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Uniform attractors for nonautonomous parabolic equations
involving weighted p-Laplacian operators

by Cung The Anh and Nguyen Van Quang (Hanoi)

Abstract. We consider the first initial boundary value problem for nonautonomous
quasilinear degenerate parabolic equations involving weighted p-Laplacian operators, in
which the nonlinearity satisfies the polynomial condition of arbitrary order and the exter-
nal force is normal. Using the asymptotic a priori estimate method, we prove the existence
of uniform attractors for this problem. The results, in particular, improve some recent ones
for nonautonomous p-Laplacian equations.

1. Introduction. Nonautonomous equations appear in many applica-
tions in the natural sciences, so they are of great importance and interest.
The long-time behavior of solutions of such equations have been studied
extensively in the last years.

In the book [14], Haraux considered some special classes of such systems
and systematically studied the notion of a uniform attractor. As is known,
a general method for considering the existence of the uniform attractor for
nonautonomous equations was introduced by Chepyzhov and Vishik in [8].
This method has been used to study the existence of the uniform attractor
for many equations arising in mathematical physics (see e.g. [8, 9, 10]).
However, it is unsatisfactory that the method of Chepyzhov and Vishik can
only be used to deal with the problems with translation compact symbols,
while in applications symbols of many problems are not translation compact.
Recently, Lu et al. [18] gave a necessary and sufficient condition for the
existence of the uniform attractor for nonautonomous systems, which can
be applied for more general symbols.

In this paper we study the following nonautonomous quasilinear degen-
erate parabolic equation with variable, nonnegative coefficients, defined on
an arbitrary domain (bounded or unbounded) Ω ⊂ RN , N ≥ 2:
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(1.1)


ut − div(ρ|∇u|p−2∇u) + f(x, u) = g(t), x ∈ Ω, t > 0,
u|t=τ = uτ (x), x ∈ Ω,
u|∂Ω = 0,

where p ≥ 2, uτ ∈ L2(Ω) is given, and the diffusion coefficient ρ, the non-
linearity f , and the external force g satisfy some conditions specified later.

The degeneracy of problem (1.1) is considered in the sense that the mea-
surable, nonnegative diffusion coefficient ρ(x) is allowed to have at most a
finite number of (essential) zeroes at some points. More precisely, we assume
that the function ρ : Ω → R satisfies the following assumptions:

(H1) when the domain Ω is bounded,

(Hα) ρ ∈ L1
loc(Ω) and for some α ∈ (0, p), lim infx→z |x−z|−αρ(x)

> 0 for every z ∈ Ω,

and when the domain Ω is unbounded,

(H∞α,β) ρ satisfies condition (Hα) and lim inf |x|→∞ |x|−βρ(x) > 0
for some β > p+ (N/2)(p− 2).

The physical motivation of the assumption (Hα) is related to the mod-
elling of reaction-diffusion processes in composite materials, occupying a
bounded domain Ω, which at some points behave as perfect insulators. Fol-
lowing [12, p. 79], when at some points the medium is perfectly insulating,
it is natural to assume that ρ(x) vanishes at those points. On the other
hand, when condition (H∞α,β) is satisfied, it is easy to see that the diffusion
coefficient has to be unbounded. Physically, this situation corresponds to a
nonhomogeneous medium, occupying the unbounded domain Ω, which be-
haves as a perfect conductor in Ω \BR(0) (see [12, p. 79]), and as a perfect
insulator at a finite number of points in BR(0). Note that in various diffu-
sion processes, the equation involves a diffusion ρ(x) ∼ |x|α, α ∈ (0, p), in
the case of a bounded domain, and ρ(x) ∼ |x|α + |x|β, α ∈ (0, p), β > p, in
the case of an unbounded domain.

In the case of a bounded domain and ρ(x) satisfying condition (Hα),
problem (1.1) contains some important classes of parabolic equations, such
as the semilinear heat equations (when ρ = 1, p = 2), semilinear degenerate
parabolic equations (when p = 2), the p-Laplacian equations (when ρ = 1,
p 6= 2), etc. The long-time behavior of solutions to p-Laplacian equations has
been studied by many authors in the last years (see e.g. [6, 7, 11, 22, 23]).
In the autonomous degenerate case, that is, the case of g independent of
time t, the existence and long-time behavior of solutions to problem (1.1)
when p = 2 have been studied in [15, 16] and recently in [2, 1]; the quasilinear
case 1 < p 6= 2 is investigated in [3].
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In this paper we continue the study of the long-time behavior of solutions
to problem (1.1) by allowing the external force g to depend on t. To study
problem (1.1) we assume that

(H2) f : Ω × R→ R is a Carathéodory function such that

|f(x, u)| ≤ C1|u|q−1 + h1(x),(1.2)

uf(x, u) ≥ C2|u|q − h2(x),(1.3)

F (x, u) =
u�

0

f(x, ξ) dξ ≥ C3|u|q + h3(x),(1.4)

f ′u(x, u) ≥ −l for some l > 0,(1.5)

where q ≥ 2; C1, C2, C3 > 0; h1 ∈ Lq
′
(Ω) and h2, h3 ∈ L1(Ω) ∩

L∞(Ω) are nonnegative functions.
(H3) The external force g ∈ L2

loc(R;L2(Ω)) satisfies

(1.6) g ∈ L2
n(R;L2(Ω)), g′ ∈ L2

b(R;L2(Ω)),

where L2
n(R;L2(Ω)) and L2

b(R;L2(Ω)) are the sets of translation
normal functions and translation bounded functions (see Section
2.2 for their definitions).

(H4) [1, p∗α) ∩ I[p′, q′] 6= ∅, where α is given in (Hα), if Ω is a bounded
domain; and (p∗β, p] ∩ I[p′, q′] 6= ∅, where α, β are given in (H∞α,β),
if Ω is an unbounded domain.

Here p′ denotes the conjugate exponent of p, i.e., 1/p + 1/p′ = 1; p∗γ :=
pN/(N − p+ γ), for γ ∈ R+; and I[p, q] := {tp+ (1− t)q | 0 ≤ t ≤ 1}.

In order to study problem (1.1) we introduce the natural energy space
D1,p

0 (Ω, ρ) defined as the closure of C∞0 (Ω) in the norm

‖u‖D1,p
0 (Ω,ρ)

:=
( �
Ω

ρ(x)|∇u|p dx
)1/p

,

and prove some compactness results (see Section 2.1 for more details). Us-
ing the compactness and monotonicity methods [17], we prove the global
existence of a weak solution to problem (1.1). The main aim of this paper is
to study the existence of an (L2(Ω),D1,p

0 (Ω, ρ) ∩ Lq(Ω))-uniform attractor
for a family of processes associated to problem (1.1).

