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Clifford analysis approach to a self-conjugate Cauchy type
integral on Ahlfors regular surfaces

by Ricardo Abreu Blaya (Holgúın) and
Juan Bory Reyes (Santiago de Cuba)

Abstract. In this note, based on a natural isomorphism between the spaces of differ-
ential forms and Clifford algebra-valued multi-vector functions, the Cauchy type integral
for self-conjugate differential forms in Rn is considered.

1. Introduction. As is well known, a k-vector in Rn can be interpreted
as a directed k-dimensional volume. Such entities were first considered by
H. Grassmann in the second half of the 19th century. He thus created an
algebraic structure which is now commonly known as the exterior algebra. At
about the same time, Sir William Hamilton invented his quaternion algebra
which enabled him to represent rotations in three-dimensional space. In his
1878 paper, W. K. Clifford united both systems into a single geometric
algebra named after him (see [14]).

Clifford analysis offers a function theory associated with the Dirac oper-
ator which is a higher dimensional generalization of classical complex anal-
ysis in R2 (identifying R2 with C in the usual way) to Euclidean space Rn
(n ≥ 3).

On the other hand the theory of differential forms provides a generaliza-
tion in Rn of holomorphic functions of one complex variable.

Although Clifford analysis seems to be truly appropriate to study dif-
ferential forms by using Clifford algebras in a beautiful way, this has been
mentioned so far only in a few papers. For an overview of the main operator
identities and properties of these objects in the Clifford analysis context we
refer to [15] and the references quoted there.

In [11] (see also [12]), the authors compare the language of differen-
tial forms and that of Clifford algebra-valued multi-vector functions (multi-
vector fields) and show that the spaces of smooth differential forms on the
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one hand, and smooth multi-vector functions on the other are isomorphic in
a natural way. Moreover the action of the operator d − d∗, where d and d∗

are the differential and co-differential operators respectively, on the space of
smooth k-forms is identified with the action (on the right) of the Dirac oper-
ator D, which plays the role of the Cauchy–Riemann operator on the space
of smooth k-vector fields. On the other hand, the action of the operator
d+ d∗ is identified with the action (on the left) of the Dirac operator D.

As is well-known (see [10]), in Clifford analysis there is a well-defined
Cauchy type integral for domains with moderately smooth boundary, but
the same cannot be said about the theory of differential forms, where an
appropriate Cauchy kernel is missing.

In the last decade there was a strong increase of interest in studies of
boundary properties of Clifford/Cauchy type integrals on rougher domains
(see for instance [1, 8, 9]).

In [2–7] generalizations of basic properties of the Cauchy type integral
for k-vector fields using Clifford analysis are proved.

The main goal of this paper is to show how a Cauchy type integral
could be directly defined also for so-called self-conjugate non-homogeneous
differential forms. Here the full use of the isomorphism between the smooth
differential forms on the one hand, and the smooth multi-vector functions
on the other is the key point.

The analog of the Cauchy type integral for the theory of self-conjugate
differential forms to be introduced in Section 5 is inspired by an integral
representation of such differential forms obtained by A. Cialdea [13]. It is
crucial to note that the proof of the representation formula there is based on
componentwise equations derived for the self-conjugacy condition and using
the Poisson kernel for forms, but the same formula can be obtained directly
using tools of Clifford analysis. See Theorem 5.3(iii) below.

2. Harmonic differential forms. In this section we follow the nota-
tions and conventions used in [11].

Denoting by ΛkRn (0 ≤ k ≤ n) the space of alternating real-valued
differential forms of degree k (briefly k-forms), the well known Grassmann
algebra over Rn is the associative algebra

ΛRn :=
n⊕
k=0

ΛkRn

endowed with the exterior multiplication ∧.

We recall that a k-form in an open domain Ω of Rn is a map

Uk : Ω → ΛkRn, x 7→
∑
|A|=k

Uk,A(x)dxA,
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where for each A ⊂ {1, . . . , n}, Uk,A is a real-valued function in Ω and the
set

{dxA : |A| := card(A) = k}
is a basis for ΛkRn.

We denote by C1(Ω,ΛkRn) the space of smooth k-forms in Ω. A k-form
Uk of class C1(Ω,ΛkRn) is said to be harmonic in Ω if it satisfies in Ω the
Hodge/de Rham system

(2.1)

{
dUk = 0,

d∗Uk = 0.

These definitions can be directly extended to non-homogeneous differential
forms: C1(Ω,ΛRn) will denote

∑n
k=0C

1(Ω,ΛkRn).
If U =

∑n
k=0 Uk ∈ C1(Ω,ΛRn) where Uk ∈ C1(Ω,ΛkRn) is a k-form, we

consider the action of the exterior derivative d and the co-derivative d∗ as

dU =

n∑
k=0

dUk and d∗U =

n∑
k=0

d∗Uk.

Following [13] a non-homogeneous differential form U ∈ C1(Ω,ΛRn) is
said to be self-conjugate if

(2.2) dU = d∗U

in Ω, i.e.,

d∗U1 = 0; dUk−1 = d∗Uk+1 (k = 1, . . . n− 1); dUn−1 = 0.

