On continuous composition operators

by WILHELMINA SMAJDOR (Gliwice)

Abstract. Let $I \subset \mathbb{R}$ be an interval, Y be a normed linear space and Z be a Banach space. We investigate the Banach space $\text{Lip}_2(I, Z)$ of all functions $\psi : I \to Z$ such that

$$M_\psi := \sup \{ \| [r, s, t; \psi] \| : r < s < t, r, s, t \in I \} < \infty,$$

where

$$[r, s, t; \psi] := \frac{(s - r)\psi(t) + (t - s)\psi(r) - (t - r)\psi(s)}{(t - r)(t - s)(s - r)}.$$

We show that $\psi \in \text{Lip}_2(I, Z)$ if and only if ψ is differentiable and its derivative ψ' is Lipschitzian.

Suppose the composition operator N generated by $h : I \times Y \to Z$,

$$(N\varphi)(t) := h(t, \varphi(t)),$$

maps the set $A(I, Y)$ of all affine functions $\varphi : I \to Y$ into $\text{Lip}_2(I, Z)$. We prove that if N is continuous and $M_\psi \leq M$ for some constant $M > 0$, where $\psi(t) = N(t, \varphi(t))$, then

$$h(t, y) = a(y) + b(t), \quad t \in I, y \in Y,$$

for some continuous linear $a : Y \to Z$ and $b \in \text{Lip}_2(I, Z)$. Lipschitzian and Hölder composition operators are also investigated.

1. Introduction. Let I be an interval in \mathbb{R}, let Z be a Banach space and $\psi : I \to Z$ be a function. For distinct $r, s, t \in I$ we put

$$[r, s; \psi] := \frac{\psi(s) - \psi(r)}{s - r},$$

and

$$[r, s, t; \psi] := \frac{1}{t - r} \left(\frac{\psi(t) - \psi(s)}{t - s} - \frac{\psi(s) - \psi(r)}{s - r} \right) = \frac{(s - r)\psi(t) + (t - s)\psi(r) - (t - r)\psi(s)}{(t - s)(s - r)(t - r)}.$$

2010 Mathematics Subject Classification: 47H30, 47B38, 39B52.

Key words and phrases: divided differences, Banach space of functions with bounded divided differences, Banach space of differentiable functions with Lipschitzian derivatives, composition operator, Lipschitzian operator, Hölder operator, Jensen equation.

DOI: 10.4064/ap98-3-6 [273] © Instytut Matematyczny PAN, 2010
These expressions are called the first divided difference of ψ at r, s and the second divided difference of ψ at r, s, t, respectively (see e.g. [1, p. 371] and [6, p. 237]). Moreover, if we define the function $\Delta_s(\psi)$ by

$$ (\Delta_s \psi)(r) = \frac{\psi(s) - \psi(r)}{s - r}, \quad r \in I \setminus \{s\}, $$

then

$$ (\Delta_t \Delta_s)(\psi)(r) = [r, s, t; \psi], \quad r \in I \setminus \{s, t\}. $$

We consider the space $\text{Lip}_2(I, Z)$ of all functions $\psi : I \to Z$ such that

$$ (1) \quad M_\psi := \sup\{\|r, s, t; \psi\| : r < s < t, r, s, t \in I\} $$

is finite. In Section 2 we show that $\psi \in \text{Lip}_2(I, Z)$ if and only if ψ is differentiable and ψ' is Lipschitzian.

Let $h : I \times \mathbb{R} \to \mathbb{R}$. The mapping $N : \mathbb{R}^I \to \mathbb{R}^I$ defined by

$$ (N \varphi)(t) = h(t, \varphi(t)) $$

is called the composition (Nemytskii) operator determined by the generator h. In 1982 J. Matkowski proved that if a composition operator mapping the Banach space $\text{Lip}(I, \mathbb{R})$ of Lipschitz functions $\varphi : I \to \mathbb{R}$ into itself is globally Lipschitzian, then there exist functions $a, b \in \text{Lip}(I, \mathbb{R})$ such that $h(t, y) = a(t)y + b(t)$, $t \in I$, $y \in \mathbb{R}$ (cf. [3]). This result has then been extended to some other Banach function spaces by J. Matkowski and his collaborators (cf., e.g., [2], [4], [5]).

