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On continuous composition operators

by Wilhelmina Smajdor (Gliwice)

Abstract. Let I ⊂ R be an interval, Y be a normed linear space and Z be a Banach
space. We investigate the Banach space Lip2(I, Z) of all functions ψ : I → Z such that

Mψ := sup{‖[r, s, t;ψ]‖ : r < s < t, r, s, t ∈ I} <∞,

where

[r, s, t;ψ] :=
(s− r)ψ(t) + (t− s)ψ(r)− (t− r)ψ(s)

(t− r)(t− s)(s− r) .

We show that ψ ∈ Lip2(I, Z) if and only if ψ is differentiable and its derivative ψ′ is
Lipschitzian.

Suppose the composition operator N generated by h : I × Y → Z,

(Nϕ)(t) := h(t, ϕ(t)),

maps the set A(I, Y ) of all affine functions ϕ : I → Y into Lip2(I, Z). We prove that if N
is continuous and Mψ ≤M for some constant M > 0, where ψ(t) = N(t, ϕ(t)), then

h(t, y) = a(y) + b(t), t ∈ I, y ∈ Y,

for some continuous linear a : Y → Z and b ∈ Lip2(I, Z). Lipschitzian and Hölder com-
position operators are also investigated.

1. Introduction. Let I be an interval in R, let Z be a Banach space
and ψ : I → Z be a function. For distinct r, s, t ∈ I we put

[r, s;ψ] :=
ψ(s)− ψ(r)

s− r
and

[r, s, t;ψ] :=
1

t− r

(
ψ(t)− ψ(s)

t− s
− ψ(s)− ψ(r)

s− r

)
=

(s− r)ψ(t) + (t− s)ψ(r)− (t− r)ψ(s)
(t− s)(s− r)(t− r)

.
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These expressions are called the first divided difference of ψ at r, s and the
second divided difference of ψ at r, s, t, respectively (see e.g. [1, p. 371] and
[6, p. 237]). Moreover, if we define the function ∆s(ψ) by

(∆sψ)(r) =
ψ(s)− ψ(r)

s− r
, r ∈ I \ {s},

then
(∆t∆s)(ψ)(r) = [r, s, t;ψ], r ∈ I \ {s, t}.

We consider the space Lip2(I, Z) of all functions ψ : I → Z such that

(1) Mψ := sup{‖[r, s, t;ψ]‖ : r < s < t, r, s, t ∈ I}

is finite. In Section 2 we show that ψ ∈ Lip2(I, Z) if and only if ψ is differ-
entiable and ψ′ is Lipschitzian.

Let h : I × R→ R. The mapping N : RI → RI defined by

(Nϕ)(t) = h(t, ϕ(t))

is called the composition (Nemytskĭı) operator determined by the genera-
tor h. In 1982 J. Matkowski proved that if a composition operator mapping
the Banach space Lip(I,R) of Lipschitz functions ϕ : I → R into itself is
globally Lipschitzian, then there exist functions a, b ∈ Lip(I,R) such that
h(t, y) = a(t)y + b(t), t ∈ I, y ∈ R (cf. [3]). This result has then been
extended to some other Banach function spaces by J. Matkowski and his
collaborators (cf., e.g., [2], [4], [5]).

Let (Y, ‖ · ‖) be a normed linear space and let A(I, Y ) denote the space
of all functions ϕ : I → Y of the form t 7→ ct+ d, where c, d ∈ Y . By LM we
denote the set of all functions ψ ∈ Lip2(I, Z) such that Mψ ≤M , where M
is a positive number andMψ is given by (1). In the next section we will prove
that every continuous composition operator N mapping A(I, Y ) into LM is
generated by a function h of the form h(t, y) = a(y) + b(t), t ∈ I, y ∈ Y ,
where a : Y → Z is a continuous linear map and b ∈ Lip2(I, Z).

In the last two sections we will examine composition operators mapping
A(I, Y ) into Lip2(I, Z) and satisfying the Lipschitz and Hölder conditions.