Let us describe the methods used in the paper (we refer to Section 2.3
for definitions of related concepts). First, we use a priori estimates to show
the existence of an (L2(Ω),D1,p

0 (Ω, ρ) ∩ Lq(Ω))-uniformly absorbing set for
the family of processes. By the compactness of the embedding D1,p

0 (Ω, ρ) ↪→
L2(Ω), the family of processes is (L2(Ω), L2(Ω))-uniformly asymptotically
compact. This immediately implies the existence of an (L2(Ω), L2(Ω))-uni-
form attractor. When proving the existence of an (L2(Ω), Lq(Ω))-uniform
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attractor and an (L2(Ω),D1,p
0 (Ω, ρ)∩Lq(Ω))-uniform attractor, to overcome

the difficulty caused by the lack of embbeding results, we use the asymp-
totic a priori estimate method initiated in [19] for autonomous equations
and developed in [18] for nonautonomous equations. This method has been
applied successfully for some classes of partial differential equations (see e.g.
[18–21, 23, 24]). One of the main new features in our paper is that the ex-
istence of uniform attractors is proved for a class of quasilinear degenerate
parabolic equations in an arbitrary (bounded or unbounded) domain. It is
worth noticing that, when ρ = 1, we recover/improve the recent results in
[7, 20] for nonautonomous heat equations and nonautonomous p-Laplacian
equations in bounded domains.

The content of the paper is as follows. In Section 2, we prove some com-
pactness results and recall some concepts and results on uniform attractors
which we will use. In Sections 3 and 4, we focus on the case of an unbounded
domain and the diffusion coefficient ρ satisfying condition (H∞α,β) because it
is more complicated. Section 3 is devoted to the proof of the existence and
uniqueness of a global weak solution to problem (1.1) by using the compact-
ness and monotonicity methods. In Section 4, using the asymptotic a priori
estimate method, we prove the existence of uniform attractors in various
spaces. In the last section, we give some remarks on similar results for a
bounded domain and ρ satisfying condition (Hα).

2. Preliminary results

2.1. Function spaces and operators. In order to study problem
(1.1), we introduce the weighted Sobolev space D1,p

0 (Ω, ρ) defined as the
closure of C∞0 (Ω) with respect to the norm

‖u‖D1,p
0 (Ω,ρ)

:=
( �
Ω

ρ(x)|∇u|p dx
)1/p

,

and denote by D−1,p′(Ω, ρ) the dual space of D1,p
0 (Ω, ρ).

We now give some compactness results, which are generalizations of the
results in the case p = 2 of Caldiroli and Musina [5]. The first result comes
from [3, Proposition 2.1].

Proposition 2.1. Assume that Ω is a bounded domain in RN , N ≥ 2,
and ρ satisfies the hypothesis (Hα). Then there is a compact embedding
D1,p

0 (Ω, ρ) ⊂ Lr(Ω) whenever 1 ≤ r < p∗α.

We now prove embedding results in the case of an unbounded domain.

Proposition 2.2. Assume that Ω is an unbounded domain in RN , N≥2,
and ρ satisfies the hypothesis (H∞α,β). Then there is a compact embedding
D1,p

0 (Ω, ρ) ⊂ Lr(Ω) for every r ∈ (p∗β, p
∗
α), r ≥ 1.
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Proof. Let {um} be a sequence in D1,p
0 (Ω, ρ) such that um ⇀ 0 in

D1,p
0 (Ω, ρ). For any fixed r ∈ (p∗β, p

∗
α), r ≥ 1, we have to prove that um → 0

in Lr(Ω). For R > 0, write BR for the ball centered at 0 with radius R.
Using Proposition 2.1, we see that D1,p

0 (BR, ρ) ↪→ Lr(BR) compactly. Then
‖um‖Lr(BR) → 0 as m → ∞. Indeed, assume that, on the contrary, there
exist η > 0 and a subsequence of um, still denoted by um, such that

(2.1)
�

Ω\BR

|um|r ≥ η for all R > 0.

Choose a function ϕ ∈ C∞(RN ) such that

• 0 ≤ ϕ ≤ 1,
• ϕ = 0 in BR and ϕ = 1 in Ω \B2R.

Now putting ûm = ϕum, we have

(2.2)
�

Ω

ρ(x)|∇ûm|p ≤ C
( �
Ω

ρ(x)|∇um|p +
�

Ω

ρ(x)|um|p|∇ϕ|p
)
.

One can rewrite the last integral as

(2.3)
�

Ω

ρ(x)|um|p|∇ϕ|p =
�

Ω∩(B2R\BR)

ρ(x)|um|p|∇ϕ|p.

Using Proposition 2.1 again for the bounded domain Ω ∩ (B2R \ BR), we
find that um → 0 a.e. in Ω ∩ (B2R \BR) and hence

(2.4)
�

Ω

ρ(x)|um|p|∇ϕ|p = o(1) as m→∞.

Taking γ ∈ (0, p) such that p∗γ = r and using the Caffarelli–Kohn–Nirenberg
inequality [4], we have( �

Ω\B2R

|um|p
∗
γ

)p/p∗γ
=
( �

Ω\B2R

|ûm|p
∗
γ

)p/p∗γ ≤ ( �
Ω

|ûm|p
∗
γ

)p/p∗γ
(2.5)

≤
�

Ω

|x|γ |∇ûm|p.

Since ρ satisfies (H∞α,β), one can see that

ρ(x) ≥ δ|x|β−γ |x|γ ≥ δRβ−γ |x|γ

for some δ > 0 and all x ∈ Ω \ BR with R large enough. Combining this
with (2.5), we get

(2.6)
( �

Ω\B2R

|um|p
∗
γ

)p/p∗γ ≤ CRβ−γ �

Ω

ρ(x)|∇um|p + o(1).

Taking (2.1) into account, we see that (2.6) leads to a contradiction when
R is chosen large enough. The proof is complete.
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Remark 2.1. From the above proof, we see that the conclusion of
Proposition 2.2 is still valid for all β > p. The condition β > p+(N/2)(p−2)
in assumption (H∞α,β) ensures that D1,p

0 (Ω, ρ) ↪→ L2(Ω) compactly, which is
necessary later. Put

Lp,ρu := −div(ρ|∇u|p−2∇u).

The following proposition, whose proof is straightforward, gives some im-
portant properties of the operator Lp,ρ.

