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Exponential convergence of shunting inhibitory cellular
neural networks with continuously distributed delays

by Qiyuan Zhou and Changhong Zhao (Changde)

Abstract. We study delay shunting inhibitory cellular neural networks without al-
most periodic coefficients. Some sufficient conditions are established to ensure that all
solutions of the networks converge exponentially to an almost periodic function. This
complements previously known results.

1. Introduction. Consider the shunting inhibitory cellular neural net-
works (SICNNs) with continuously distributed delays given by

x′ij(t) = − aij(t)xij(t)−
∑

Ckl∈Nr(i,j)

Cklij (t)
∞�

0

Kij(u)f(xkl(t−u)) duxij(t)(1.1)

+ Lij(t), i = 1, . . . ,m, j = 1, . . . , n,

where Cij denotes the cell at the (i, j) position of the lattice, the r-neighbor-
hood Nr(i, j) of Cij is

Nr(i, j) = {Ckl : max(|k − i|, |l − j|) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n},
xij is the activity of the cell Cij , Lij(t) is the external input to Cij , aij(t) > 0
represents the passive decay rate of the cell activity at time t, Cklij (t) ≥ 0
is the connection or coupling strength of postsynaptic activity of the cell
transmitted to the cell Cij at time t, and the activity function f(·) is a
continuous function representing the output or firing rate of the cell Ckl.

Since Bouzerdoum and Pinter [1–3] described SICNNs as new cellular
neural networks (CNNs), SICNNs have been extensively applied in psy-
chophysics, speech, perception, robotics, adaptive pattern recognition, vi-
sion, and image processing. Hence, they have been the object of intensive
analysis by numerous authors in recent years. In particular, there have been
extensive results on the problem of the existence and stability of almost pe-
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riodic solutions for system (1.1) in the literature. We refer the reader to [4,
5, 9, 10, 11, 13] and the references cited therein. Suppose that the following
condition is satisfied:

(H0) aij , C
kl
ij , Lij : R → R are almost periodic functions, where i =

1, . . . ,m, j = 1, . . . , n.

Most authors cited above then deduced that all solutions of system (1.1)
converge exponentially to an almost periodic function. However, to the best
of our knowledge, few authors have considered the convergence behavior
for all solutions of system (1.1) without the assumption (H0). Thus, it is
worthwhile to investigate the convergence behavior for all solutions of system
(1.1) in this case.

The main purpose of this paper is to study system (1.1) with almost
periodic coefficients being perturbed by exponentially small perturbations
as t→ +∞. By applying techniques similar to those in [12], we derive some
sufficient conditions ensuring that all solutions of system (1.1) converge ex-
ponentially to an almost periodic function. Moreover, an example is provided
to illustrate the effectiveness of our results.

Consider the following delayed shunting inhibitory cellular neural net-
works:

x′ij(t) = − a∗ij(t)xij(t)−
∑

Ckl∈Nr(i,j)

C̃klij (t)
∞�

0

Kij(u)f(xkl(t−u)) duxij(t)(1.2)

+ L∗ij(t), i = 1, . . . ,m, j = 1, . . . , n.

Throughout this paper, for i = 1, . . . ,m, j = 1, . . . , n, it will be assumed
that a∗ij , C̃

kl
ij , L

∗
ij : R→ R are almost periodic functions such that

(1.3)


0 < aij := inf

t∈R
a∗ij(t) < +∞, C

kl
ij := sup

t∈R
C̃klij (t) < +∞,

L+
ij := sup

t∈R
|L∗ij(t)| < +∞.

Throughout, we set

{xij(t)} = (x11(t), . . . , x1n(t), . . . , xi1(t), . . . , xin(t), . . . , xm1(t), . . . , xmn(t)).

For x(t) = {xij(t)} ∈ Rm×n, we define the norm ‖x(t)‖ = max(i,j){|xij(t)|}.
If g1, g2 : R→ R are continuous, and there exist constants ζ, δ > 0 such that

|g1(t)/g2(t)| ≤ ζ for all t ≥ δ,
we write g1(t) = O(g2(t)).

We also assume that the following conditions hold:

(H1) For i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, the delay kernels Kij : [0,∞)→
R are continuous, integrable and there exist constants kij ≥ 0 and
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λ > 0 such that
∞�

0

|Kij(s)| ds ≤ kij ,
∞�

0

|Kij(u)|eλu du < +∞.