2. On properties of functions in Lip2(I, Z). Let ψ : I → Z be
Lipschitz and let L(ψ) denote the smallest number L such that

‖ψ(t)− ψ(s)‖ ≤ L|t− s| for all s, t ∈ I.

If, e.g., I = [α, β), then ψ : I → Z is differentiable at a if the right-hand
derivative exists at this point.

Lemma 1. If Z is a Banach space and ψ ∈ Lip2(I, Z), then ψ is differ-
entiable, ψ′ is Lipschitz and L(ψ′) ≤ 2Mψ.
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Proof. Fix t0 ∈ I with t0 < sup I and take s, t ∈ I such that t0 < s < t.
By the definition of Mψ we have

(2)
∥∥∥∥ψ(t)− ψ(s)

t− s
− ψ(s)− ψ(t0)

s− t0

∥∥∥∥ ≤Mψ(t− t0).

Since
ψ(t)− ψ(s)

t− s
− ψ(s)− ψ(t0)

s− t0
=
t− t0
t− s

[
ψ(t)− ψ(t0)

t− t0
− ψ(s)− ψ(t0)

s− t0

]
,

inequality (2) yields

(3)
∥∥∥∥ψ(t)− ψ(t0)

t− t0
− ψ(s)− ψ(t0)

s− t0

∥∥∥∥ ≤Mψ(t− s).

Thus the limit
lim
t→t0+

ψ(t)− ψ(t0)
t− t0

= ψ′+(t0)

exists and by (3),

(4)
∥∥∥∥ψ(t)− ψ(t0)

t− t0
− ψ′+(t0)

∥∥∥∥ ≤Mψ(t− t0)

for t0 < t, t ∈ I.
Next fix t0 ∈ I with inf I < t0 and take r, s ∈ I such that r < s < t0. In

a similar manner to (3), it can be established that∥∥∥∥ψ(t0)− ψ(s)
t0 − s

− ψ(t0)− ψ(r)
t0 − r

∥∥∥∥ ≤Mψ(s− r).

Hence the left-hand derivative ψ′−(t0) exists and it satisfies the inequality

(5)
∥∥∥∥ψ′−(t0)−

ψ(t0)− ψ(r)
t0 − r

∥∥∥∥ ≤Mψ(t0 − r)

for all r ∈ I such that r < t0. To show that

(6) ψ′+(t0) = ψ′−(t0)

in the case inf I < t0 < sup I, we choose r, t ∈ I such that r < t0 < t. As in
(2) we have

(7)
∥∥∥∥ψ(t)− ψ(t0)

t− t0
− ψ(t0)− ψ(r)

t0 − r

∥∥∥∥ ≤Mψ(t− r).

Combining (4), (5) and (7) we conclude that

‖ψ′+(t0)− ψ′−(t0)‖ ≤ 2Mψ(t− r),
whence equality (6) follows.

Assume that r ∈ I, r 6= sup I. For s, t, u ∈ I such that r < s < t < u we
have ∥∥∥∥ψ(u)− ψ(t)

u− t
− ψ(t)− ψ(s)

t− s

∥∥∥∥ ≤Mψ(u− s)
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and ∥∥∥∥ψ(t)− ψ(s)
t− s

− ψ(s)− ψ(r)
s− r

∥∥∥∥ ≤Mψ(t− r).

These inequalities yield∥∥∥∥ψ(u)− ψ(t)
u− t

− ψ(s)− ψ(r)
s− r

∥∥∥∥ ≤Mψ(u− s+ t− r).

Therefore letting u→ t+ and s→ r+, we obtain

‖ψ′(t)− ψ′(r)‖ ≤ 2Mψ(t− r).

A similar argument may be used when r ∈ I, r 6= inf I.

Lemma 2. If ψ is differentiable in I and ψ′ satisfies the Lipschitz con-
dition, then ψ ∈ Lip2(I, Z) and Mψ ≤ L(ψ′).