Let $(Y, \| \cdot \|)$ be a normed linear space and let $\mathcal{A}(I, Y)$ denote the space of all functions $\varphi : I \to Y$ of the form $t \mapsto ct + d$, where $c, d \in Y$. By \mathcal{L}_M we denote the set of all functions $\psi \in \text{Lip}_2(I, Z)$ such that $M_\psi \leq M$, where M is a positive number and M_ψ is given by (1). In the next section we will prove that every continuous composition operator N mapping $\mathcal{A}(I, Y)$ into \mathcal{L}_M is generated by a function h of the form $h(t, y) = a(y) + b(t)$, $t \in I$, $y \in Y$, where $a : Y \to Z$ is a continuous linear map and $b \in \text{Lip}_2(I, Z)$.

In the last two sections we will examine composition operators mapping $\mathcal{A}(I, Y)$ into $\text{Lip}_2(I, Z)$ and satisfying the Lipschitz and Hölder conditions.

2. On properties of functions in $\text{Lip}_2(I, Z)$. Let $\psi : I \to Z$ be Lipschitz and let $L(\psi)$ denote the smallest number L such that

$$ \|\psi(t) - \psi(s)\| \leq L|t - s| \quad \text{for all } s, t \in I. $$

If, e.g., $I = [\alpha, \beta)$, then $\psi : I \to Z$ is differentiable at a if the right-hand derivative exists at this point.

Lemma 1. If Z is a Banach space and $\psi \in \text{Lip}_2(I, Z)$, then ψ is differentiable, ψ' is Lipschitz and $L(\psi') \leq 2M_\psi$.

Proof. Fix \(t_0 \in I \) with \(t_0 < \sup I \) and take \(s, t \in I \) such that \(t_0 < s < t \). By the definition of \(M_\psi \) we have

\[
(2) \quad \left\| \frac{\psi(t) - \psi(s)}{t - s} - \frac{\psi(s) - \psi(t_0)}{s - t_0} \right\| \leq M_\psi(t - t_0).
\]

Since

\[
\frac{\psi(t) - \psi(s)}{t - s} - \frac{\psi(s) - \psi(t_0)}{s - t_0} = \frac{t - t_0}{t - s} \left[\frac{\psi(t) - \psi(t_0)}{t - t_0} - \frac{\psi(s) - \psi(t_0)}{s - t_0} \right],
\]

inequality (2) yields

\[
(3) \quad \left\| \frac{\psi(t) - \psi(t_0)}{t - t_0} - \frac{\psi(s) - \psi(t_0)}{s - t_0} \right\| \leq M_\psi(t - s).
\]

Thus the limit

\[
\lim_{t \to t_0^+} \frac{\psi(t) - \psi(t_0)}{t - t_0} = \psi'_+(t_0)
\]

exists and by (3),

\[
(4) \quad \left\| \frac{\psi(t) - \psi(t_0)}{t - t_0} - \psi'_+(t_0) \right\| \leq M_\psi(t - t_0)
\]

for \(t_0 < t, t \in I \).

Next fix \(t_0 \in I \) with \(\inf I < t_0 \) and take \(r, s \in I \) such that \(r < s < t_0 \). In a similar manner to (3), it can be established that

\[
\left\| \frac{\psi(t_0) - \psi(s)}{t_0 - s} - \frac{\psi(t_0) - \psi(r)}{t_0 - r} \right\| \leq M_\psi(s - r).
\]

Hence the left-hand derivative \(\psi'_-(t_0) \) exists and it satisfies the inequality

\[
(5) \quad \left\| \psi'_-(t_0) - \frac{\psi(t_0) - \psi(r)}{t_0 - r} \right\| \leq M_\psi(t_0 - r)
\]

for all \(r \in I \) such that \(r < t_0 \). To show that

\[
(6) \quad \psi'_+(t_0) = \psi'_-(t_0)
\]

in the case \(\inf I < t_0 < \sup I \), we choose \(r, t \in I \) such that \(r < t_0 < t \). As in (2) we have

\[
(7) \quad \left\| \frac{\psi(t) - \psi(t_0)}{t - t_0} - \frac{\psi(t_0) - \psi(r)}{t_0 - r} \right\| \leq M_\psi(t - r).
\]

Combining (4), (5) and (7) we conclude that

\[
\left\| \psi'_+(t_0) - \psi'_-(t_0) \right\| \leq 2M_\psi(t - r),
\]

whence equality (6) follows.