(H2) There exist constants Mf and µf such that

|f(u)− f(v)| ≤ µf |u− v|, |f(u)| ≤Mf for all u, v ∈ R.
(H3) The quantities defined by

L = max
(i,j)

L+
ij

aij
, δ = max

(i,j)

∑
Ckl∈Nr(i,j)C

kl
ijMfkij

aij

satisfy 0 ≤ L < +∞, 0 < δ < 1, and there exist constants η, λ > 0
such that for all i, j as above,

(1.4) (λ−aij)+
∑

Ckl∈Nr(i,j)

C
kl
ij

(
Mfkij +µf

∞�

0

|Kij(u)|eλu du L

1−δ

)
<−η < 0.

(H4) For i, j as above, aij , Cklij , Lij : R → R are continuous functions,
and

aij(t)− a∗ij(t) = O(e−λt), Lij(t)− L∗ij(t) = O(e−λt),

Cklij (t)− C̃klij (t) = O(e−λt).

The initial conditions associated with system (1.1) are of the form

(1.5) xij(s) = ϕij(s), s ∈ (−∞, 0], i = 1, . . . ,m, j = 1, . . . , n,

where ϕij(·) denotes a real-valued bounded continuous function defined on
(−∞, 0].

Definition 1 (see [6, 7]). Let u : R → Rm×n be continuous. Then u
is said to be almost periodic on R if, for any ε > 0, the set T (u, ε) = {δ :
‖u(t + δ) − u(t)‖ < ε, ∀t ∈ R} is relatively dense, i.e., for any ε > 0, it
is possible to find a real number l = l(ε) > 0 such that for any interval
with length l(ε), there exists a number δ = δ(ε) in this interval such that
‖u(t+ δ)− u(t)‖ < ε for all t ∈ R.

Since a∗ij , C̃
kl
ij and L∗ij are almost periodic functions, by using a similar

argument to that in the proof of Theorem 2.1 in [13], we can easily show
the following lemma.

Lemma 1.1. Let (H1)–(H3) hold. Then system (1.2) has exactly one al-
most periodic solution Z∗={x∗ij(t)}=(x∗11(t), . . . , x∗mn(t)), and supt∈R |x∗ij(t)|
≤ L/(1− δ), i = 1, . . . ,m, j = 1, . . . , n.

The remaining part of this paper is organized as follows. In Section 2, we
present some new sufficient conditions to ensure that all solutions of system
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(1.1) converge exponentially to an almost periodic function. In Section 3,
we give some examples and remarks to illustrate our results.

2. Main results

Theorem 2.1. Let (H1)–(H4) hold. Suppose that Z∗(t) = {x∗ij(t)} =
(x∗11(t), . . . , x∗mn(t)) is the almost periodic solution of system (1.2). Then,
for every solution Z(t) = {xij(t)} = (x11(t), . . . , xmn(t)) of system (1.1)
with any initial value ϕ = {ϕij(t)} = (ϕ11(t), . . . , ϕmn(t)), we have

|xij(t)− x∗ij(t)| = O(e−λt) for all i, j.

Proof. Set

εij(t) = −[aij(t)− a∗ij(t)]x∗ij(t)−
∑

Ckl∈Nr(i,j)

[Cklij (t)− C̃klij (t)]

·
∞�

0

Kij(u)f(x∗kl(t− u)) dux∗ij(t) + [Lij(t)− L∗ij(t)].

Since Z∗(t) = (x∗11(t), . . . , x∗mn(t)) is an almost periodic function, by (H3)
and (H4), we can choose constants F, T > 0 such that

(2.1) |εij(t)| <
1
2
Fe−λt for all t ≥ T,

and

(2.2) [λ− aij(t)] +
∑

Ckl∈Nr(i,j)

Cklij (t)
[
Mfkij + µf

∞�

0

|Kij(u)|eλu du L

1− δ

]

< [λ− a∗ij(t)] +
∑

Ckl∈Nr(i,j)

C̃klij (t)
[
Mfkij + µf

∞�

0

|Kij(u)|eλu du L

1− δ

]
+

1
2
η

< [λ− aij ] +
∑

Ckl∈Nr(i,j)

C
kl
ij

[
Mfkij + µf

∞�

0

|Kij(u)|eλu du L

1− δ

]
+

1
2
η

< − 1
2
η

for all t ≥ T and all i, j, where T is a sufficiently large constant.
Let Z(t) = {xij(t)} = (x11(t), . . . , xmn(t)) be a solution of system (1.1)

with any initial value ϕ = {ϕij(t)} = (ϕ11(t), . . . , ϕmn(t)), and define

y(t) = {yij(t)} = (y11(t), . . . , ymn(t)) = Z(t)− Z∗(t).
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Then

(2.3) y′ij(t)

= − aij(t)yij(t)−
∑

Ckl∈Nr(i,j)

Cklij (t)
[∞�

0

Kij(u)f(xkl(t− u)) duxij(t)

−
∞�

0

Kij(u)f(x∗kl(t− u)) dux∗ij(t)
]

+ εij(t)

for all i, j. Let (ij)t be an index such that

(2.4) |y(ij)t
(t)| = ‖y(t)‖.