Proof. Take u, v, w ∈ I such that u < v < w. It is sufficient to show that
‖z‖ ≤ L(ψ′)(w − u), where

z :=
ψ(w)− ψ(v)

w − v
− ψ(v)− ψ(u)

v − u
.

We may assume that z 6= 0. Take a continuous linear functional p : Z → R
with ‖p‖ = 1 such that p(z) = ‖z‖. The function p◦ψ : I → R is differentiable
and (p ◦ ψ)′(t) = p(ψ′(t)), t ∈ I. By the Lagrange mean-value theorem, for
some σ ∈ (u, v) and τ ∈ (v, w), we have

p

(
ψ(v)− ψ(u)

v − u

)
=
p ◦ ψ(v)− p ◦ ψ(u)

v − u
= p(ψ′(σ))

and

p

(
ψ(w)− ψ(v)

w − v

)
= p(ψ′(τ)).

Therefore∥∥∥∥ψ(w)− ψ(v)
w − v

− ψ(v)− ψ(u)
v − u

∥∥∥∥ = ‖z‖ = p(z)

= p

(
ψ(w)− ψ(v)

w − v

)
− p

(
ψ(v)− ψ(u)

v − u

)
= p(ψ′(τ))− p(ψ′(σ))

= p(ψ′(τ)− ψ′(σ)) ≤ ‖p‖ ‖ψ′(τ)− ψ′(σ)‖
≤ L(ψ′)(τ − σ) ≤ L(ψ′)(w − u).

Theorem 1. Assume that I ⊂ R is an interval and Z is a Banach space.
Then ψ ∈ Lip2(I, Z) if and only if ψ is differentiable and its derivative ψ′
satisfies the Lipschitz condition in I.

Theorem 1 is a consequence of Lemmas 1 and 2.
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3. Continuous composition operator. We shall assume that I is an
interval containing 0. We introduce the norm ‖ · ‖2 in Lip2(I, Z) putting

‖ψ‖2 = ‖ψ(0)‖+ ‖ψ′(0)‖+Mψ,

whereMψ is given by (1). By Lemma 1, ‖·‖2 is a norm. Moreover, Lip2(I, Z)
is a Banach space.

The inequality L(ψ′) ≤ 2Mψ and the Lagrange mean-value theorem lead
to the next lemma.

Lemma 3. If ψn → ψ in Lip2(I, Z), then ψn(t) → ψ(t) in Z for every
t ∈ I.

It is easily seen that ‖ϕ‖2 = ‖c‖ + ‖d‖ if ϕ ∈ A(I, Y ) (⊂ Lip2(I, Y )) is
of the form ϕ(t) = ct+ d.

Every function h : I×Y → Z generates the Nemytskĭı operatorN defined
by

(8) (Nϕ)(t) = h(t, ϕ(t)), t ∈ I, ϕ ∈ A(I, Y ).

Lemma 4. Let I ⊂ R be an interval such that 0 ∈ I. Assume that (Y, ‖·‖)
is a normed linear space and (Z, ‖ · ‖) is a Banach space. If the composition
operator N : A(I, Y ) → Lip2(I, Z) is continuous, then its generator h is
continuous with respect to each variable.

Proof. Take an arbitrary y ∈ Y and define an affine function ϕ assuming
ϕ(t) = y, t ∈ I. Since h(·, y) = Nϕ ∈ Lip2(I, Z), h is continuous with respect
to the first variable. The continuity of h with respect to the second variable
follows from Lemma 3.

Recall that LM denotes the set of all functions ψ ∈ Lip2(I, Z) such that
Mψ ≤M , where Mψ is given by (1) and M is a fixed constant.

Theorem 2. Let I ⊂ R be an interval such that 0 ∈ I. Assume that
(Y, ‖ · ‖) is a normed linear space and (Z, ‖ · ‖) is a Banach space. If the
composition operator N generated by h : I ×Y → Z maps A(I, Y ) into LM ,
then there exists an additive mapping a : Y → Z and a mapping b ∈ LM
such that

h(t, y) = a(y) + b(t), t ∈ I, y ∈ Y.
Moreover, if the operator N is continuous, then a is a continuous linear
mapping.