Assume that \(r \in I, r \neq \sup I \). For \(s, t, u \in I \) such that \(r < s < t < u \) we have

\[
\left\| \frac{\psi(u) - \psi(t)}{u - t} - \frac{\psi(t) - \psi(s)}{t - s} \right\| \leq M_\psi(u - s)
\]
and
\[
\left\| \frac{\psi(t) - \psi(s)}{t-s} - \frac{\psi(s) - \psi(r)}{s-r} \right\| \leq M_\psi(t-r).
\]
These inequalities yield
\[
\left\| \frac{\psi(u) - \psi(t)}{u-t} - \frac{\psi(s) - \psi(r)}{s-r} \right\| \leq M_\psi(u-s+t-r).
\]
Therefore letting \(u \to t^+ \) and \(s \to r^+ \), we obtain
\[
\| \psi'(t) - \psi'(r) \| \leq 2M_\psi(t-r).
\]
A similar argument may be used when \(r \in I, r \neq \inf I \).

Lemma 2. If \(\psi \) is differentiable in \(I \) and \(\psi' \) satisfies the Lipschitz condition, then \(\psi \in \text{Lip}_2(I, Z) \) and \(M_\psi \leq L(\psi') \).

Proof. Take \(u, v, w \in I \) such that \(u < v < w \). It is sufficient to show that
\[
\| z \| \leq L(\psi')(w-u),
\]
where
\[
z := \frac{\psi(w) - \psi(v)}{w-v} - \frac{\psi(v) - \psi(u)}{v-u}.
\]
We may assume that \(z \neq 0 \). Take a continuous linear functional \(p : Z \to \mathbb{R} \) with \(\| p \| = 1 \) such that \(p(z) = \| z \| \). The function \(p \circ \psi : I \to \mathbb{R} \) is differentiable and \((p \circ \psi)'(t) = p(\psi'(t)), \ t \in I \). By the Lagrange mean-value theorem, for some \(\sigma \in (u, v) \) and \(\tau \in (v, w) \), we have
\[
p\left(\frac{\psi(v) - \psi(u)}{v-u} \right) = \frac{p \circ \psi(v) - p \circ \psi(u)}{v-u} = p(\psi'(\sigma))
\]
and
\[
p\left(\frac{\psi(w) - \psi(v)}{w-v} \right) = p(\psi'(\tau)).
\]
Therefore
\[
\left\| \frac{\psi(w) - \psi(v)}{w-v} - \frac{\psi(v) - \psi(u)}{v-u} \right\| = \| z \| = p(z)
\]
\[
= p\left(\frac{\psi(w) - \psi(v)}{w-v} \right) - p\left(\frac{\psi(v) - \psi(u)}{v-u} \right) = p(\psi'(\tau)) - p(\psi'(\sigma))
\]
\[
= p(\psi'(\tau) - \psi'(\sigma)) \leq \| p \| \| \psi'(\tau) - \psi'(\sigma) \|
\]
\[
\leq L(\psi')(\tau - \sigma) \leq L(\psi')(w-u).
\]

Theorem 1. Assume that \(I \subset \mathbb{R} \) is an interval and \(Z \) is a Banach space. Then \(\psi \in \text{Lip}_2(I, Z) \) if and only if \(\psi \) is differentiable and its derivative \(\psi' \) satisfies the Lipschitz condition in \(I \).

Theorem 1 is a consequence of Lemmas 1 and 2.
3. Continuous composition operator. We shall assume that I is an interval containing 0. We introduce the norm $\| \cdot \|_2$ in Lip$_2(I, Z)$ putting
\[\|\psi\|_2 = \|\psi(0)\| + \|\psi'(0)\| + M_\psi, \]
where M_ψ is given by (1). By Lemma 1, $\| \cdot \|_2$ is a norm. Moreover, Lip$_2(I, Z)$ is a Banach space.

The inequality $L(\psi') \leq 2M_\psi$ and the Lagrange mean-value theorem lead to the next lemma.

Lemma 3. If $\psi_n \to \psi$ in Lip$_2(I, Z)$, then $\psi_n(t) \to \psi(t)$ in Z for every $t \in I$.