3. Clifford algebras and multi-vectors. The real Clifford algebra
associated with Rn endowed with the Euclidean metric is the minimal en-
largement of Rn to a real linear associative algebra R0,n with identity, and
such that x2 = −|x|2 for any x ∈ Rn.

It follows that if {ej}nj=1 is the standard basis of Rn, then we must have
eiej + ejei = −2δij . Every element a ∈ R0,n is of the form a =

∑
A⊆N aAeA,

N = {1, . . . , n}, aA ∈ R, where e∅ := e0 = 1, e{j} = ej , and eA = eα1 · · · eαk

for A = {α1, . . . , αk} with αj ∈ {1, . . . , n} and α1 < · · · < αk, or still as a =∑n
k=0[a]k, where [a]k =

∑
|A|=k aAeA is a so-called k-vector (k = 0, 1, . . . , n).

If we denote the space of k-vectors by Rk0,n, then R0,n =
∑n

k=0⊕Rk0,n,
leading to the identification of Rn with R1

0,n.
For a 1-vector x and a k-vector Yk, their product xYk splits into a (k−1)-

vector and a (k + 1)-vector,

xYk = [xYk]k−1 + [xYk]k+1,

where

[xYk]k−1 = 1
2(xYk − (−1)kYkx) and [xYk]k+1 = 1

2(xYk + (−1)kYkx).



104 R. Abreu Blaya and J. Bory Reyes

The inner and outer products between x and Yk are then defined by

(3.1) x • Yk := [xYk]k−1 and x ∧ Yk := [xYk]k+1.

Notice also that

(3.2) [xYk]k−1 = (−1)k+1[Ykx]k−1, [xYk]k+1 = (−1)k[Ykx]k+1,

For a deeper discussion of properties of inner and outer products between
multi-vectors, we refer the reader to [17].

Conjugation in R0,n is defined by a :=
∑

A aAeA, where

eA = (−1)keik · · · ei2ei1 if eA = ei1ei2 · · · eik .
In particular for a 1-vector x we have x = −x.

4. Clifford analysis and harmonic multi-vector fields. Let Ω ⊂ Rn
be open and let F be an R0,n-valued function in Ω, say

F (x) =
∑
A

FA(x)eA, x ∈ Ω,

with all FA being real-valued.

C1(Ω,R0,n) denotes the space of continuously differentiable R0,n-valued
functions in Ω.

We say that F is right (resp. left) monogenic in Ω if FD = 0 (resp.
DF = 0) in Ω, where D denote the Dirac operator in Rn:

D =
n∑
j=1

ej∂xj .

An important example of a function which is both right and left monogenic
is the fundamental solution of the Dirac operator, given by

E(x) =
1

An

x

|x|n
, x ∈ Rn \ {0},

where An denotes the surface area of the unit sphere in Rn.

The function E(x − y) plays the same role in Clifford analysis as the
Cauchy kernel does in complex analysis. For this reason it is also called the
Cauchy kernel in Rn.

Let 0 < k ≤ n be fixed. Then the space of C1-functions from Ω into Rk0,n,

called smooth k-vector fields, is denoted by C1(Ω,Rk0,n).

Notice that for Fk ∈ C1(Ω,Rk0,n) a straightforward calculation leads to

DFk = FkD with D = −D and Fk = (−1)k(k+1)/2Fk. It follows that for an
element in C1(Ω,Rk0,n) the notions of left and right monogenicity coincide.

Consequently, we will call Fk ∈ C1(Ω,Rk0,n) harmonic in Ω if either
DFk = 0 or FkD = 0 in Ω.
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A natural isomorphism Θ between the real linear spaces C1(Ω,Rk0,n) and

C1(Ω,ΛkRn) may be defined in the following way:

For Fk =
∑
|A|=r(Fk)AeA ∈ C1(Ω,Rk0,n), put ΘFk = Uk ↔ Uk =∑

|A|=r(Uk)Adx
A, where (Fk)A = (Uk)A for eachA. This can be found in [11].

Finally notice that through this isomorphism, for Fk ∈ C1(Ω,Rk0,n) and

Uk = ΘFk ∈ C1(Ω,ΛkRn) (0 < k < n − 1), we have D ∧ Fk ↔ dUk and
D • Fk ↔ d∗Uk.

The following equivalence holds:

(4.1) DFk = 0 ⇔
{
dUk = 0,

d∗Uk = 0.

The relation (4.1) implies that Fk being harmonic in Ω is equivalent to
saying that Uk = ΘFk is a harmonic k-form in Ω.

More generally, Θ may be extended by linearity to C1(Ω,R0,n), thus
leading to a linear isomorphism Θ : C1(Ω,R0,n) → C1(Ω,ΛRn). Hence,
let U =

∑n
k=0 Uk be a non-homogeneous differential form and consider the

R0,n-valued function F =
∑n

k=0 Fk, where ΘFk = Uk. Then it may be easily
verified that

(4.2) FD = 0 ⇔ (d− d∗)U = 0.