Proof. Take r, t ∈ I with r < t and y, y ∈ Y . Define an affine function
by setting

ϕ(u) = y +
y − y
t− r

(u− r), u ∈ I.

Since Nϕ ∈ LM , we obtain

‖(t− s)(Nϕ)(r)+ (s− r)(Nϕ)(t)− (t− r)(Nϕ)(s)‖ ≤M(t− r)(t− s)(s− r)
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for all s ∈ (r, t). Choosing s = (1/2)(r + t) and taking into account the
relations

ϕ(r) = y, ϕ(t) = y, ϕ

(
r + t

2

)
=
y + y

2
we get ∥∥∥∥h(r, y) + h(t, y)− 2h

(
r + t

2
,
y + y

2

)∥∥∥∥ ≤ 1
2
M(t− r)2.(9)

Letting r → t− and making use of the continuity of h(·, y) we deduce that

h(t, y) + h(t, y)− 2h
(
t,
y + y

2

)
= 0, t ∈ I, y, y ∈ Y,

so h(t, ·) satisfies the Jensen functional equation in a normed linear space Y .
Hence there exist functions a : I × Y → Z and b : I → Z such that

(10) h(t, y) = a(t, y) + b(t)

and a(t, ·) : Y → Z is an additive mapping (cf., e.g., [1, Theorem 1, p. 315]).
We conclude from (10) that b = h(·, 0), hence b ∈ LM and finally a(·, y) ∈ LM
for each y ∈ Y .

Combining (10) and (9) we get∥∥∥∥a(r, y) + b(r) + a(t, y) + b(t)− 2a
(
r + t

2
,
y + y

2

)
− 2b

(
r + t

2

)∥∥∥∥
≤ 1

2
M(t− r)2

for every r, t ∈ I and y, y ∈ Y . Take ny and ny, n ∈ N, instead of y
and y, respectively. Next, since a(t, ny) = na(t, y), dividing both sides of the
resulting inequality by n and letting n→∞, we conclude that

a(r, y) + a(t, y) = 2a
(
r + t

2
,
y + y

2

)
for all r, t ∈ I and y, y ∈ Y , which means that the function (r, y) 7→ a(r, y)
is Jensen. Since a(0, 0) = 0, the function a is additive with respect to the
pair of variables (t, y) ∈ I × Y . We observe that

a(t, y) = a((t, 0) + (0, y)) = a(t, 0) + a(0, y) = a(0, y),

since a(t, 0) = 0 for all t ∈ I. Thus a(y) := a(0, y) does not depend on the
first variable t and

(11) h(t, y) = a(y) + b(t), t ∈ I, y ∈ Y.
This finishes the proof of the first part of Theorem 2.

It remains to prove that a is continuous if so is N . But this follows from
Lemma 4.

An easy verification shows that the inverse result is valid.
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Theorem 3. Let I ⊂ R be an interval such that 0 ∈ I, Y be a normed
linear space and Z be a Banach space. If a : Y → Z is a continuous lin-
ear map and b ∈ Lip2(I, Z), then the composition operator N generated by
h(t, y) = a(y)+ b(t), t ∈ I, y ∈ Y, is continuous and maps the space A(I, Y )
into LM , where M = Mb.

4. Lipschitzian composition operators. The generator of a Lip-
schitzian composition operator has a form slightly different from that in
Theorem 2.

Theorem 4. Let I ⊂ R be an interval such that 0 ∈ I, Y be a normed
linear space and Z be a Banach space. If the composition operator N gen-
erated by h : I × Y → Z maps A(I, Y ) into Lip2(I, Z) and satisfies the
Lipschitz condition, i.e., there exists a positive constant L such that

(12) ‖Nϕ−Nψ‖2 ≤ L‖ϕ− ψ‖2, ϕ, ψ ∈ A(I, Y ),

then there exist functions a : I × Y → Z and b : I → Z such that for each
y ∈ Y and t ∈ I, a(·, y), b ∈ Lip2(I, Z) and a(t, ·) is a continuous linear map
of Y into Z and

h(t, y) = a(t, y) + b(t), t ∈ I, y ∈ Y.
In particular, N is affine.

