) ∩ Lp(Ω) to bounded subsets of Hµ(Ω) ∩ Lp(Ω) and thus by
Lemma 2.1, it is norm-to-weak continuous in Hµ(Ω)∩Lp(Ω). Since Uµ(t, τ)
has a family of pullback D-absorbing sets in Hµ(Ω) ∩ Lp(Ω), in order to
prove the existence of pullback D-attractors, it is sufficient to verify that
Uµ(t, τ) is pullback D-asymptotically compact.

To prove the pullback D-asymptotic compactness of U(t, τ) in Lp(Ω), we
need the following lemmas.

Lemma 3.4 ([9]). Let {U(t, τ)} be a norm-to-weak continuous process
in the spaces L2(Ω) and Lp(Ω), and suppose it satisfies the following two
conditions:

(1) {U(t, τ)} is pullback D-asymptotically compact in L2(Ω).
(2) For any ε > 0, B̂ ∈ D, there exist constants M = M(ε, B̂) and

τ0 = τ0(ε, B̂) ≤ t such that( �

Ω(|U(t,τ)uτ |≥M)

|U(t, τ)uτ |p dx
)1/p

< ε

for all uτ ∈ B(τ) and τ ≤ τ0.
Then {U(t, τ)} is pullback D-asymptotically compact in Lp(Ω).
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Lemma 3.5 ([12]). Suppose that for some λ > 0 and τ ∈ R, and for all
s > τ ,

(3.13) y′(s) + λy(s) ≤ h(s),

where the functions y, y′, h are assumed to be locally integrable and y, h are
nonnegative on the interval t < s < t+ r for some t ≥ τ . Then

(3.14) y(t+ r) ≤ e−λr/2 2
r

t+r/2�

t

y(s) ds+ e−λ(t+r)
t+r�

t

eλsh(s) ds.

Lemma 3.6. Under hypotheses (F ) and (G), the process {Uµ(t, τ)} as-
sociated to problem (1.1) is pullback D-asymptotically compact in Lp(Ω).

Proof. It is sufficient to verify condition (2) in Lemma 3.4. From hypoth-
esis (F ), we can choose a constantM large enough such that f(u) ≥ C̃1|u|p−1

in
Ω2M = Ω(u(t) ≥ 2M) = {x ∈ Ω : u(x, t) ≥ 2M}.

Throughout this section, we denote

(u−M)+ =
{
u−M if u ≥M ,
0 if u < M .

First, in Ω2M we obtain

g(t)((u−M)+)p−1 ≤ C̃1

2
((u−M)+)2p−2 +

1
2C̃1

|g(t)|22(3.15)

≤ C̃1

2
((u−M)+)p−1|u|p−1 +

1
2C̃1

|g(t)|22,

and

(3.16) f(u)((u−M)+)p−1

≥ C̃1((u−M)+)p−1|u|p−1

≥ C̃1

2
((u−M)+)p−1|u|p−1 +

C̃1M
p−2

2
((u−M)+)p.

Now, we multiply the first equation in (1.1) by |(u−M)+|p−1 to deduce for
all 0 < µ ≤ µ∗ that

du

dt
|(u−M)+|p−1 −∆u|(u−M)+|p−1 − µ

|x|2
u|(u−M)+|p−1

+ f(u)|(u−M)+|p−1 = g(t)|(u−M)+|p−1.



Parabolic equations with Hardy type potentials 173

This yields, by integrating over Ω2M ,

1
p

d

dt

�

Ω2M

|(u−M)+|p dx+
�

Ω2M

(p− 1)∇u∇(u−M)+|(u−M)+|p−2 dx

−
�

Ω2M

µ

|x|2
u|(u−M)+|p−1 dx+

�

Ω2M

f(u)|(u−M)+|p−1 dx

=
�

Ω2M

g(t)|(u−M)+|p−1 dx.