Proposition 2.3. The operator Lp,ρ maps D1,p
0 (Ω, ρ) into its dual

D−1,p′(Ω, ρ). Moreover,

(1) Lp,ρ is hemicontinuous, i.e., for all u, v, w ∈ D1,p
0 (Ω, ρ), the map

λ 7→ 〈Lp,ρ(u+ λv), w〉 is continuous from R to R.
(2) Lp,ρ is strongly monotone when p ≥ 2, i.e., there exists δ > 0 such

that

〈Lp,ρu− Lp,ρv, u− v〉 ≥ δ‖u− v‖pD1,p
0 (Ω,ρ)

for all u, v ∈ D1,p
0 (Ω, ρ).

2.2. The translation normal functions

Definition 2.1. Assume that E is a reflexive Banach space.

(1) A function ϕ ∈ L2
loc(R; E) is said to be translation bounded if

‖ϕ‖2L2
b

= ‖ϕ‖L2
b(R;E) = sup

t∈R

t+1�

t

‖ϕ‖2E ds <∞.

(2) A function ϕ ∈ L2
loc(R; E) is said to be translation normal if for any

ε > 0, there exists η > 0 such that

sup
t∈R

t+η�

t

‖ϕ‖2E ds < ε.

(3) A function ϕ ∈ L2
loc(R; E) is said to be translation compact if the

closure of {ϕ(·+ h) | h ∈ R} is compact in L2
loc(R; E).

Denote by L2
b(R; E), L2

n(R; E) and L2
c(R; E) the sets of all translation

bounded, translation normal and translation compact functions in L2
loc(R;E),

respectively. It is well-known (see [18]) that

L2
c(R; E) ⊂ L2

n(R; E) ⊂ L2
b(R; E).

Let Hw(g) be the closure of the set {g(· + h) | h ∈ R} in L2
b(R;L2(Ω))

in the weak topology. The following results are proved in [18].

Lemma 2.4 ([18, Proposition 3.1]).

(1) For all σ ∈ Hw(g), ‖σ‖2
L2

b
≤ ‖g‖2

L2
b
.

(2) The translation group {T (h)} is weakly continuous on Hw(g).
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(3) T (h)Hw(g) = Hw(g) for h ≥ 0.
(4) Hw(g) is weakly compact.

Lemma 2.5 ([18, Lemma 3.1]). If g ∈ L2
n(R; E) then for any τ ∈ R,

lim
γ→+∞

sup
t≥τ

t�

τ

e−γ(t−τ)‖ϕ‖2E ds = 0 for all ϕ ∈ Hw(g).

2.3. Uniform attractors. Let Σ be a parameter set and X,Y two
Banach spaces with Y ⊂ X continuously. {Uσ(t, τ) | t ≥ τ, τ ∈ R}, σ ∈ Σ,
is said to be a family of processes in X, if for each σ ∈ Σ, {Uσ(t, τ)} is a
process, that is, a two-parameter family of mappings from X to X satisfying

Uσ(t, s)Uσ(s, τ) = Uσ(t, τ), ∀t ≥ s ≥ τ, τ ∈ R,
Uσ(τ, τ) = Id, the identity operator, τ ∈ R,

where Σ is called the symbol space, σ ∈ Σ is the symbol. Denote by B(X)
the set of all bounded subsets of X.

Definition 2.2. A set B0 ∈ B(Y ) is said to be (X,Y )-uniformly ab-
sorbing for the family of processes {Uσ(t, τ)}σ∈Σ if for any τ ∈ R and every
B ∈ B(X), there exists t0 = t0(τ,B) ≥ τ such that

⋃
σ∈Σ Uσ(t, τ)B ⊂ B0

for all t ≥ t0. A set P ⊂ Y is said to be (X,Y )-uniformly attracting if, for
any fixed τ ∈ R and B ∈ B(X), limt→+∞ supσ∈Σ distY (Uσ(t, τ)B,P ) = 0.

Definition 2.3. A closed set AΣ ⊂ Y is said to be an (X,Y )-uniform
attractor for the family of processes {Uσ(t, τ)}σ∈Σ if it is an (X,Y )-uniformly
attracting set, and it is contained in any closed (X,Y )-uniformly attracting
set for the family of processes {Uσ(t, τ)}σ∈Σ .

Theorem 2.6 ([7, Theorem 3.9]). Let {Uσ(t, τ)}σ∈Σ be a family of pro-
cesses acting on X such that:

(1) Uσ(t + h, τ + h) = UT (h)σ(t, τ), where {T (h) | h ≥ 0} is a family of
operators acting on Σ and satisfying T (h)Σ = Σ for all h ∈ R+;

(2) Σ is a weakly compact set and {Uσ(t, τ)}σ∈Σ is (X × Σ,Y )-weakly
continuous, i.e., for any fixed t ≥ τ , τ ∈ R, the mapping (u, τ) 7→
Uσ(t, τ)u is weakly continuous from X ×Σ to Y ;

(3) {Uσ(t, τ)}σ∈Σ is (X,Y )-uniformly asymptotically compact, i.e., it
possesses a compact (X,Y )-uniformly attracting set.

Then the family {Uσ(t, τ)}σ∈Σ possesses an (X,Y )-uniform attractor AΣ,
which is compact in Y and attracts all bounded subsets of X in the topology
of Y . Moreover

AΣ = ωτ,Σ(B0) =
⋂
t≥τ

⋃
σ∈Σ

⋃
s≥t

Uσ(s, τ)B0,

where B0 is any bounded (X,Y )-uniformly absorbing set of {Uσ(t, τ)}σ∈Σ.
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3. Existence of weak solutions. Recall that in this section and the
next section we only consider the case of an unbounded domain and ρ sat-
isfying condition (H∞α,β). Since β > p+ (N/2)(p− 2), we have D1,p

0 (Ω, ρ) ↪→
L2(Ω) compactly thanks to Proposition 2.2. Denote

V = Lp(τ, T ;D1,p
0 (Ω, ρ)) ∩ Lq(τ, T ;Lq(Ω)),

V ∗ = Lp
′
(τ, T ;D−1,p′(Ω, ρ)) + Lq

′
(τ, T ;Lq

′
(Ω)),

where p′ is the conjugate index of p. In what follows, we assume that uτ ∈
L2(Ω) is given.

Definition 3.1. A function u is called a weak solution of (1.1) on (τ, T )
iff

u ∈ V, ∂u

∂t
∈ V ∗,

u|t=τ = uτ (x) a.e. in Ω,

and
T�

τ

�

Ω

(
∂u

∂t
ϕ+ ρ|∇u|p−2∇u∇ϕ+ f(x, u)ϕ− gϕ

)
dx dt = 0

for all test functions ϕ ∈ V .

