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Solutions of singular semilinear elliptic equations with
critical weighted Hardy–Sobolev exponents

by Qi-Wu Du (Chongqing and Chengdu) and
Chun-Lei Tang (Chongqing)

Abstract. Some solutions are obtained for a class of singular semilinear elliptic equa-
tions with critical weighted Hardy–Sobolev exponents by variational methods and some
analysis techniques.

1. Introduction and main results. Consider the following semilinear
elliptic problem

(1.1)−div(|x|−2a∇u)− µ u

|x|2(1+a)
=
|u|2∗(a,s)−2

|x|s
u+

f(x, u)

|x|σ
, x ∈ Ω \ {0},

u = 0, x ∈ ∂Ω,

where Ω is an open bounded domain in RN (N ≥ 3) with smooth boundary

∂Ω, 0 ∈ Ω, 0 ≤ a <
√
µ, µ

4
= (N − 2)2/4, 0 ≤ µ < (

√
µ − a)2, 2Na

N−2 ≤ s <

2(1 + a), 0 ≤ σ < 2(1 + a), f ∈ C(Ω × R,R), and

2∗(a, s)
4
=

2(N − s)
N − 2(1 + a)

.

Note that 2∗(0, s) = 2(N−s)
N−2 is the Hardy–Sobolev critical exponent and

2∗
4
= 2∗(0, 0) =

2N

N − 2

is the Sobolev critical exponent. In the case µ = 0, problem (1.1) is related
to the well known Caffarelli–Kohn–Nirenberg inequalities (see [CKN])

(1.2)
( �

RN
|x|−s|u|2∗(a,s) dx

) 2
2∗(a,s) ≤ Ca,s

�

RN
|x|−2a|∇u|2 dx,
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for all u ∈ C∞0 (RN ), where −∞ < a <
√
µ and 2Na

N−2 ≤ s ≤ 2(1 + a).
For sharp constants and extremal functions, see [CW]. If s = 2(1 + a) and
2∗(a, s) = 2 in (1.2), we get the following weighted Hardy inequality (see
[CW, CC]):

(1.3)
�

RN

|u|2

|x|2(1+a)
dx ≤ 1

(
√
µ− a)2

�

RN
|x|−2a|∇u|2 dx

for all u ∈ C∞0 (RN ). If a = 0, (1.3) becomes the well known Hardy inequality
�

RN

|u|2

|x|2
dx ≤ 1

µ

�

RN
|∇u|2 dx for all u ∈ C∞0 (RN ).

For µ ∈ [0, (
√
µ−a)2), we use Ha = H1

0 (Ω, |x|−2a) to denote the completion
of C∞0 (Ω) with respect to the norm

‖u‖ =

( �

Ω

(
|x|−2a|∇u|2 − µ u2

|x|2(1+a)

)
dx

)1/2

,

which is equivalent to the usual norm of H1
0 (Ω, |x|−2a) due to (1.3), and

(1.4) A = Aa,s,µ(Ω)
4
= inf

u∈Ha\{0}

‖u‖2( 	
Ω
|u|2∗(a,s)
|x|s dx

) 2
2∗(a,s)

is the best Hardy–Sobolev constant, which is independent of Ω (see [KLP]).
Problem (1.1) in the case a = s = 0 and σ = 0 has been studied by some

authors (see [CH, CW, GP, T]), and some interesting results were obtained.
In particular, if µ = 0, the problem has been widely studied since Brezis
and Nirenberg (see [ABC, BN, J]); some other authors paid much attention
to the singular problem with Hardy–Sobolev critical exponents (the case
a = 0, s 6= 0, σ = 0) (see [DT, GK, GY, KP1, KP2]). But there are few
results dealing with the case a 6= 0, s 6= 0, σ 6= 0 and the general form
f(x, t). In [HWT], the authors only studied the case σ = 0 for the general
form f(x, t) under suitable conditions; in [K], the authors only studied the
special case a = 0 and f(x, t) = λ|t|q−1t with suitable q. In this paper,
we use a variational method to deal with problem (1.1) and generalize the
results in [HWT].