We remark that −u(u − M)+ ≥ −|u|2 on Ω2M , thus it follows from the
Hardy inequality that
�

Ω2M

(p− 1)∇u∇(u−M)+|(u−M)+|p−2 dx−
�

Ω2M

µ

|x|2
u|(u−M)+|p−1 dx

≥ C
�

Ω2M

[
|∇u|2 − µ

|x|2
|u|2
]
|(u−M)+|p−2dx

≥ CMp−2
�

Ω2M

[
|∇u|2 − µ

|x|2
|u|2
]
dx ≥ 0.

This gives

1
p

d

dt

�

Ω2M

|(u−M)+|p dx+
�

Ω2M

f(u)|(u−M)+|p−1 dx

≤
�

Ω2M

g(t)|(u−M)+|p−1 dx.

Combining this with (3.15) and (3.16) we conclude that

1
p

d

dt

�

Ω2M

|(u−M)+|p dx+
C̃1M

p−2

2

�

Ω2M

|(u−M)+|p dx ≤ 1
2C̃1

�

Ω2M

|g(t)|2 dx,

and thus
d

dt

�

Ω2M

|(u−M)+|p dx+ CMp−2
�

Ω2M

|(u−M)+|p dx ≤ C|g(t)|22 dx.

Thanks to Lemma 3.5, we have for some t1 < t and for all r > 0,

(3.17)
�

Ω2M

|(u(t1 + r)−M)+|p dx

≤ Ce−CMp−2r/2
t1+r�

t1

�

Ω2M

|(u(s)−M)+|p dx ds

+ Ce−CM
p−2(t1+r)

t1+r�

t1

eCM
p−2s|g(s)|22 ds.
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Now we estimate the right hand side terms of (3.17). First, we have

(3.18)
t1+r�

t1

�

Ω2M

|(u(s)−M)+|p dx ds

≤
t1+r�

t1

|(u(s)−M)+|pp ds ≤ C
(t1+r�

t1

|u(s)|pp ds+ rMp|Ω|p
)

≤ C
(
|u(t1)|22 + 1 +

t1+r�

t1

|g(s)|22 ds+ rMp|Ω|p
)

(by (3.5))

≤ C
(
1 + e−λ1,µt1

t1�

−∞
eλ1,µs|g(s)|22 ds+

t1+r�

t1

|g(s)|22 ds
)
<∞

for sufficiently small τ by (3.1). Therefore, there exists a number N0 inde-
pendent of τ,M and uτ such that

(3.19)
t1+r�

t1

�

Ω2M

|(u(s)−M)+|p ds ≤ N0,

thus for sufficiently large M , we have

(3.20) Ce−CM
p−2r/2

t1+r�

t1

�

Ω2M

|(u(s)−M)+|p dx ds ≤ ε

2
.

It is well known that for an integrable function h on an interval [a, b] and a
given ε > 0 we have

(3.21) e−Mb
b�

a

eMsh(s) ds ≤ ε

2

for M large enough. Now combining (3.17), (3.20) and (3.21), choosing r =
t− t1 > 0, we get

(3.22)
�

Ω2M

|(U(t, τ)uτ −M)+|p dx ≤ ε

for τ ≤ τ1 and M ≥M1. Next, we set

(3.23) (u+M)− =
{
u+M if u ≤ −M ,
0 if u > −M,

and repeating the same steps above with (u+M)− instead of (u−M)+, we
deduce that there exist M2 > 0 and τ2 < t such that for any τ < τ2 and
M ≥M2,

(3.24)
�

Ω(u(t)≤−2M)

|(u+M)−|p dx ≤ ε.
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Now, letM0 = max{M1,M2} and τ0 = min{τ1, τ2}. It follows from (3.22)
and (3.24) that

(3.25)
�

Ω(|u(t)|≥2M)

(|u| −M)p dx ≤ ε

for all τ ≤ τ0 and M ≥M0. Hence,

(3.26)
�

Ω(|u(t)|≥2M)

|u|p dx =
�

Ω(|u(t)|≥2M)

[(|u| −M) +M ]p dx

≤ 2p−1
( �

Ω(|u(t)|≥2M)

(|u| −M)p dx+
�

Ω(|u(t)|≥2M)

Mp dx
)

≤ 2p−1
( �

Ω(|u(t)|≥2M)

(|u| −M)p dx+
�

Ω(|u(t)|≥2M)

(|u| −M)p dx
)
≤ 2pε,

which completes the proof.