It is known (see e.g. [13, Theorem 3, p. 287]) that if u ∈ V and du/dt ∈
V ∗ then u ∈ C([τ, T ];L2(Ω)). This makes the initial condition in problem
(1.1) meaningful.

Theorem 3.1. For any given τ, T ∈ R and uτ ∈ L2(Ω), problem (1.1)
has a unique weak solution on (τ, T ).

Proof. Consider the approximating solution un(t) in the form

un(t) =
n∑
k=1

unk(t)ek,

where {ej}j∈N is a basis of D1,p
0 (Ω, ρ)∩Lq(Ω) which is orthonormal in L2(Ω).

We get un from solving the problem〈
dun
dt

, ek

〉
+ 〈Lp,ρun, ek〉+ 〈f(x, un), ek〉 = 〈g, ek〉,

(un(τ), ek) = (uτ , ek), k = 1, . . . , n.

Using the Peano theorem, we get the local existence of un. We have
1
2
d

dt
‖un‖2L2(Ω) + ‖un‖pD1,p

0 (Ω,ρ)
+

�

Ω

f(x, un)un =
�

Ω

g(t)un.

Since β > p + (N/2)(p − 2) we have D1,p
0 (Ω, ρ) ⊂ L2(Ω) continuously

and therefore there exists λ > 0 such that ‖u‖p
D1,p

0 (Ω,ρ)
≥ λ‖u‖p

L2(Ω)
≥
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λ‖u‖2L2(Ω) − λ. Using hypothesis (1.3) and the Cauchy inequality, we get

1
2
d

dt
‖un‖2L2(Ω) + ‖un‖pD1,p

0 (Ω,ρ)
+ C2‖un‖qLq(Ω) − ‖h2‖L1(Ω)

≤ 1
2λ
‖g(t)‖2L2(Ω) +

λ

2
‖un‖2L2(Ω).

Hence

(3.1)
d

dt
‖un‖2L2(Ω) + ‖un‖pD1,p

0 (Ω,ρ)
+ 2C2‖un‖qLq(Ω)

≤ 1
λ
‖g(t)‖2L2(Ω) + 2‖h2‖L1(Ω) + λ.

We show that the solution un can be extended to the interval [τ,∞). Indeed,
from (3.1), we have

d

dt
‖un‖2L2(Ω) + λ‖un‖2L2(Ω) ≤

1
λ
‖g(t)‖2L2(Ω) + 2‖h2‖L1(Ω) + 2λ.

Then by the Gronwall inequality, we obtain

‖un(t)‖2L2(Ω) ≤ ‖un(τ)‖2L2(Ω)e
−λ(t−τ) +

1
λ

t�

τ

e−λ(t−s)‖g(s)‖2L2(Ω) ds(3.2)

+ (2‖h2‖L1(Ω) + 2λ)(1− e−λ(t−τ))

≤ ‖un(τ)‖2L2(Ω)e
−λ(t−τ) +

1
λ

(1− e−λ)−1‖g‖2L2
b

+ (2‖h2‖L1(Ω) + 2λ)(1− e−λ(t−τ)),

where we have used the fact that
t�

τ

e−λ(t−s)‖g(s)‖2L2(Ω) ds

≤
t−1�

t

e−λ(t−s)‖g(s)‖2L2(Ω) ds+
t−1�

t−2

e−λ(t−s)‖g(s)‖2L2(Ω) ds+ · · ·

≤
t�

t−1

‖g(s)‖2L2(Ω) ds+ e−λ
t−1�

t−2

‖g(s)‖2L2(Ω) ds+ · · ·

≤ (1 + e−λ + e−2λ + · · · )‖g‖2L2
b

= (1− e−λ)−1‖g‖2L2
b
.

We now establish some a priori estimates for un. Integrating (3.1) on [τ, t],
τ < t ≤ T, we have

‖un(t)‖2L2(Ω) +
t�

τ

‖un‖pD1,p
0 (Ω,ρ)

+ 2C2

t�

τ

‖un‖qLq(Ω)

≤ ‖un(τ)‖2L2(Ω) +
t�

τ

‖g(s)‖2L2(Ω) ds+ (2‖h2‖L1(Ω) + λ)(t− τ).
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The last inequality implies that

{un} is bounded in L∞(τ, T ;L2(Ω)),

{un} is bounded in Lp(τ, T ;D1,p
0 (Ω, ρ)),

{un} is bounded in Lq(τ, T ;Lq(Ω)).

Using hypothesis (1.2), we get
T�

τ

‖f(x, un)‖q
′

Lq′ (Ω)
≤

T�

τ

�

Ω

(h1 + C1|un|q−1)q
′ ≤

T�

τ

�

Ω

C(|h1|q
′
+ |un|q).

It follows that {f(x, un)} is bounded in Lq
′
(τ, T ;Lq

′
(Ω)). For any v ∈

Lp(τ, T ;D1,p
0 (Ω, ρ)), we have

|〈Lp,ρun, v〉| =
∣∣∣T�
τ

dt
�

Ω

ρ(p−1)/p|∇un|p−2∇un(ρ1/p∇v)
∣∣∣

≤ ‖un‖p/p
′

Lp(τ,T ;D1,p
0 (Ω,ρ))

‖v‖
Lp(τ,T ;D1,p

0 (Ω,ρ))
,

where we have used the Hölder inequality. Because of the boundedness of
{un} in Lp(τ, T ;D1,p

0 (Ω, ρ)), we infer that {Lp,ρun} is bounded in Lp
′
(τ, T ;

D−1,p(Ω, ρ)). From the above estimates, we have

un ⇀ u in Lp(τ, T ;D1,p
0 (Ω, ρ)),

f(x, un) ⇀ η in Lq
′
(τ, T ;Lq

′
(Ω)),

Lp,ρun ⇀ χ in Lp
′
(τ, T ;D−1,p(Ω, ρ)),

up to a subsequence. By rewriting the equation as

(3.3)
dun
dt

= −Lp,ρun − f(x, un) + g,

we see that {dun/dt} is bounded in V ∗. By hypothesis (H4) and Proposition
2.2, one can take a number r ∈ (p∗β, p] ∩ I[p′, q′] such that

(3.4) D1,p
0 (Ω, ρ) ⊂⊂ Lr(Ω).

Since r′ ∈ I[p, q], we have

Lp(Ω) ∩ Lq(Ω) ⊂ Lr′(Ω),

and therefore

(3.5) Lr(Ω) ⊂ Lp′(Ω) + Lq
′
(Ω).