Due to the lack of compactness of the embedding Ha ↪→ L2∗(Ω) (see
[GY]), we cannot use the standard variational argument directly. The corre-
sponding energy functional fails to satisfy the classical Palais–Smale ((PS)
for short) condition inHa. However, a local (PS) condition can be established
in a suitable range. Then the existence result is obtained via constructing a
minimax level within this range and using the Mountain Pass Lemma due
to A. Ambrosetti and P. H. Rabinowitz (see [Ra]).

Here are the main results of this paper:
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Theorem 1.1. Suppose that 0 ≤ a <
√
µ, 0 ≤ µ < (

√
µ − a)2, 2Na

N−2 ≤
s < 2(1 + a), 0 ≤ σ < 2(1 + a) and

(f1) f ∈ C(Ω × R+,R), and f(x, t)/t → 0 (t → 0+), f(x, t)/tr−1 → 0
(t → ∞) uniformly for x ∈ Ω, where r = 2∗ if 0 ≤ σ < 2Na

N−2 , and

r = 2∗(a, σ) if 2Na
N−2 ≤ σ < 2(1 + a);

(f2) there exists a constant ρ > 2 such that 0 < ρF (x, t) ≤ f(x, t)t for
all x ∈ Ω and t ∈ R+ \ {0}, where F (x, t) is the primitive function

of f(x, t) defined by F (x, t) =
	t
0 f(x, s) ds.

Assume that

(1.5) ρ > max

{
2,
N − σ
γ

,
N − σ − 2β√

µ− a

}
,

where β =
√

(
√
µ− a)2 − µ and γ =

√
µ− a+ β. Then problem (1.1) has a

positive weak solution.

Corollary 1.2. Suppose that N ≥ 4(1 + a), 0 ≤ a <
√
µ, 0 ≤ µ <

(
√
µ − a)2 − (1 + a)2, 2Na

N−2 ≤ s < 2(1 + a) and 0 ≤ σ < 2(1 + a). Assume
that (f1) and (f2) hold. Then problem (1.1) has a positive solution.

Theorem 1.3. Suppose that 0 ≤ a <
√
µ, 0 ≤ µ < (

√
µ − a)2, 2Na

N−2 ≤
s < 2(1 + a), 0 ≤ σ < 2(1 + a) and

(f3) f ∈ C(Ω × R,R), and f(x, t)/t → 0 (|t| → 0), f(x, t)/tr−1 → 0
(|t| → ∞) uniformly for x ∈ Ω;

(f4) there exists a constant ρ > 2 such that 0 < ρF (x, t) ≤ f(x, t)t for
all x ∈ Ω and t ∈ R \ {0}.

Assume that (1.5) holds. Then problem (1.1) has at least two distinct non-
trivial solutions.

Corollary 1.4. Suppose that N ≥ 4(1 + a), 0 ≤ a <
√
µ, 0 ≤ µ ≤

(
√
µ−a)2− (1+a)2, 2Na

N−2 ≤ s < 2(1+a) and 0 ≤ σ < 2(1+a). Assume that
(f3) and (f4) hold. Then problem (1.1) has at least two distinct nontrivial
solutions.

Remark 1.5. Our theorems generalize the results in [HWT] where the
authors only studied the case σ = 0 with general f(x, t). Moreover, Theo-
rem 1.1 also generalizes [K, Theorem 1.1] where the author only considered
the special situation that a = 0 and f(x, t) = λ|t|q−1t with suitable q.

2. Proofs. In order to study the existence of positive solutions for prob-
lem (1.1) we shall first consider the existence of nontrivial solutions to the
problem
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(2.1)−div(|x|−2a∇u)− µ u

|x|2(1+a)
=

(u+)2
∗(a,s)−1

|x|s
+
f(x, u+)

|x|σ
, x ∈ Ω \ {0},

u = 0, x ∈ ∂Ω,

where u+ = max{u, 0}. The energy functional corresponding to problem
(2.1) is given by

I(u) =
1

2

�

Ω

(
|x|−2a|∇u|2 − µ u2

|x|2(1+a)

)
dx

− 1

2∗(a, s)

�

Ω

(u+)2
∗(a,s)

|x|s
dx−

�

Ω

F (x, u+)

|x|σ
dx, u ∈ Ha.