It is easily seen that $\| \varphi \|_2 = \| c \| + \| d \|$ if $\varphi \in A(I, Y)$ (\subset Lip$_2(I, Y)$) is of the form $\varphi(t) = ct + d$.

Every function $h : I \times Y \to Z$ generates the Nemytskii operator N defined by
\[(N\varphi)(t) = h(t, \varphi(t)), \quad t \in I, \varphi \in A(I, Y). \]

Lemma 4. Let $I \subset \mathbb{R}$ be an interval such that $0 \in I$. Assume that $(Y, \| \cdot \|)$ is a normed linear space and $(Z, \| \cdot \|)$ is a Banach space. If the composition operator $N : A(I, Y) \to$ Lip$_2(I, Z)$ is continuous, then its generator h is continuous with respect to each variable.

Proof. Take an arbitrary $y \in Y$ and define an affine function φ assuming $\varphi(t) = y$, $t \in I$. Since $h(\cdot, y) = N\varphi \in$ Lip$_2(I, Z)$, h is continuous with respect to the first variable. The continuity of h with respect to the second variable follows from Lemma 3.

Recall that \mathcal{L}_M denotes the set of all functions $\psi \in$ Lip$_2(I, Z)$ such that $M_\psi \leq M$, where M_ψ is given by (1) and M is a fixed constant.

Theorem 2. Let $I \subset \mathbb{R}$ be an interval such that $0 \in I$. Assume that $(Y, \| \cdot \|)$ is a normed linear space and $(Z, \| \cdot \|)$ is a Banach space. If the composition operator N generated by $h : I \times Y \to Z$ maps $A(I, Y)$ into \mathcal{L}_M, then there exists an additive mapping $a : Y \to Z$ and a mapping $b \in \mathcal{L}_M$ such that
\[h(t, y) = a(y) + b(t), \quad t \in I, y \in Y. \]

Moreover, if the operator N is continuous, then a is a continuous linear mapping.

Proof. Take $r, t \in I$ with $r < t$ and $y, \overline{y} \in Y$. Define an affine function by setting
\[\varphi(u) = y + \frac{\overline{y} - y}{t - r}(u - r), \quad u \in I. \]

Since $N\varphi \in \mathcal{L}_M$, we obtain
\[\|(t - s)(N\varphi)(r) + (s - r)(N\varphi)(t) - (t - r)(N\varphi)(s)\| \leq M(t - r)(t - s)(s - r) \]

(continues on the next page)
for all \(s \in (r, t) \). Choosing \(s = (1/2)(r + t) \) and taking into account the relations
\[
\varphi(r) = y, \quad \varphi(t) = \bar{y}, \quad \varphi\left(\frac{r + t}{2}\right) = \frac{y + \bar{y}}{2}
\]
we get
\[
(9) \quad \left\| h(r, y) + h(t, \bar{y}) - 2h\left(\frac{r + t}{2}, \frac{y + \bar{y}}{2}\right) \right\| \leq \frac{1}{2} M(t - r)^2.
\]
Letting \(r \to t \) and making use of the continuity of \(h(\cdot, y) \) we deduce that
\[
h(t, y) + h(t, \bar{y}) - 2h\left(t, \frac{y + \bar{y}}{2}\right) = 0, \quad t \in I, \ y, \bar{y} \in Y,
\]
so \(h(t, \cdot) \) satisfies the Jensen functional equation in a normed linear space \(Y \). Hence there exist functions \(a : I \times Y \to Z \) and \(b : I \to Z \) such that
\[
(10) \quad h(t, y) = a(t, y) + b(t)
\]
and \(a(t, \cdot) : Y \to Z \) is an additive mapping (cf., e.g., [1, Theorem 1, p. 315]). We conclude from (10) that \(b = h(\cdot, 0) \), hence \(b \in L_M \) and finally \(a(\cdot, y) \in L_M \) for each \(y \in Y \).