Using Proposition 2.2 again, we see that

D1,p
0 (Ω, ρ) ⊂ Lp(Ω).

This and (3.5) imply that

Lr(Ω) ⊂W ∗ := D−1,p′(Ω, ρ) + Lq
′
(Ω).
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Now with (3.4), we have an evolution triple

(3.6) D1,p
0 (Ω, ρ) ⊂⊂ Lp(Ω) ⊂W ∗.

The boundedness of {u′n} in V ∗ ensures that {u′n} is also bounded in Ls(τ, T ;
W ∗), where s = min{p′, q′}. Thanks to the Aubin–Lions Lemma [17, p. 58],
{un} is precompact in Lp(τ, T ;Lr(Ω)) and therefore in Lr(τ, T ;Lr(Ω)) since
r ≤ p. Hence we can assume that un → u strongly in Lr(τ, T ;Lr(Ω)), so
un → u a.e. in Ω × [τ, T ] up to a subsequence. Since f(x, ·) is continuous, it
follows that f(x, un) → f(x, u) a.e. in Ω × [τ, T ]. Thanks to Lemma 1.3 in
[17, Chapter 1], one has

(3.7) f(x, un) ⇀ f(x, u) in Lq
′
(τ, T ;Lq

′
(Ω)).

Thus, from (3.3) we have

(3.8) u′ = −χ− f(x, u) + g in V ∗.

We now show that χ = Lp,ρu. Since Lp,ρ is monotone, we have

Xn =
T�

τ

〈Lp,ρun − Lp,ρu, un − u〉 dt ≥ 0.

Note that {un(T )} is bounded in L2(Ω), so un(T ) ⇀ u(T ) in L2(Ω), up to
a subsequence. Because

T�

τ

〈Lp,ρun, un〉 dt = −
T�

τ

dt
�

Ω

(f(x, un)un − gun) dx(3.9)

+
1
2
‖un(τ)‖2L2(Ω) −

1
2
‖un(T )‖2L2(Ω),

we obtain

lim sup
n→∞

Xn ≤−
T�

τ

(f(x, u), u) dt+
1
2
‖u(τ)‖2L2(Ω) −

1
2
‖u(T )‖2L2(Ω)(3.10)

−
T�

τ

(χ, v) dt−
T�

τ

(Lp,ρv, u− v) dt+
T�

τ

(g, u) dt,

where we have used the facts that un(τ) → uτ in L2(Ω), ‖u(T )‖L2(Ω) ≤
lim infn→∞ ‖un(T )‖L2(Ω). On the other hand, by integrating by parts, from
(3.7) we have

T�

τ

(f, u) dt+
1
2
‖u(τ)‖2L2(Ω) −

1
2
‖u(T )‖2L2(Ω) +

T�

τ

(g, u) dt =
T�

τ

(χ, u) dt,
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and therefore thanks to (3.9) and (3.10) one gets

T�

τ

(χ− Lp,ρv, u− v) dt ≥ 0.

We now use the hemicontinuity of the operator Lp,ρ to prove that χ = Lp,ρu.
Taking v = u− λw, where λ > 0 and w ∈ Lp(τ, T ;D1,p

0 (Ω, ρ)), we obtain

λ

T�

τ

(χ− Lp,ρ(u− λw), w) dt ≥ 0,

hence

(3.11)
T�

τ

(χ− Lp,ρ(u− λw), w) dt ≥ 0;

letting λ→ 0 in (3.11), we conclude that

T�

τ

(χ− Lp,ρu,w)dt ≥ 0 for all w.

So χ = Lp,ρu. Thus

u′ = −Lp,ρu− f(x, u) + g in V ∗.

It remains to show that u(τ) = uτ . Choosing some ϕ ∈ C1([τ, T ];D1,p
0 (Ω, ρ)

∩ Lq(Ω)) with ϕ(T ) = 0, observe that ϕ ∈ V , so in the “limiting equation”
one can integrate by parts in the t variable to obtain

T�

τ

−(u, ϕ′) +
T�

τ

�

Ω

ρ(x)|∇u|p−2∇u∇ϕ+
T�

τ

�

Ω

(f(x, u)− g)ϕ = (u(τ), ϕ(τ)).

Doing the same in the Galerkin approximations yields

T�

τ

−(un, ϕ′) +
T�

τ

�

Ω

ρ(x)|∇un|p−2∇un∇ϕ+
T�

τ

�

Ω

(f(x, un)− g)ϕ = (un(τ), ϕ(τ)).

Taking limits as n→∞ we conclude that

T�

τ

−(u, ϕ′) +
T�

τ

�

Ω

ρ(x)|∇u|p−2∇u∇ϕ+
T�

τ

�

Ω

(f(x, u)− g)ϕ = (uτ , ϕ(τ)),

since un(τ)→ uτ . Thus, u(τ) = uτ .
We now verify the uniqueness and continuous dependence of the solution.

Let u1, u2 be two solutions of problem (1.1) with the initial data u1(τ), u2(τ),
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respectively. From (1.1), we have

1
2
d

dt
‖u1 − u2‖2L2(Ω) ≤

1
2
d

dt
‖u1 − u2‖2L2(Ω) + 〈Lp,ρu1 − Lp,ρu2, u1 − u2〉

= −〈f(x, u1)− f(x, u2), u1 − u2〉
≤ l‖u1 − u2‖2L2(Ω).

Applying the Gronwall lemma, we obtain

‖u1(t)− u2(t)‖2L2(Ω) ≤ e
2l(t−τ)‖u1(τ)− u2(τ)‖L2(Ω).

This implies the uniqueness (if u1(τ) = u2(τ)) and the continuous depen-
dence of the solution.

4. Existence of uniform attractors. From Theorem 3.1, we can de-
fine a family of processes {Uσ(t, τ)}σ∈Hw(g), acting on L2(Ω) as Uσ(t, τ)uτ =
u(t), where u(t) is the unique weak solution of problem (1.1) with the initial
condition uτ and the external force σ(t). By the uniqueness of the weak
solution, we have

Uσ(t+ h, τ + h) = UT (h)σ(t, τ), ∀σ ∈ Hw(g), t ≥ τ, τ ∈ R, h ≥ 0.

Here Hw(g) denotes the closure of the set {g(·+h) | h ∈ R} in L2
b(R;L2(Ω))

in the weak topology. We first prove the following

Proposition 4.1. The family of processes {Uσ(t, τ)}σ∈Hw(g) associated
to (1.1) is (L2(Ω)×Hw(g), L2(Ω))-weakly continuous, and (L2(Ω)×Hw(g),
D1,p

0 (Ω, ρ) ∩ Lq(Ω))-weakly continuous.