The relation (4.2) obviously indicates that the theory of right monogenic
functions and the theory of self-conjugate differential forms in an open do-
main Ω ⊂ Rn are equivalent. For a more elaborate description of the in-
terplay between multi-vector functions and differential forms, we refer the
reader to [11].

5. Boundary properties of self-conjugate differential forms. Let
K ⊂ Rn be a compact set and C0,α(K,A), where A is either R0,n or ΛRn,
denote respectively the class of R0,n-valued functions or the class of non-
homogeneous differential forms on K satisfying the Hölder condition with
exponent 0 < α ≤ 1. The latter means that all the components (Fk)A or
(Uk)A have the cited property as real valued-functions.

Let Ω be a bounded oriented connected open subset of Rn whose bound-
ary is a compact topological surface Γ with Hn−1(Γ ) < ∞, where Hn−1 is
the (n− 1)-dimensional Hausdorff measure.

We say that Γ is Ahlfors regular if there exist c1, c2 ∈ (0,∞) such that
for each 0 < r ≤ diamΓ and z ∈ Γ ,

c1r
n−1 ≤ Hn−1({ξ ∈ Γ : |ξ − z| < r}) ≤ c2rn−1.

Let us introduce the temporary notations Ω = Ω+, Ω− = Rn \Ω+.
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For any R0,n-valued continuous function F the (right) Clifford/Cauchy
type integral and its singular version are given by the formulas

C[F ](z) :=
�

Γ

F (ξ)ν(ξ)E(ξ − z) dHn−1(ξ), z /∈ Γ,

S[F ](z) :=

2 lim
δ→0

�

Γ\{ξ∈Γ : |ξ−z|<δ}

(F (ξ)− F (z))ν(ξ)E(ξ − z) dHn−1(ξ) + F (z), z ∈ Γ,

where ν(ξ) is the outward unit normal vector on Γ introduced by Federer.
For a thorough treatment and for references to the extensive literature on
the subject one may refer to the book [16].

We shall now recall useful properties of the Clifford/Cauchy type integral
over Ahlfors regular surfaces. For details concerning the proof, we refer to
[1, 8, 9].

Theorem 5.1. Let F ∈ C0,α(Γ,R0,n), 0 < α < 1. Then

(i) CF ∈ C0,α(Ω± ∪ Γ,R0,n) with CF (∞) = 0.
(ii) CF is right monogenic in Rn \ Γ .
(iii) (Cauchy’s integral formula) If F is right monogenic in Ω, then

F (x) = (CF )(x), x ∈ Ω.
(iv) (Plemelj–Sokhotzki formula) For all z ∈ Γ ,

(C±F )(z) = lim
Ω±3x→z

(CF )(x) = 1
2(SF (z)± F (z)).

(v) In order for F to be the boundary value of a function F± which
is right monogenic in Ω± respectively, it is necessary and sufficient
that

F (z) = ±SF (z), ∀z ∈ Γ.
(vi) S is bounded on C0,α(Γ,R0,n). Moreover S2 = I, where I is the

identity operator.

The reason for the following definition of self-conjugate Cauchy type
integrals is clear; it reflects the profound relation between self-conjugate
differential forms and Clifford analysis.

Definition 5.2. Let U =
∑n

k=0 Uk be a non-homogeneous differential
form and put F =

∑n
k=0 Fk, where ΘFk = Uk. Then

(i) The Cauchy type integral for the theory of self-conjugate forms is
given by

C[U ](z) := ΘC[F ](z), z /∈ Γ,
(ii) In the same way, we define the singular Cauchy type integral by

S[U ](z) := ΘS[F ](z), z ∈ Γ.
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The basic properties of C[U ] and S[U ] are established in our next theo-
rem.

Theorem 5.3. Let U ∈ C0,α(Γ,ΛRn)), 0 < α < 1. Then

(i) C[U ] ∈ C0,α(Ω± ∪ Γ,ΛRn)) with C[U ](∞) = 0.
(ii) C[U ] is self-conjugate in Rn \ Γ .
(iii) (Cauchy’s integral formula) If U is self-conjugate in Ω, then

U(x) = C[U ](x), x ∈ Ω.

(iv) (Plemelj–Sokhotzki formula) For all z ∈ Γ ,

C±[U ](z) = lim
Ω±3x→z

C[U ](x) = 1
2(S[U ](z)± U(z)).

(v) In order for U to be the boundary value of a differential form U±

which is self-conjugate in Ω± respectively, it is necessary and suffi-
cient that

U(z) = ±SU(z), ∀z ∈ Γ.

(vi) S is bounded on C0,α(Γ,ΛRn). Moreover S2 = I, where I is the
identity operator.

Main ideas of the proof. The results do not need separate proofs, they
are straightforward adaptation of the corresponding ones in Theorem 5.1 if
we use Definition 5.2 by fully exploiting the isomorphism Θ. For instance, it
is easily seen that C[U ] is a self-conjugate differential form in Rn \ Γ , since
CF is right monogenic in Rn \ Γ .
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Universidad de Holgúın
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