Combining (10) and (9) we get
\[
\left\| a(r, y) + b(r) + a(t, \bar{y}) + b(t) - 2a\left(\frac{r + t}{2}, \frac{y + \bar{y}}{2}\right) - 2b\left(\frac{r + t}{2}\right) \right\| \leq \frac{1}{2} M(t - r)^2
\]
for every \(r, t \in I \) and \(y, \bar{y} \in Y \). Take \(n y \) and \(n \bar{y} \), \(n \in \mathbb{N} \), instead of \(y \) and \(\bar{y} \), respectively. Next, since \(a(t, ny) = na(t, y) \), dividing both sides of the resulting inequality by \(n \) and letting \(n \to \infty \), we conclude that
\[
a(r, y) + a(t, \bar{y}) = 2a\left(\frac{r + t}{2}, \frac{y + \bar{y}}{2}\right)
\]
for all \(r, t \in I \) and \(y, \bar{y} \in Y \), which means that the function \((r, y) \mapsto a(r, y) \) is Jensen. Since \(a(0, 0) = 0 \), the function \(a \) is additive with respect to the pair of variables \((t, y) \in I \times Y \). We observe that
\[
a(t, y) = a((t, 0) + (0, y)) = a(t, 0) + a(0, y) = a(0, y),
\]
since \(a(t, 0) = 0 \) for all \(t \in I \). Thus \(a(y) := a(0, y) \) does not depend on the first variable \(t \) and
\[
(11) \quad h(t, y) = a(y) + b(t), \quad t \in I, \ y \in Y.
\]
This finishes the proof of the first part of Theorem 2.

It remains to prove that \(a \) is continuous if so is \(N \). But this follows from Lemma 4.

An easy verification shows that the inverse result is valid.
Theorem 3. Let $I \subset \mathbb{R}$ be an interval such that $0 \in I$, Y be a normed linear space and Z be a Banach space. If $a : Y \to Z$ is a continuous linear map and $b \in \text{Lip}_2(I, Z)$, then the composition operator N generated by $h(t, y) = a(y) + b(t)$, $t \in I$, $y \in Y$, is continuous and maps the space $\mathcal{A}(I, Y)$ into $\mathcal{L}M$, where $M = M_b$.

4. Lipschitzian composition operators. The generator of a Lipschitzian composition operator has a form slightly different from that in Theorem 2.

Theorem 4. Let $I \subset \mathbb{R}$ be an interval such that $0 \in I$, Y be a normed linear space and Z be a Banach space. If the composition operator N generated by $h : I \times Y \to Z$ maps $\mathcal{A}(I, Y)$ into $\text{Lip}_2(I, Z)$ and satisfies the Lipschitz condition, i.e., there exists a positive constant L such that
\begin{equation}
\| N\varphi - N\psi \|_2 \leq L\| \varphi - \psi \|_2, \quad \varphi, \psi \in \mathcal{A}(I, Y),
\end{equation}
then there exist functions $a : I \times Y \to Z$ and $b : I \to Z$ such that for each $y \in Y$ and $t \in I$, $a(\cdot, y), b \in \text{Lip}_2(I, Z)$ and $a(t, \cdot)$ is a continuous linear map of Y into Z and
\[h(t, y) = a(t, y) + b(t), \quad t \in I, \ y \in Y. \]

In particular, N is affine.

Proof. We mimic the first part of the proof of Theorem 2. By Lemma 4 the generator h of N is continuous with respect to each variable. Making use of (12) and the definition of the norm $\| \cdot \|_2$ we infer that
\begin{equation}
\left\| \left[r, s, t; h(\cdot, \varphi(\cdot)) - h(\cdot, \psi(\cdot)) \right] \right\| \leq L\| \varphi - \psi \|_2
\end{equation}
for all $r, s, t \in I, r < s < t$. Take arbitrary $r, t \in I$ with $r < t$ and define the functions
\[\varphi(u) = y + \frac{\overline{y} - y}{t - r}(u - r), \quad \psi(u) = 0, \quad u \in I. \]

Of course,
\[\varphi(r) = y, \quad \varphi(t) = \overline{y}, \quad \varphi\left(\frac{r + t}{2} \right) = \frac{y + \overline{y}}{2} \]
and
\[\varphi(0) = \frac{ty - r\overline{y}}{t - r}, \quad \varphi'(0) = \frac{y - \overline{y}}{t - r}. \]