Calculating the upper right derivative of eλs|y(ij)s
(s)|, in view of (H1) and

(H2), for all t ≥ T, we have

(2.5) D+(eλs|y(ij)s
(s)|)|s=t

= λeλt|y(ij)t
(t)|+ eλtsign(y(ij)t

(t))
{
−a(ij)t

(t)y(ij)t
(t)

−
∑

Ckl∈Nr(i,j)t

Ckl(ij)t
(t)
[∞�

0

K(ij)t
(u)f(xkl(t− u))dux(ij)t

(t)

−
∞�

0

K(ij)t
(u)f(x∗kl(t− u)) dux∗(ij)t

(t)
]

+ ε(ij)t
(t)
}

≤ eλt
{

[λ− a(ij)t
(t)]|y(ij)t

(t)|

+
∑

Ckl∈Nr(i,j)t

Ckl(ij)t
(t)
[∣∣∣∞�

0

K(ij)t
(u)f(xkl(t− u)) dux(ij)t

(t)

−
∞�

0

K(ij)t
(u)f(xkl(t− u)) dux∗(ij)t

(t)
∣∣∣

+
∣∣∣∞�

0

K(ij)t
(u)f(xkl(t− u)) dux∗(ij)t

(t)

−
∞�

0

K(ij)t
(u)f(x∗kl(t− u)) dux∗(ij)t

(t)
∣∣∣]+ |ε(ij)t

(t)|
}

< eλt
{

[λ− a(ij)t
(t)]|y(ij)t

(t)|+
∑

Ckl∈Nr(i,j)t

Ckl(ij)t
(t)
[
Mfk(ij)t

|y(ij)t
(t)|

+ µf

∞�

0

|K(ij)t
(u)| |ykl(t− u)| du L

1− δ

]}
+

1
2
F.
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Let

(2.6) M(t) = max
s≤t

eλs‖y(s)‖.

It is obvious that eλt‖y(t)‖ ≤M(t), and M(t) is non-decreasing.
Now, we consider two cases.

Case (i). Suppose that

(2.7) M(t) > eλt‖y(t)‖ for all t ≥ T.

Then we claim that

(2.8) M(t) ≡M(T ) is a constant for all t ≥ T.

Assume, by way of contradiction, that (2.8) does not hold. Then there exists
t1 > T such that M(t1) > M(T ). Since

eλt‖y(t)‖ ≤M(T ) for all t ≤ T,

there must exist β ∈ (T, t1) such that

eλβ‖y(β)‖ = M(t1) ≥M(β),

which contradicts (2.7). This contradiction implies that (2.8) holds. It follows
that

(2.9) eλt‖y(t)‖ < M(t) = M(T ) for all t ≥ T.

Case (ii). Suppose that there is a point t0 ≥ T such that M(t0) =
eλt0‖y(t0)‖. Then, in view of (2.2) and (2.5), we get

(2.10) D+(eλs|y(ij)s
(s)|)|s=t0

< eλt0
{

[λ−a(ij)t0
(t0)]|y(ij)t0

(t0)|+
∑

Ckl∈Nr(i,j)t0

Ckl(ij)t0
(t0)
[
Mfk(ij)t0

|y(ij)t0
(t0)|

+ µf

∞�

0

|K(ij)t0
(u)| |ykl(t0 − u)| du L

1− δ

]}
+

1
2
F

= [λ−a(ij)t0
(t0)]|y(ij)t0

(t0)|eλt0 +
∑

Ckl∈Nr(i,j)t0

Ckl(ij)t0
(t)
[
Mfk(ij)t0

|y(ij)t0
(t0)|eλt0

+ µf

∞�

0

|K(ij)t0
(u)|eλu|ykl(t0 − u)|eλ(t0−u) du

L

1− δ

]
+

1
2
F
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≤
{

[λ− a(ij)t0
(t0)] +

∑
Ckl∈Nr(i,j)t0

Ckl(ij)t0
(t)
[
Mfk(ij)t0

+ µf

∞�

0

|K(ij)t0
(u)|eλu du L

1− δ

]}
M(t0) +

1
2
F

≤ − 1
2
ηM(t0) +

1
2
F.