Lemma 3.7. Suppose hypotheses (F ) and (G) hold. Then for any s ∈ R
and any bounded subset B ⊂ L2(Ω), there exists a constant τ0 = τ0(B, s) ≤ s
such that for all τ ≤ τ0 and all uτ ∈ B, the unique weak solution u of problem
(1.1) with initial datum uτ at time τ satisfies

|ut(s)|22 ≤ C
(
1 + e−λ1,µs

s�

−∞
eλ1,µr(|g(r)|22 + |g′(r)|22) dr

)
,

where C > 0 is independent of s and B.

Proof. Integrating (3.11) with respect to s from r to r+1 for r ∈ [τ, t−1]
we get

r+1�

r

eλ1,µs|ut(s)|22 ds ≤ eλ1,µr
(
‖u(r)‖2µ + 2

�

Ω

F (u(r)) dx
)

(3.27)

+ λ1,µ

r+1�

r

eλ1,µs
(
‖u(s)‖2µ + 2

�

Ω

F (u(s)) dx
)
ds

+
r+1�

r

eλ1,µs|g(s)|22 ds

≤ C
(
eλ1,µt + eλ1,µτ |uτ |22 +

t�

−∞
eλ1,µs|g(s)|22 ds

)
,

where we have used (3.9) and (3.12). Differentiating (1.1) in time and mul-
tiplying the above equality by eλ1,µsut, we get
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1
2
d

ds
(eλ1,µs|ut|22) + eλ1,µs‖ut‖2µ + eλ1,µs(f ′(u)ut, ut)

=
1
2
eλ1,µs(g′(s), ut) +

λ1,µ

2
eλ1,µs|ut|22.

Using hypothesis (F ) and the Cauchy inequality, we obtain

(3.28)
d

dr
(eλ1,µr|ut(s)|22) ≤ C(eλ1,µs|g′(s)|22 + eλ1,µs|ut(s)|22).

From (3.27), (3.28) and the uniform Gronwall inequality, we get

(3.29) eλ1,µs|ut(s)|22

≤ C
(
eλ1,µs + eλ1,µτ |uτ |22 +

s�

−∞
eλ1,µr(|g(r)|22 + |g′(r)|22) dr

)
.

This implies the desired inequality.

We are in a position to prove the main result of this section.

Theorem 3.8. Assume that hypotheses (F ) and (G) are satisfied. Then
for each µ ∈ [0, µ∗], the process Uµ(t, τ) associated to problem (1.1) has a
pullback D-attractor Âµ = {Aµ(t) : t ∈ R} in Hµ(Ω) ∩ Lp(Ω).

Proof. By Lemma 3.3, the process Uµ(t, τ) has a family of pullback D-
absorbing sets in Hµ(Ω) ∩ Lp(Ω). It is sufficient to show that {U(t, τ)} is
pullback D-asymptotically compact, i.e., for any t ∈ R, B̂ ∈ D, and any
sequences τn → −∞ and uτn ∈ B(τn), the sequence {Uµ(t, τn)uτn} is pre-
compact in Hµ(Ω)∩Lp(Ω). Due to Lemma 3.6, we need only show that the
sequence {Uµ(t, τn)uτn} is precompact in Hµ(Ω).

Denoting un(tn) = Uµ(t, τn)uτn , we have

(3.30) ‖un(t)− um(t)‖2µ

= −
〈
dun
dt

(t)− dum
dt

(t), un(t)− um(t)
〉

− 〈f(un(t))− f(um(t)), un(t)− um(t)〉

≤
∣∣∣∣ ddtun(t)− d

dt
um(t)

∣∣∣∣
2

|un(t)− um(t)|2 + `|un(t)− um(t)|22.

Hence by Lemmas 3.6 and 3.7, we have ‖un(t)−um(t)‖µ → 0 as n,m→∞,
which completes the proof.