Proof. We mimic the first part of the proof of Theorem 2. By Lemma
4 the generator h of N is continuous with respect to each variable. Making
use of (12) and the definition of the norm ‖ · ‖2 we infer that

(13) ‖[r, s, t;h(·, ϕ(·))− h(·, ψ(·))]‖ ≤ L‖ϕ− ψ‖2
for all r, s, t ∈ I, r < s < t. Take arbitrary r, t ∈ I with r < t and define the
functions

ϕ(u) = y +
y − y
t− r

(u− r), ψ(u) = 0, u ∈ I.

Of course,

ϕ(r) = y, ϕ(t) = y, ϕ

(
r + t

2

)
=
y + y

2
and

ϕ(0) =
ty − ry
t− r

, ϕ′(0) =
y − y
t− r

.

Setting s = (r + t)/2 in (13) we obtain∥∥∥∥h(t, y)− h(t, 0)− 2h
(
r + t

2
,
y + y

2

)
+ 2h

(
r + t

2
, 0

)
+ h(r, y)− h(r, 0)

∥∥∥∥
≤ 1

2
L(t− r)(‖ty − ry‖+ ‖y − y‖).
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Letting t tend to r and making use of the continuity of h with respect to the
first variable we hence get

h(r, y) + h(r, y) = 2h
(
r,
y + y

2

)
,

which shows that, for every fixed r ∈ I, the function h(r, ·) satisfies the
Jensen functional equation in the normed linear space Y . As in the proof of
Theorem 2, there exist a : I × Y → Z and b : I → Z such that

(14) h(r, y) = a(r, y) + b(r), r ∈ I, y ∈ Y,

where a(r, ·) is an additive map for every r ∈ I. Now the remainder is clear.

To obtain a converse to the last theorem we will require that I is a
compact interval such that 0 ∈ I.

As an application of the uniform boundedness principle one obtains the
following lemma.

Lemma 5. Let I = [0, 1] and let Y, Z be Banach spaces. If a : I×Y → Z
is such that a(·, y) ∈ Lip2(I, Z) for y ∈ Y and each a(t, ·) (t ∈ I) is linear
and continuous, then a′t(t, ·) is also linear and continuous.

Theorem 5. Let I = [0, 1] and let Y,Z be Banach spaces. If a : I ×
Y → Z and b : I → Z are such that a(·, y), b ∈ Lip2(I, Z) and a(t, ·) is a
continuous linear map of Y into Z and

h(t, y) = a(t, y) + b(t), (t, y) ∈ I × Y,

then the operator N , (Nϕ)(t) = h(t, ϕ(t)), maps A(I, Y ) into Lip2(I, Z) and

‖Nϕ1 −Nϕ2‖2 ≤ L‖ϕ1 − ϕ2‖2 for some L > 0.

Proof. Without loss of generality we may assume that b ≡ 0. In that case
N is linear. Take ϕ(t) = ct+ d, t ∈ I = [0, 1], where c, d ∈ Y . We have

(Nϕ)(t) = a(t, ϕ(t)) = a(t, ct+ d) = ta(t, c) + a(t, d).

Of course, the function Nϕ is differentiable and

(Nϕ)′(t) = a(t, c) + ta′t(t, c) + a′t(t, d), t ∈ I.

The function a′t(·, d) is Lipschitz (cf. Lemma 1). Since the product of two
bounded Lipschitz functions is Lipschitz as well and a(·, c) has a bounded
derivative in I, we see that N(ϕ) ∈Lip2(I, Z) (cf. Lemma 2).