In addition, if M(t0) ≥ F/η, then M(t) is strictly decreasing in a small
neighborhood (t0, t0 + δ0). This contradicts that M(t) is non-decreasing.
Hence,

(2.11) eλt0‖y(t0)‖ = M(t0) < F/η.

For all t > t0, by the same approach used in the proof of (2.11), we have

(2.12) eλt‖y(t)‖ < F/η if M(t) = eλt‖y(t)‖.
On the other hand, if M(t) > eλt‖y(t)‖ for t > t0, we can choose t0 ≤

t3 < t such that

M(t3) = eλt3‖y(t3)‖ < F/η and M(s) > eλs‖y(s)‖ for all s ∈ (t3, t].

Using a similar argument to the proof of Case (i), we can show that

(2.13) M(s) ≡M(t3) is a constant for all s ∈ (t3, t],

which implies that

eλt‖y(t)‖ < M(t) = M(t3) < F/η.

In summary, there must exist N > 0 with eλt‖y(t)‖<max{M(T ), F/η}
for all t > N. This completes the proof of Theorem 2.1.

3. An example. In this section, we give an example to illustrate the
results obtained in the previous sections.

Example 3.1. Consider the following SICNNs with continuously dis-
tributed delays:

(3.1)

dxij
dt

= −aij(t)xij −
∑

Ckl∈Nr(i,j)

Cklij (t)
∞�

0

Kij(u)f(xkl(t− u)) duxij + Lij(t),

i, j = 1, 2, 3,

where

(3.2)

 a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)
a31(t) a32(t) a33(t)

 =

 1 + e−t 1 + e−t 3 + e−t

3 + e−t 1 + e−t 3 + e−t

3 + e−t 1 + e−t 3 + e−t

 ,
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(3.3)

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 =

 0.1 + e−2t 0.2 + e−2t 0.1 + e−2t

0.2 + e−2t 0 + e−2t 0.2 + e−2t

0.1 + e−2t 0.2 + e−2t 0.1 + e−2t

 .
and

(3.4)

 L11 L12 L13

L21 L22 L23

L31 L32 L33



=

0.7+0.24 sin2
√

2t+ e−2t 0.41+0.5 cos2 t+e−2t 0.94+2 sin2 t+e−2t

0.91 + 2 cos2 t+ e−2t 0.67+0.2 sin2 t+e−2t 0.91+2 sin2 t+e−2t

2.54 + 0.4 cos4 t+ e−2t 0.5 + 0.41 sin2 t+ e−2t 0.94+2 cos2 t+e−2t

.
Let

(3.5)

x′ij(t) = −a∗ijxij(t)−
∑

Ckl∈Nr(i,j)

C̃klij

∞�

0

Kij(u)f(xkl(t− u))duxij(t) + L∗ij(t),

i, j = 1, 2, 3,

where

(3.6)

 a∗11 a∗12 a∗13

a∗21 a∗22 a∗23

a∗31 a∗32 a∗33

 =

 1 1 3
3 1 3
3 1 3

 ,
 c̃11 c̃12 c̃13

c̃21 c̃22 c̃23

c̃31 c̃32 c̃33

 =

 0.1 0.2 0.1
0.2 0 0.2
0.1 0.2 0.1

 ,

(3.7)

 L∗11 L∗12 L∗13

L∗21 L∗22 L∗23

L∗31 L∗32 L∗33



=

 0.7 + 0.24 sin2
√

2t 0.41 + 0.5 cos2 t 0.94 + 2 sin2 t

0.91 + 2 cos2 t 0.67 + 0.2 sin2 t 0.91 + 2 sin2 t

2.54 + 0.4 cos4 t 0.5 + 0.41 sin2 t 0.94 + 2 cos2 t

 .
Set r = 1, Kij(u) = e−2u sinu, i, j = 1, 2, 3, and f(x) = 1

20(|x− 1| − |x+ 1|).
Then it is straightforward to check that the SICNNs (3.1) and (3.5) satisfy
the conditions (H1)–(H4). Hence, from Lemma 1.1 and Theorem 2.1, system



Shunting inhibitory cellular neural networks 249

(3.5) has exactly one almost periodic solution. Moreover, all solutions of
system (3.1) converge exponentially to the almost periodic solution of system
(3.5).

Remark 3.1. System (3.1) is a very simple form of delayed shunting
inhibitory neural networks without almost periodic coefficients. Therefore,
the results in [2–5, 8–13] and the references therein cannot be applied to
prove that all solutions of system (3.1) converge exponentially to an almost
periodic function. This implies that the results of this paper are essentially
new.
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