4. Estimates of the fractal dimension of the pullback D-attrac-
tor. From now on, besides (G) we assume the external force g satisfies the
following additional condition:

(G′) g ∈ L∞(−∞, T ∗;L∞(Ω)) for some T ∗ ∈ R.
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Lemma 4.1. Under conditions (F ), (G) and (G′), every trajectory
{u(t)}t∈R lying on the pullback D-attractor Âµ = {Aµ(t) : t ∈ R} is bounded
in L∞(−∞, T ∗;L∞(Ω)).

Proof. Let u(t) be an arbitrary trajectory lying on Âµ. First, multiply
the first equation in (1.1) by |(u−M)+|, then integrate over Ω to get

1
2
d

dt

�

ΩM

|(u−M)+|2 dx+
�

ΩM

∇u∇(u−M)+ dx

−
�

ΩM

µ

|x|2
u|(u−M)+| dx+

�

ΩM

f(u)|(u−M)+| dx =
�

ΩM

g(t)|(u−M)+| dx.

We remark that on ΩM , u(u −M)+ ≤ |u|2, so it follows from the Hardy
inequality that
�

ΩM

∇u∇(u−M)+ dx−
�

ΩM

µ

|x|2
u|(u−M)+| dx ≥

�

ΩM

[
|∇u|2 − µ

|x|2
|u|2
]
dx

≥ λΩM
�

ΩM

|u|2 dx ≥ λΩM
�

ΩM

|(u−M)+|2 dx.

This gives

1
2
d

dt

�

ΩM

|(u−M)+|2 dx+ λΩM

�

ΩM

|(u−M)+|2 dx

≤
�

ΩM

(g(t)− f(u))|(u−M)+| dx.

Since g ∈ L∞(−∞, T ∗;L∞(Ω)), there exists K > 0 such that |g(t, x)| ≤ K
for a.e. (x, t) ∈ Ω × (−∞, T ∗). By hypothesis (F ) we can choose M large
enough such that f(u) ≥ K when u ≥M . Then

d

dt

�

ΩM

|(u−M)+|2 dx+ 2λΩM
�

ΩM

|(u−M)+|2 dx ≤ 0.

By the Gronwall inequality, we have, for all t ≤ T ∗,�

ΩM

|(u(t)−M)+|2 dx ≤ e−2λΩM (t−τ)
�

ΩM

|(uτ −M)|2 dx→ 0 as τ → −∞.

By the invariance of Âµ, we have

(4.1)
�

Ω(u(t)≥M)

|(u(t)−M)+|2 dx = 0.

Repeating the same steps above with (u + M)− instead of (u −M)+, we
deduce that
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(4.2)
�

Ω(u(t)≤−M)

|(u(t) +M)−|2dx = 0.

Noticing that M we have chosen here is independent of t, it follows from
(4.1) and (4.2) that

‖u‖L∞(−∞,T ∗;L∞(Ω)) ≤M.

Lemma 4.2. Under conditions (F ), (G) and (G′), the pullback D-attrac-
tor Âµ = {Aµ(t) : t ∈ R} satisfies

(4.3)
⋃
τ≤T ∗

Aµ(τ) is relatively compact in L2(Ω).

Proof. Since g ∈ L∞(−∞, T ∗;L∞(Ω)), there exists a constant C such
that |g(t)|22 ≤ C for a.e. t ≤ T ∗. Therefore

r0(t) = 2c
(
1 + e−λ1,µt

t�

−∞
eλ1,µs|g(s)|22 ds+ e−λ1,µt

t�

−∞

s�

−∞
eλ1,µr|g(r)|22 dr ds

)
≤ 2c

(
1 +

C

λ1,µ
+

C

λ2
1,µ

)
=: r0.

We denote
B(t) = {v ∈ L2(Ω) : |v|22 ≤ r0}.

Then
B∗ :=

⋃
τ≤T ∗

B(τ) is bounded in L2(Ω).

Let us denote byM the set of all y ∈ L2(Ω) for which there exists a sequence
{(tn, τn)}n≥1 ⊂ R2 satisfying τn ≤ tn ≤ T ∗, limn→∞(tn − τn) = +∞ and a
sequence {u0n} ⊂ B∗ such that limn→∞ |Uµ(tn, τn)u0n − y|2 = 0.