Further, from the compactness of I, the continuity of a(·, y) and a′t(·, y)
for each y ∈ Y and the uniform boundedness principle we conclude that
‖a(t, ·)‖, ‖a′t(t, ·)‖ ≤ K for all t ∈ I and some constant K > 0. Hence

(15)
‖a(t, y)− a(r, y)‖

t− r
≤ sup

s∈I
‖a′t(s, y)‖ ≤ K‖y‖
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for all y ∈ Y and 0 ≤ r < t ≤ 1. For y ∈ Y and 0 ≤ r < s < t ≤ 1 we have
‖[r, s, t; a(·, y)]‖ ≤Ma(·,y) <∞. Again by the uniform boundedness principle
we can find a constant L > 0 such that

(16) ‖[r, s, t; a(·, y)]‖ ≤ L‖y‖
for all y ∈ Y and 0 ≤ r < s < t ≤ 1.

Let ϕ ∈ A(I, Y ), ϕ(t) = ct+ d, and ψ(t) = (Nϕ)(t), t ∈ I. Since

[r, s, t;ψ] = t[r, s, t; a(·, c)] +
a(r, c)− a(s, c)

s− r
+ [r, s, t; a(·, d)]

for all 0 ≤ r < s < t ≤ 1, by (15) and (16) we have

Mψ ≤ K‖c‖+ L(‖c‖+ ‖d‖).
Consequently, ‖Nϕ‖2 ≤ (2K + L)‖ϕ‖2.

5. Hölder composition operators. The following result deals with
composition operators mapping A(I, Y ) into Lip2(I, Z) satisfying the Hölder
condition.

Theorem 6. Let I ⊂ R be an interval such that 0 ∈ I, Y be a normed
linear space and Z be a Banach space. The composition operator N generated
by h : I × Y → Z mapping A(I, Y ) into Lip2(I, Z) satisfies the Hölder
condition, i.e., there exist positive constants L and α < 1 for which

(17) ‖Nϕ−Nψ‖2 ≤ L‖ϕ− ψ‖α, ϕ, ψ ∈ A(I, Y ),

if and only if N is a constant map, that is, there exists b ∈ Lip2(I, Z) such
that

h(t, y) = b(t), t ∈ I, y ∈ Y.

Proof. The “if” part is clear. We will prove the “only if” part. As in the
proof of Theorem 4, inequality (17) gives

(18)
∥∥∥∥h(t, y)− h(t, 0)− 2h

(
r + t

2
,
y + y

2

)
+ 2h

(
r + t

2
, 0

)
+ h(r, y)− h(r, 0)

∥∥∥∥
≤ 1

2
L(t− r)2−α(‖ty − ry‖+ ‖y − y‖)α

for all r, t ∈ I with r < t and all y, y ∈ Y . Analysis similar to that in the
proof of Theorem 4 shows that

(19) h(r, y) = a(r, y) + b(r), r ∈ I, y ∈ Y,
where a(t, ·) is a continuous linear map and a(·, y), b ∈ Lip2(I, Z). Combining
(19) and (18) we obtain
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(
r + t

2
,
y + y

2

)
+a(r, y)

∥∥∥∥ ≤ 1
2
L(t−r)2−α(‖ty−ry‖+‖y−y‖)α.

Now replacing y and y by ny and ny, n ∈ N, respectively, then applying the
additivity of a(t, ·), and finally dividing by n we deduce that∥∥∥∥a(t, y)− 2a

(
r + t

2
,
y + y

2

)
+ a(r, y)

∥∥∥∥
≤ 1

2
L(t− r)2−αnα−1(‖ty − ry‖+ ‖y − y‖)α.

Letting n→∞ we can assert that

a(r, y) + a(t, y) = 2a
(
r + t

2
,
y + y

2

)
, r, t ∈ I, y, y ∈ Y,

which means that the mapping (t, y) 7→ a(t, y) satisfies the Jensen functional
equation in I × Y . As in Theorem 2, we have

h(t, y) = a(y) + b(t), t ∈ I, y ∈ Y
with a(y) = a(0, y). Since a is linear and satisfies the Hölder inequality with
α < 1, it follows that a ≡ 0.
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