Proof. Fix t ≥ τ, τ ∈ R and assume that uτn ⇀ uτ weakly in L2(Ω)
and σn ⇀ σ0 weakly in Hw(g). Denote un(t) = Uσn(t, τ)uτn . Similarly to
the proof of Theorem 3.1, the estimates for un are valid for un(t). Thus,
we can find a subsequence um(t) of un(t) such that um(t) ⇀ w(t) weakly
in L2(Ω) and in D1,p

0 (Ω, ρ) ∩ Lq(Ω), where w is the solution of problem
(1.1) with initial condition uτ . Due to the uniqueness of the solution, we
deduce that Uσm(t, τ)uτm ⇀ Uσ0(t, τ)uτ weakly in L2(Ω) and in D1,p

0 (Ω, ρ)∩
Lq(Ω). This holds for all subsequences of {Uσn(t, τ)uτn} and therefore also
for {Uσn(t, τ)uτn}.

Proposition 4.2. The family of processes {Uσ(t, τ)}σ∈Hw(g) associated
to problem (1.1) has a bounded (L2(Ω),D1,p

0 (Ω, ρ) ∩ Lq(Ω))-uniformly ab-
sorbing set.

Proof. Suppose that B ⊂ L2(Ω) is bounded, uτ ∈ B, σ ∈ Hw(g) and
u = Uσ(t, τ)uτ . Then the same estimates of un are valid for u with g(t)
replaced by σ(t). Similarly to (3.2) we get
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‖u(t)‖2L2(Ω) ≤ ‖u(τ)‖2L2(Ω)e
−λ(t−τ) +

1
λ

t�

τ

e−λ(t−s)‖g(s)‖2L2(Ω)

+ 2(‖h2‖L1(Ω) + λ)(1− e−λ(t−τ))

≤ ‖u(τ)‖2L2(Ω)e
−λ(t−τ) +

1
λ

(1− e−λ)−1‖g‖2L2
b

+ 2(‖h2‖L1(Ω) + λ)(1− e−λ(t−τ)).

The last inequality implies that there exists T1 = T1(B, τ) such that

(4.1) ‖u(t)‖2L2(Ω) ≤ C(‖g‖2L2
b
) for all t ≥ T1, uτ ∈ B, σ ∈ Hw(g).

By (3.1) and (4.1),

(4.2)
t+1�

t

(‖u‖p
D1,p

0 (Ω,ρ)
+ ‖u‖qLq(Ω)) ≤ C4 for any t ≥ T1.

Combining (1.4) with (4.2), we get

(4.3)
t+1�

t

(
‖u‖p

D1,p
0 (Ω,ρ)

+
�

Ω

F (x, u)
)
≤ C5 for any t ≥ T1.

On the other hand, multiplying (1.1) by ut, we obtain

(4.4) ‖ut‖22 +
d

dt

(
‖u‖p

D1,p
0 (Ω,ρ)

+
�

Ω

F (x, u)
)
≤ 1

2
‖σ(t)‖2L2(Ω) +

1
2
‖ut‖2L2(Ω),

thus

(4.5)
d

dt

(
‖u‖p

D1,p
0 (Ω,ρ)

+
�

Ω

F (x, u)
)
≤ 1

2
‖σ(t)‖2L2(Ω).

From (4.3) and (4.5), by virtue of the uniform Gronwall lemma [22, p. 91],
we get

‖u‖p
D1,p

0 (Ω,ρ)
+

�

Ω

F (x, u) ≤ C6 for any t ≥ T1.

Hence, using (1.4), we obtain

(4.6) ‖u(t)‖p
D1,p

0 (Ω,ρ)
+ ‖u(t)‖qLq(Ω) ≤ C7 for any t ≥ T1.

This last inequality implies the existence of a bounded (L2(Ω),D1,p
0 (Ω, ρ)∩

Lq(Ω))-uniformly absorbing set B0.

The set B0 is of course a bounded (L2(Ω), L2(Ω))- and (L2(Ω), Lq(Ω))-
uniformly absorbing set for the family of processes {Uσ(t, τ)}σ∈Hw(g). By
Theorem 2.6, to prove the existence of a uniform attractor, we only need to
verify that {Uσ(t, τ)}σ∈Hw(g) is uniformly asymptotically compact.
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4.1. (L2(Ω), L2(Ω))-uniform attractor. Because D1,p
0 (Ω, ρ) ⊂ L2(Ω)

compactly, {Uσ(t, τ)}σ∈Hw(g) is (L2(Ω), L2(Ω))-uniformly asymptotically
compact. Thus, we immediately get the following result.

Theorem 4.3. The family of processes {Uσ(t, τ)}σ∈Hw(g) associated to
problem (1.1) has an (L2(Ω), L2(Ω))-uniform attractor A2, which is compact
in L2(Ω) and attracts every bounded subset of L2(Ω) in the topology of
L2(Ω). Moreover,

A2 = ωτ,Hw(g)(B0),

where B0 is any (L2(Ω), L2(Ω))-uniformly absorbing set in L2(Ω).

4.2. (L2(Ω), Lq(Ω))-uniform attractor. To prove that the family of
processes {Uσ(t,τ)}σ∈Hw(g) is (L2(Ω),Lq(Ω))-uniformly asymptotically com-
pact, we use the following result (see [7, Corollary 3.12]).

Lemma 4.4. Let {Uσ(t, τ)}σ∈Hw(g) be a family of processes on L2(Ω)
that is (L2(Ω), L2(Ω))-uniformly asymptotically compact. Then this family
is (L2(Ω), Lq(Ω))-uniformly asymptotically compact, 2 ≤ q ≤ ∞, if

(1) {Uσ(t, τ)}σ∈Hw(g) has a bounded (L2(Ω), Lq(Ω))-uniformly absorb-
ing set B0;

(2) for any ε > 0, τ ∈ R and any bounded subset B ⊂ L2(Ω), there exist
positive constants T = T (B, ε, τ) and M = M(ε) such that�

Ω(|Uσ(t,τ)uτ |≥M)

|Uσ(t, τ)uτ |q dx < ε for any uτ ∈ B, t ≥ T, σ ∈ Hw(g).