Observe that

(4.4) Aµ(t) ⊂M for all t ≤ T ∗.

In fact, by the definition of Âµ, if t≤T ∗ and y∈Aµ(t), there exist a sequence
τn≤ t and a sequence u0n∈B(τn) ⊂ B∗ such that limn→∞ |Uµ(t, τn)u0n−y|2
= 0. Consequently, taking tn = t for all n ≥ 1 we conclude that y ∈M .

On the other hand, M is a relatively compact subset in L2(Ω). In fact, if
{yk}k≥1 ⊂M is a given sequence, for each k ≥ 1 we take a pair (tk, τk) ∈ R2

and an element u0k∈B∗ such that tk≤T ∗, tk−τk≥k and |Uµ(tk, τk)u0k−yk|2
≤ 1/k. Then we can extract from {yk}k≥1 a subsequence that converges
in L2(Ω).

As M is relatively compact in L2(Ω), taking into acount (4.4) we obtain
(4.3).
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Lemma 4.3. Suppose f is a C2 function satisfying (F ), and g satis-
fies (G) and (G′). Then the process Uµ(t, τ) associated to problem (1.1)
has the quasidifferentiability properties (2.12), (2.13) and (2.15) with v(t) =
v(t, τ, u0, v0) being the solution of

(4.5)


v ∈ L2(τ, T ;Hµ(Ω)) ∩ C([τ, T ];L2(Ω)),
dv

dt
= ∆v +

µ

|x|2
v − f ′(u)v,

v(τ) = v0.

Proof. Fix τ ≤ T ∗, u0, u0 ∈ K(τ) and denote u(t) = Uµ(t, τ)u0, u(t) =
Uµ(t, τ)u0 and v(t) the solution of (4.5) with v0 = u0−u0. Let z(t) be defined
by z(t) = u(t)− u(t)− v(t), t ≤ τ . Then z satisfies

(4.6)


z ∈ L2(τ, T ;Hµ(Ω)) ∩ C([τ, T ];L2(Ω))
dz

dt
= ∆z +

µ

|x|2
z − f ′(u)z − h,

z(τ) = 0,

with h = f(u)− f(u)− f ′(u)(u− u). Taking the inner product of (4.6) with
z yields

(4.7)
1
2
d

dt
|z|2 + ‖z‖2µ ≤ `|z|2 + |h|Lp′ |z|Lp ,

where p′ is the conjugate exponent to p.
On the other hand, since f is C2, it follows from Taylor’s theorem that

|h(x)| ≤ 1
2
|f ′′(c)| |u− u|2

for some c on the line segment joining u(x) to u(x). Since both u(t) and u(t)
lie in A(t), they are bounded in L∞(Ω) and so

(4.8) |h(x)| ≤ C|u(x)− u(x)|2

for some constant C.
It follows from (4.8), if we write h(t) = h(u(x, t)), that

‖h(t)‖p
′

Lp′
≤ C

�

Ω

|u(t)− u(t)|2p′ dx

= C
�

Ω

|u(t)− u(t)|2p′−2+ε|u(t)− u(t)|2−ε dx

≤ C|u(t)− u(t)|2−ε,

where we have used the Hölder inequality and the fact that u(t) and v(t) are
bounded in L∞(Ω). So we have

‖h(t)‖Lp′ ≤ C|u(t)− u(t)|
(2−ε)/p′ ,
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and if we choose ε = 2− p′(1 + δ) for some δ ∈ (0, (2− p′)/p′), we obtain

‖h(t)‖Lp′ ≤ C|u(t)− u(t)|
1+δ.

On the other hand, it is easy to check that

|u(t)− u(t)|2 ≤ e2`(t−τ)|u0 − u0|2.