Setting $s = (r + t)/2$ in (13) we obtain
\begin{align*}
\left\| h(t, \overline{y}) - h(t, 0) - 2h\left(\frac{r + t}{2}, \frac{y + \overline{y}}{2} \right) + 2h\left(\frac{r + t}{2}, 0 \right) + h(r, y) - h(r, 0) \right\| \\
&\leq \frac{1}{2}L(t - r)(\| ty - r\overline{y} \| + \| y - \overline{y} \|).
\end{align*}
Letting t tend to r and making use of the continuity of h with respect to the first variable we hence get

\[h(r, \overline{y}) + h(r, y) = 2h \left(r, \frac{y + \overline{y}}{2} \right), \]

which shows that, for every fixed $r \in I$, the function $h(r, \cdot)$ satisfies the Jensen functional equation in the normed linear space Y. As in the proof of Theorem 2, there exist $a : I \times Y \to Z$ and $b : I \to Z$ such that

\[h(r, y) = a(r, y) + b(r), \quad r \in I, \ y \in Y, \]

where $a(r, \cdot)$ is an additive map for every $r \in I$. Now the remainder is clear. ■

To obtain a converse to the last theorem we will require that I is a compact interval such that $0 \in I$.

As an application of the uniform boundedness principle one obtains the following lemma.

Lemma 5. Let $I = [0, 1]$ and let Y, Z be Banach spaces. If $a : I \times Y \to Z$ is such that $a(\cdot, y) \in \text{Lip}_2(I, Z)$ for $y \in Y$ and each $a(t, \cdot)$ ($t \in I$) is linear and continuous, then $a'_i(t, \cdot)$ is also linear and continuous.

Theorem 5. Let $I = [0, 1]$ and let Y, Z be Banach spaces. If $a : I \times Y \to Z$ and $b : I \to Z$ are such that $a(\cdot, y), b \in \text{Lip}_2(I, Z)$ and $a(t, \cdot)$ is a continuous linear map of Y into Z and

\[h(t, y) = a(t, y) + b(t), \quad (t, y) \in I \times Y, \]

then the operator N, $(N\varphi)(t) = h(t, \varphi(t))$, maps $A(I, Y)$ into $\text{Lip}_2(I, Z)$ and

\[\|N\varphi_1 - N\varphi_2\|_2 \leq L\|\varphi_1 - \varphi_2\|_2 \quad \text{for some } L > 0. \]

Proof. Without loss of generality we may assume that $b \equiv 0$. In that case N is linear. Take $\varphi(t) = ct + d$, $t \in I = [0, 1]$, where $c, d \in Y$. We have

\[(N\varphi)(t) = a(t, \varphi(t)) = a(t, ct + d) = ta(t, c) + a(t, d). \]

Of course, the function $N\varphi$ is differentiable and

\[(N\varphi)'(t) = a(t, c) + ta'_i(t, c) + a'_r(t, d), \quad t \in I. \]

The function $a'_i(\cdot, d)$ is Lipschitz (cf. Lemma 1). Since the product of two bounded Lipschitz functions is Lipschitz as well and $a(\cdot, c)$ has a bounded derivative in I, we see that $N(\varphi) \in \text{Lip}_2(I, Z)$ (cf. Lemma 2).

Further, from the compactness of I, the continuity of $a(\cdot, y)$ and $a'_i(\cdot, y)$ for each $y \in Y$ and the uniform boundedness principle we conclude that $\|a(t, \cdot)\|, \|a'_i(t, \cdot)\| \leq K$ for all $t \in I$ and some constant $K > 0$. Hence

\[\frac{\|a(t, y) - a(r, y)\|}{|t - r|} \leq \sup_{s \in I} \|a'_i(s, y)\| \leq K\|y\| \]

which establishes the result.
Continuous composition operators

for all \(y \in Y \) and \(0 \leq r < t \leq 1 \). For \(y \in Y \) and \(0 \leq r < s < t \leq 1 \) we have \(\|[r, s, t; a(\cdot, y)]\| \leq M_{a(\cdot, y)} < \infty \). Again by the uniform boundedness principle we can find a constant \(L > 0 \) such that

\[
\|[r, s, t; a(\cdot, y)]\| \leq L \|y\|
\]

for all \(y \in Y \) and \(0 \leq r < s < t \leq 1 \).

Let \(\varphi \in \mathcal{A}(I, Y) \), \(\varphi(t) = ct + d \), and \(\psi(t) = (N\varphi)(t), \ t \in I \). Since

\[
[r, s, t; \psi] = t[r, s, t; a(\cdot, c)] + \frac{a(r, c) - a(s, c)}{s - r} + [r, s, t; a(\cdot, d)]
\]

for all \(0 \leq r < s < t \leq 1 \), by (15) and (16) we have

\[
M_\psi \leq K \|c\| + L(\|c\| + \|d\|).
\]

Consequently, \(\|N\varphi\|_2 \leq (2K + L)\|\varphi\|_2 \).