Here Ω(|u| ≥M) := {x ∈ Ω | |u(x)| ≥M}.
Theorem 4.5. The family of processes {Uσ(t, τ)}σ∈Hw(g) associated to

problem (1.1) has an (L2(Ω), Lq(Ω))-uniform attractor Aq, which is compact
in Lq(Ω) and attracts every bounded subset of L2(Ω) in the topology of
Lq(Ω). Moreover,

Aq = ωτ,Hw(g)(B0),

where B0 is any (L2(Ω), Lq(Ω))-uniformly absorbing set.

Proof. By Lemma 4.4 and Theorem 2.6, it is sufficient to show that for
any ε > 0, τ ∈ R and any bounded subset B ⊂ L2(Ω), there exist positive
constants T = T (B, ε, τ) and M = M(ε) such that�

Ω(|Uσ(t,τ)uτ |≥M)

|Uσ(t, τ)uτ |q dx < ε for any uτ ∈ B, t ≥ T, σ ∈ Hw(g).

Take M > 0 large enough such that C̃2|u|q−1 ≤ f(x, u) in ΩM = {x ∈ Ω |
u(x, t) ≥M} and denote

u+
M =

{
u−M, u ≥M ,
0, u ≤M .
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In ΩM we see that

σ(t)(u+
M )q−1 ≤ C̃2

2
(u+
M )2q−2+

1
2C̃2

|σ(t)|2 ≤ C̃2

2
(u+
M )q−1|u|q−1+

1
2C̃2

|σ(t)|2,

and

f(u)(u+
M )q−1 ≥ C̃2|u|q−1(u+

M )q−1 ≥ C̃2

2
(u+
M )q−1|u|q−1 +

C̃2

2
|u|q−2(u+

M )q

≥ C̃2

2
(u+
M )q−1|u|q−1 +

C̃2M
q−2

2
(u+
M )q.

Multiplying equation (1.1) by |u+
M |q−1 and using the above inequalities, we

deduce that

1
q

d

dt
‖u+

M‖
q
Lq(ΩM ) +

q − 1
2

�

ΩM

ρ(x)|∇u+
M |

p|u+
M |

q−2 +
C̃2M

q−2

2

�

ΩM

|u+
M |

q

≤
�

ΩM

1
2C̃2

|σ|2.

Therefore
d

dt
‖u+

M‖
q
Lq(ΩM ) +

C̃2M
q−2q

2

�

ΩM

|u+
M |

q ≤
�

ΩM

q

2C̃2

|σ|2.

Letting k = TB, where TB is chosen such that ‖Uσ(t, τ)uτ‖qLq(Ω) ≤ ρq for all
t ≥ TB we deduce that

‖u+
M (t)‖qLq(Ω) ≤ ‖u

+
M (k)‖qLq(Ω)e

−λ(t−k) +
t�

k

(
e−λ(t−s) q

2C̃2

�

ΩM

|σ|2
)

(4.7)

≤ ‖u+
M (k)‖qLq(Ω)e

−λ(t−k) +
q

2C̃2

t�

k

e−λ(t−s)‖σ‖2L2(ΩM ),

where λ = C̃2M
q−2q/2. By Lemma 2.5, we have

(4.8)
q

2C̃2

t�

k

e−λ(t−s)‖σ‖2L2(ΩM ) ≤
ε

2q+2

for σ ∈ Hw(g), M ≥M1 for some M1 > 0.

Letting T1 = 1
λ ln
(2q+3ρq

ε

)
+ k, we get

(4.9) ‖u+
M‖

q
Lq(ΩM )e

−λ(t−k) ≤ ε

2q+2
for all t > T1.

From (4.7)–(4.9), we deduce that

(4.10)
�

ΩM

|u+
M |

q ≤ ε

2q+1
for t > T1, σ ∈ Hw(g), M ≥M1.
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Repeating the same steps above, just taking |u−M |q−2u−M instead of |u+
M |q−1,

there exist M2 and T2 such that

(4.11)
�

ΩM

|u−M |
q ≤ ε

2q+1
for t > T2, σ ∈ Hw(g), M ≥M2,

where

u−M =
{
u+M, u ≤ −M ,
0, u ≥ −M .

Taking M3 = max(M1,M2), we obtain

(4.12)
�

ΩM3

|(|u| −M3)|q ≤ 2ε for t > max(T1, T2), σ ∈ Hw(g).

Therefore�

Ω2M3

|u|q =
�

Ω2M3

((|u| −M3) +M3)q ≤ 2q
�

Ω2M3

(|u| −M3)q +
�

Ω2M3

M q
3

≤ 2q
�

Ω2M3

(|u| −M3)q +
�

Ω2M3

(|u| −M3)q ≤ 2q+1 ε

2q+1
= ε.

This completes the proof.

Remark 4.1. In fact, if we are only concerned with the existence of the
(L2(Ω), L2(Ω))-uniform attractor and the (L2(Ω), Lq(Ω))-uniform attrac-
tor for the family of processes {U(t, τ)}, then the assumption (H2) can be
replaced by a weaker assumption: f ∈ C(R) satisfies

C1|u|q − C0 ≤ f(u)u ≤ C2|u|q + C0, q ≥ 2,

(f(u)− f(v))(u− v) ≥ −C|u− v|2 for any u, v ∈ R,

and we only need to assume that p > 1, which ensures that the operator
Lp,σ is monotone (but not strongly monotone when 1 < p < 2). However, we
need to use the stronger assumptions, namely f ∈ C1(R) satisfying (H2) and
p ≥ 2, in the next section to prove the existence of an (L2(Ω),D1,p

0 (Ω, σ) ∩
Lq(Ω))-uniform attractor.

4.3. (L2(Ω),D1,p
0 (Ω, ρ) ∩ Lq(Ω))-uniform attractor. First, we shall

prove the following lemma.

Lemma 4.6. For any bounded subset B ⊂ L2(Ω), τ ∈ R and σ ∈ Hw(g),
there exists a positive constant T = T (B, τ) ≥ τ such that∥∥∥∥ ddt(Uσ(t, τ)uτ )

∣∣∣∣
t=s

∥∥∥∥2

L2(Ω)

≤ C for any uτ ∈ B, s ≥ T, σ ∈ Hw(g),

where C is independent of B and σ.
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Proof. We give some formal calculations; a rigorous proof is done by
use of Galerkin approximations. Letting u = Uσ(t, τ)uτ , then differentiating
(1.1) with the external force σ ∈ Hw(g) in time, we obtain

1
2
d

dt
‖ut‖2L2(Ω) +

�

Ω

ρ|∇u|p−2|∇ut|2 dx+ (p− 2)
�

Ω

|∇u|p−4(∇u.∇ut)2

= −
�

Ω

f ′(u)|ut|2 +
�

Ω

σ′(t)ut

≤ l‖ut‖2L2(Ω) +
1
2
‖σ′(t)‖2L2(Ω) +

1
2
‖ut‖2L2(Ω).