Therefore, ‖h(t)‖Lp′ ≤ Ce
(1+δ)`t|u0 − u0|1+δ. So from (4.7) we have

1
2
d

dt
|z|2 + ‖z‖2µ ≤ `|z|2 + Ce(1+δ)`t|u0 − u0|1+δ‖z‖µ

≤ `|z|2 + Ce2(1+δ)`t|u0 − u0|2(1+δ) +
1
4
‖z‖2µ.

Hence, neglecting the ‖z‖2µ terms, we get

1
2
d

dt
|z|2 ≤ `|z|2 + Ce2(1+δ)`t|u0 − u0|2(1+δ).

Using the Gronwall inequality, we obtain

|z|2 ≤ k(t)|u0 − u0|2(1+δ).

Then
|z| ≤

√
k(t)|u0 − u0|1+δ.

Choose γ(t, r) =
√
k(t)rδ → 0 as r → 0.

Theorem 4.4. Suppose f is a C2 function and satisfies (F ), and g sat-
isfies (G) and (G′). Then there exist qj, j = 1, 2, . . . , such that

q̃j ≤ qj for any j ≥ 1, qn0 ≥ 0, qn0+1 < 0 for some n0 ≥ 1,
qj ≤ qn0 + (qn0 − qn0+1)(n0 − j) for all j = 1, 2, . . . ,

where q̃j is defined in (2.16) with F (u) = ∆u+ µ
|x|2u− f(u) + g. Thus,

dF (A(τ)) ≤ max{1, d0} for all τ ∈ R, where d0 := n0 +
qn0

qn0 − qn0+1
.

Proof. We have

F ′(Uµ(s, τ)uτ )ei = ∆ei +
µ

|x|2
ei − f ′(u)ei.

Then

〈F ′(Uµ(s, τ)uτ )ei, ei〉 = −
{ �

Ω

|∇ei|2 dx−
�

Ω

µ

|x|2
e2i dx

}
−

�

Ω

f ′(u)e2i dx

≤ −
{ �

Ω

|∇ei|2 dx−
�

Ω

µ

|x|2
e2i dx

}
+ `,
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where we have used the facts that −f ′(u) ≤ ` and
	
Ω e

2
i dx = 1. Therefore

Trj [F ′(Uµ(s, τ)uτ )] = sup
i≤j

j∑
i=1

〈F ′(Uµ(s, τ)uτ )ei, ei〉

≤ −
j∑
i=1

( �

Ω

|∇ei|2 dx−
�

Ω

µ

|x|2
e2i dx

)
+ `j

= −
j∑
i=1

(Aei, ei)L2(Ω) + `j (Au := −∆u− (µ/|x|2)u)

≤ −Cµ
j∑
i=1

�

Ω

|∇ei|2 dx+ `j (Cµ = 1− µ/µ∗)

= −Cµ
j∑
i=1

(−∆ei, ei)L2(Ω) + `j.

By using the inequality
j∑
i=1

(−∆ei, ei)L2(Ω) ≥
j∑
i=1

λi(Ω),

and the inequality (1.3) in [14]:
m∑
i=1

λi(Ω) ≥ NCN
N + 2

µN (Ω)−2/Nm(N+2)/N +MN
µN (Ω)
I(Ω)

m,

where CN = (2π)2ω−2/N
N , ωN is the volume of the unit ball in RN , µN (Ω)

is the N -dimensional volume of Ω, MN = c/(N + 2), with c < (2π)2ω−4/N
N ,

but c independent of N , and I(Ω) = minα∈RN
	
Ω |x− α|

2 dx, we get

Trj [F ′(Uµ(s, τ)uτ )]

≤ −Cµ
NCN
N + 2

µN (Ω)−2/Nj(N+2)/N − CµMNR(Ω)j + `j

(R(Ω) := µN (Ω)/I(Ω))

= −Cµ
NCN
N + 2

µN (Ω)−2/Nj(N+2)/N + l1j

= −Kj(N+2)/N + l1j,

where l1 = ` − CµMNR(Ω) and K = Cµ
NCN
N+2 µN (Ω)−2/N . Hence, we get

q̃j ≤ −Kj(N+2)/N + l1j = jK(l1/K − j2/N ).
If 0 ≤ l1 < K, then taking qj = jK(1− j2/N ) and n0 = 1, we can apply