5. Hölder composition operators. The following result deals with composition operators mapping \(\mathcal{A}(I, Y) \) into \(\text{Lip}_2(I, Z) \) satisfying the Hölder condition.

Theorem 6. Let \(I \subset \mathbb{R} \) be an interval such that \(0 \in I, Y \) be a normed linear space and \(Z \) be a Banach space. The composition operator \(N \) generated by \(h : I \times Y \to Z \) mapping \(\mathcal{A}(I, Y) \) into \(\text{Lip}_2(I, Z) \) satisfies the Hölder condition, i.e., there exist positive constants \(L \) and \(\alpha < 1 \) for which

\[
\|N\varphi - N\psi\|_2 \leq L\|\varphi - \psi\|^{\alpha}, \quad \varphi, \psi \in \mathcal{A}(I, Y),
\]

if and only if \(N \) is a constant map, that is, there exists \(b \in \text{Lip}_2(I, Z) \) such that

\[
h(t, y) = b(t), \quad t \in I, \ y \in Y.
\]

Proof. The “if” part is clear. We will prove the “only if” part. As in the proof of Theorem 4, inequality (17) gives

\[
\left\| h(t, y) - h(t, 0) - 2h\left(\frac{r + t}{2}, \frac{y + \overline{y}}{2}\right) \right. \\
\left. + 2h\left(\frac{r + t}{2}, 0\right) + h(r, y) - h(r, 0) \right\|
\]

\[
\leq \frac{1}{2}L(t - r)^{1 - \alpha}(\|ty - r\overline{y}\| + \|y - \overline{y}\|)^\alpha
\]

for all \(r, t \in I \) with \(r < t \) and all \(y, \overline{y} \in Y \). Analysis similar to that in the proof of Theorem 4 shows that

\[
h(r, y) = a(r, y) + b(r), \quad r \in I, \ y \in Y,
\]

where \(a(t, \cdot) \) is a continuous linear map and \(a(\cdot, y), b \in \text{Lip}_2(I, Z) \). Combining (19) and (18) we obtain
\[
\left\| a(t, \overline{y}) - 2a\left(\frac{r + t}{2}, \frac{y + \overline{y}}{2}\right) + a(r, y) \right\| \leq \frac{1}{2}L(t-r)^{2-\alpha}(\|ty-r\overline{y}\| + \|y-\overline{y}\|)^{\alpha}.
\]

Now replacing \(y \) and \(\overline{y} \) by \(n y \) and \(n\overline{y} \), \(n \in \mathbb{N} \), respectively, then applying the additivity of \(a(t, \cdot) \), and finally dividing by \(n \) we deduce that

\[
\left\| a(t, \overline{y}) - 2a\left(\frac{r + t}{2}, \frac{y + \overline{y}}{2}\right) + a(r, y) \right\| \leq \frac{1}{2}L(t-r)^{2-\alpha}n^{\alpha-1}(\|ty-r\overline{y}\| + \|y-\overline{y}\|)^{\alpha}.
\]

Letting \(n \to \infty \) we can assert that

\[
a(r, y) + a(t, \overline{y}) = 2a\left(\frac{r + t}{2}, \frac{y + \overline{y}}{2}\right), \quad r, t \in I, \ y, \overline{y} \in Y,
\]

which means that the mapping \((t, y) \mapsto a(t, y)\) satisfies the Jensen functional equation in \(I \times Y \). As in Theorem 2, we have

\[
h(t, y) = a(y) + b(t), \quad t \in I, \ y \in Y
\]

with \(a(y) = a(0, y) \). Since \(a \) is linear and satisfies the Hölder inequality with \(\alpha < 1 \), it follows that \(a \equiv 0 \). \(\blacksquare \)

Acknowledgments. The author thanks the referee for his suggestions which improved the presentation of the article.

References

Wilhelmina Smajdor
Technical University of Technology
Kaszubska 23
PL-44-100 Gliwice, Poland
E-mail: wilhelmina.smajdor@polsl.pl

Received 27.8.2009
and in final form 14.11.2009 (2067)