Therefore

(4.13)
1
2
d

dt
‖ut‖2L2(Ω) ≤

(
l +

1
2

)
‖ut‖2L2(Ω) +

1
2
‖σ′(t)‖2L2(Ω).

Using (4.3) and (4.4), we have

(4.14)
t+1�

t

‖ut‖2L2(Ω) ≤ C for t large enough.

From (4.13) and (4.14), by the uniform Gronwall lemma [22, p. 91], we get
�

Ω

|ut|2dx ≤ C for t large enough,

where C is independent of σ. The proof is complete.

Theorem 4.7. The family of processes {Uσ(t, τ)}σ∈Hw(g) associated to
problem (1.1) has an (L2(Ω),D1,p

0 (Ω, ρ)∩Lq(Ω))-uniform attractor A, which
is compact in D1,p

0 (Ω, ρ)∩Lq(Ω) and attracts every bounded subset of L2(Ω)
in the topology of D1,p

0 (Ω, ρ) ∩ Lq(Ω). Moreover,

A = ωτ,Hw(g)(B0),

where B0 is any (L2(Ω),D1,p
0 (Ω, ρ) ∩ Lq(Ω))-uniformly absorbing set.

Proof. Let B0 be an (L2(Ω),D1,p
0 (Ω, ρ) ∩ Lq(Ω))-uniformly absorbing

set. We only need to show that for any uτn ∈ B0, σn ∈ Hw(g), tn → ∞,
{Uσn(tn, τ)uτn} is precompact in D1,p

0 (Ω, ρ) ∩ Lq(Ω). Thanks to Theorem
4.3, it is sufficient to verify that for any uτn ∈ B0, σn ∈ Hw(g), tn → ∞,
{Uσn(tn, τ)uτn} is precompact in D1,p

0 (Ω, ρ).
By Theorems 3.1 and 4.3, we can assume that Uσn(t, τ)uτn is a Cauchy

sequence in both Lq(Ω) and L2(Ω). We will prove that Uσn(tn, τ)uτn is
a Cauchy sequence in D1,p

0 (Ω, ρ). Denote uσnn (tn) = Uσn(tn, τ)uτn . By the
strong monotonicity of the operator Lp,ρ when p ≥ 2, we have
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δ‖uσnn (tn)− uσmm (tm)‖p
D1,p

0 (Ω,ρ)

≤ 〈Lp,ρuσnn (tn)− Lp,ρuσmm (tm), uσnn (tn)− uσmm (tm)〉

≤
�

Ω

∣∣∣∣ ddtuσnn (tn)− d

dt
uσmm (tm)

∣∣∣∣|uσnn (tn)− uσmm (tm)| dx

+
�

Ω

|f(x, uσnn (tn))− f(x, uσmm (tm))| |uσnn (tn)− uσmm (tm)| dx

+
�

Ω

|σn(tn)− σm(tm)| |uσnn (tn)− uσmm (tm)| dx

≤
∥∥∥∥ ddtuσnn (tn)− d

dt
uσmm (tm)

∥∥∥∥
L2(Ω)

‖uσnn (tn)− uσmm (tm)‖L2(Ω)

+ C‖σn(tn)− σm(tm)‖L2(Ω)‖uσnn (tn)− uσmm (tm)‖L2(Ω)

+ ‖f(x, uσnn (tn))− f(x, uσmm (tm))‖Lq′ (Ω)‖u
σn
n (tn)− uσmm (tm)‖Lq(Ω).

Thanks to Lemma 4.6 and since {f(x, un(tn))} is bounded in Lq
′
(Ω), the

proof is complete.

5. Some remarks on the case of a bounded domain. In this section
we discuss the case of a bounded domain Ω ⊂ RN , N ≥ 2, and the weight
function ρ(x) satisfying condition (Hα). Under conditions (H1)–(H4) when
Ω is bounded, using Proposition 2.1 and repeating the arguments in the
case of an unbounded domain, one can prove that all results in Sections 3
and 4 are still valid in this case.

Note that in the case of a bounded domain and ρ(x) satisfying condition
(Hα), problem (1.1) contains some important classes of parabolic equations,
such as semilinear heat equations (when ρ = const > 0, p = 2), semilin-
ear degenerate parabolic equations (when p = 2), p-Laplacian equations
(when ρ = 1, p 6= 2), etc. Thus, in some sense, our results recover/extend
some known results on the existence and long-time behavior of solutions to
nonautonomous semilinear heat equations and nonautonomous p-Laplacian
equations in bounded domains [7, 8, 10, 20].

References

[1] C. T. Anh, N. D. Binh and L. T. Thuy, On the global attractors for a class of
semilinear degenerate parabolic equations, Ann. Polon. Math. 98 (2010), 71–89.

[2] C. T. Anh and P. Q. Hung, Global existence and long-time behavior of solutions to
a class of degenerate parabolic equations, ibid. 93 (2008), 217–230.

[3] C. T. Anh and T. D. Ke, Long-time behavior for quasilinear parabolic equations
involving weighted p-Laplacian operators, Nonlinear Anal. 71 (2009), 4415–4422.

http://dx.doi.org/10.4064/ap98-1-5
http://dx.doi.org/10.4064/ap93-3-3
http://dx.doi.org/10.1016/j.na.2009.02.125


270 C. T. Anh and N. V. Quang

[4] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with
weights, Compos. Math. 53 (1984), 259–275.

[5] P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear
Differential Equations Appl. 7 (2000), 187–199.

[6] A. N. Carvalho, J. W. Cholewa and T. Dlotko, Global attractors for problems with
monotone operators, Boll. Uni. Mat. Ital. Sez. B (8) 2 (1999), 693–706.

[7] G. X. Chen and C. K. Zhong, Uniform attractors for nonautonomous p-Laplacian
equations, Nonlinear Anal. 68 (2008), 3349–3363.

[8] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems
and their dimension, J. Math. Pures Appl. 73 (1994), 279–333.

[9] —, —, Nonautonomous evolutionary equations with translation compact symbols and
their attractors, C. R. Acad. Sci. Paris Sér. I 321 (1995), 153–158.

[10] —, —, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq.
Publ. 49, Amer. Math. Soc., Providence, RI, 2002.

[11] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,
Cambridge Univ. Press, 2000.

[12] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for
Science and Technology, Vol. I: Physical origins and classical methods, Springer,
Berlin, 1985.

[13] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, Amer. Math.
Soc., 1998.
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