Theorem 2.9 to obtain
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dF (A(τ)) ≤ 1 for all τ ≤ T ∗.
If l1 ≥ K, then taking qj = jK(l1/K − j2/N ) and n0 = [(l1/K)N/2],

where [m] denotes the integer part of a real number m, we have

qn0 = K[(l1/K)N/2](l1/K − [(l1/K)N/2]2/N ) ≥ 0,

qn0+1 = K[(l1/K)N/2 + 1](l1/K − ([(l1/K)N/2] + 1)2/N ) < 0,

and

qn0 + (qn0 − qn0+1)(n0 − j)

= n0l1 −Kn(N+2)/N
0 + (K(n0 + 1)(N+2)/N −Kn(N+2)/N

0 − l1)(n0 − j).
In order to show that qj ≤ qn0 + (qn0 − qn0+1)(n0 − j), we will prove that

Kj(N+2)/N −Kn(N+2)/N
0 ≥ (K(n0 + 1)(N+2)/N −Kn(N+2)/N

0 )(j − n0),

or equivalently,

((n0 + 1)(N+2)/N − n(N+2)/N
0 )(j − n0) ≤ j(N+2)/N − n(N+2)/N

0 .

The last inequality follows from the fact that for all n ∈ N∗,

(n+ 2)m − (n+ 1)m ≥ (n+ 1)m − nm, where 1 < m :=
N + 2
N

< 2.

We now apply Theorem 2.9 to get dF (A(τ)) ≤ n0 + qn0
qn0−qn0+1

for all τ ≤ T ∗.
If l1 < 0, then taking qj = −l1(1−j) and n0 = 1, we get qn0 = 0, qn0+1 =

l1 < 0; applying Theorem 2.9 we obtain

dF (A(τ)) ≤ 1 for all τ ≤ T ∗.
Finally, since Uµ(t, τ) is Lipschitz in A(τ), it follows from [15, Proposi-

tion 13.9] that dF (A(t)) is bounded for every t ≥ τ by the same bound.

5. The upper semicontinuity of pullback D-attractors at µ = 0.
The aim of this section is to prove the upper semicontinuity of pullback D-
attractors Âµ at µ = 0 in L2(Ω). Notice that in this section, we let µ → 0,
thus we can assume µ < µ∗.

Lemma 5.1. Let hypotheses (F), (G) and (G′) hold. Then for all t ≤ T ∗,
for each compact subset K ⊂ L2(Ω) and each T > 0, we have

|Uµ(t, τ)uτ − U0(t, τ)uτ |22 ≤ µC for all τ ∈ [t− T, t], uτ ∈ K,
where the constant C is independent of τ and uτ (but depends on T,K).

Proof. Denote Uµ(t, τ)uτ = u(t) and U0(t, τ)uτ = v(t). Letting w(t) =
u(t)− v(t), we have

wt −∆w −
µ

|x|2
u+ f(u)− f(v) = 0.
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Multiplying this equation by w, then integrating over Ω, we get

1
2
d

dt
|w|22 +

�

Ω

(
|∇w|2 − µ

|x|2
uw

)
dx+

�

Ω

(f(u)− f(v))w dx = 0.

Since f(u)− f(v)w = (f(u)− f(v))(u− v) ≥ −`|u− v|2 = −`|w|2, we have

1
2
d

dt
|w|22 +

�

Ω

(
|∇u|2 − µ

|x|2
|w|2

)
dx−

�

Ω

µ

|x|2
vw dx− `|w|22 ≤ 0.

Hence

(5.1)
d

dt
|w|22 ≤ `|w|22 + µ

�

Ω

1
|x|2

vw dx.

Notice that when µ < µ∗, Hµ(Ω) ≡ H1
0 (Ω), so we can estimate

(5.2)
�

Ω

1
|x|2

v(s)w(s) dx

≤
( �

Ω

|v(s)|2

|x|2

)1/2( �

Ω

|w(s)|2

|x|2

)1/2

≤ C
( �
Ω

|∇v(s)|2 dx
)1/2( �

Ω

(|∇u(s)|2 + |∇v(s)|2) dx
)1/2

(by (2.6))

≤ C‖v(s)‖µ(‖u(s)‖µ + ‖v(s)‖µ)

≤ Ce−λ1,µs
(
eλ1,µτ |uτ |22 + eλ1,µs +

s�

−∞
eλ1,µr|g(r)|22 dr

)
(use (3.3))

≤ C−λ1,µs
(
eλ1,µt|uτ |22 + eλ1,µt +

t�

−∞
eλ1,µr|g(r)|22 dr

)
.

From (5.1) and (5.2) we get

(5.3)
d

ds
|w(s)|22

≤ `|w(s)|22 + Cµ
(
eλ1,µt|uτ |22 + eλ1,µt +

t�

−∞
eλ1,µr|g(r)|22 dr

)
e−λ1,µs

≤ `|w(s)|22 + C(K, t, g)µe−λ1,µs

Integrating from τ to r with respect to s, where s ≤ r ≤ t, and keeping in
mind that w(τ) = 0, we get
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|w(r)|22 ≤ `
r�

τ

|w(s)|22 ds+ C(K, t, g)µ
e−λ1,µ(t−T )

λ1,µ
(5.4)

≤ `
r�

τ

|w(s)|22ds+ C(K, t, g, T, λ1,µ)µ.

Now applying the Gronwall inequality, we get

(5.5) |w(t)|22 ≤ Cµ,
where C is independent of τ and uτ . This completes the proof.

Theorem 5.2. Let hypotheses (F ), (G) and (G′) hold. For any bounded
interval I ⊂ R, the family of pullback D-attractors {Âµ : µ ∈ [0, µ∗]} is upper
semicontinuous in L2(Ω) at 0 for any t ∈ I; that is,

lim
µ→0

sup
t∈I

distL2(Ω)(Aµ(t), A0(t)) = 0.

Proof. We will verify conditions (i)–(iii) in Theorem 2.11. First, condition
(i) follows directly from Lemma 5.1.

By Lemma 3.3, there exists a family of pullback D-absorbing sets B(·) =
B(r0(·)) of the process {Uµ(t, τ)}, which is uniform with respect to the pa-
rameter µ ∈ [0, µ∗). By the definition of pullback D-absorbing sets, for any
t ∈ R, there exists τ0 = τ0(t) ≤ t such that

(5.6)
⋃
τ≤τ0

Uµ(t, τ)B(τ) ⊂ B(t) = B(r0(t)).

By Theorem 2.7, we see that

(5.7) Aµ(t) =
⋂
s≤t

⋃
τ≤s

Uµ(t, τ)B(τ).

From (5.6), (5.7), we get

(5.8) Aµ(t) ⊂ B(r0(t)).

Now, for given t0 ∈ R we can write

(5.9)
⋃

µ∈[0,µ∗]

⋃
t≤t0

Aµ(t) ⊂
⋃
t≤t0

B(r0(t)).

We have

(5.10)

r0(t) = 2c
(
1 + e−λ1,µt

t�

−∞
eλ1,µs|g(s)|22 ds+ e−λ1,µt

t�

−∞

s�

−∞
eλ1,µr|g(r)|22 dr ds

)
≤ 2c

(
1 +

C

λ1,µ
+

C

λ2
1,µ

)
.



Parabolic equations with Hardy type potentials 185

Hence, from (5.9),⋃
µ∈[0,µ∗]

⋃
t≤t0

Aµ(t) is bounded in L2(Ω) for given t0,

i.e., condition (ii) of Theorem 2.11 is satisfied.
From (5.8) we see that, for each t ∈ R,

(5.11)
⋃

0<µ≤µ∗
Aµ(t) ⊂ B(r0(t)),

thus
⋃

0<µ≤µ∗ Aµ(t) is bounded in Hµ(Ω) and hence⋃
0<µ≤µ∗

Aµ(t) is compact in L2(Ω),

since Hµ(Ω) ⊂ L2(Ω) compactly. Thus condition (iii) of Theorem 2.11
holds.
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