By the weighted Hardy–Sobolev inequality (1.3) and (f1), I ∈ C1(Ha,R).
Now it is well known that there exists a one-to-one correspondence between
the weak solutions of problem (2.1) and the critical points of I on Ha. More
precisely, we say that u ∈ Ha is a weak solution of (2.1) if for any v ∈ Ha,

〈I ′(u), v〉 =
�

Ω

(
|x|−2a∇u∇v − µ uv

|x|2(1+a)

)
dx

−
�

Ω

(u+)2
∗(a,s)−1

|x|s
v dx−

�

Ω

f(x, u+)v

|x|σ
dx

= 0.

Let {un} be a sequence in Ha and c ∈ R. Then {un} is said to be a (PS)c
sequence in Ha if I(un)→ c, I ′(un)→ 0 in (Ha)

∗ as n→∞. We say I sat-
isfies the (PS)c condition if any (PS)c sequence {un} ⊂ Ha has a convergent
subsequence.

Lemma 2.1. Suppose that 0 ≤ a <
√
µ, 0 ≤ µ < (

√
µ − a)2, 2Na

N−2 ≤
s < 2(1 + a) and 0 ≤ σ < 2(1 + a). Assume (f1) and (f2) hold. Suppose

c ∈
(
0, 2

∗(a,s)−2
2·2∗(a,s) A

2∗(a,s)
2∗(a,s)−2

)
. Then I satisfies the (PS)c condition.

Proof. Suppose that {un} is a (PS)c sequence in Ha. By (f2), we have

c+ 1 + o(1)‖un‖ ≥ I(un)− 1

θ
〈I ′(un), un〉

=

(
1

2
− 1

θ

)
‖un‖2 +

(
1

θ
− 1

2∗(a, s)

) �

Ω

(u+n )2
∗(a,s)

|x|s
dx

−
�

Ω

F (x, u+n )− 1
θf(x, u+n )un

|x|σ
dx

≥
(

1

2
− 1

θ

)
‖un‖2,
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where θ = min{ρ, 2∗(a, s)}. Hence we conclude {un} is a bounded sequence
in Ha, ‖un‖ ≤ C0 <∞. Taking a subsequence if necessary, we can get

un → u weakly in Ha,

un → u in Lγ(Ω), 1 < γ < 2∗,

un → u a.e. in Ω,

as n→∞. It follows from (f1) that there exists δ1 > 0 such that

|f(x, t)| < t for all t ∈ [0, δ1] and x ∈ Ω,

and for any ε > 0, there is δ2 > δ1 such that

|f(x, t)| < εtr−1 for all t > δ2 and x ∈ Ω.

Moreover, there exists M > 0 such that

|f(x, t)| ≤M for all x ∈ Ω and t ∈ [δ1, δ2].

Hence, we deduce that

|f(x, t)| ≤ t+ εtr−1 +M ≤ εtr−1 + (1 +Mδ−11 )t

for all t > 0 and all x ∈ Ω. Then, for any ε > 0, there exists a(ε) > 0 such
that

|f(x, t)t| ≤ ε|t|r + a(ε)|t|2 for all x ∈ Ω and t > 0.

By the weighted Hardy–Sobolev inequality (1.3), there exists a constant
C > 0 such that

(2.2)
�

Ω

|u|2

|x|σ
dx =

�

Ω

|u|2

|x|2(1+a)
|x|2(1+a)−σ dx ≤ C‖u‖2

for all u ∈ Ha. Therefore, there exists a constant δ > 0 such that

�

E

|u|2

|x|σ
dx <

ε

a(ε)

for any subset E ⊆ Ω with meas(E) < δ, where meas(·) denotes the usual
Lebesgue measure in RN .

In addition, there also exist constants C2 > C1 > 0 such that

�

Ω

|u|2∗

|x|σ
dx ≤

�

Ω

|u|2∗

|x|
2Na
N−2

|x|
2Na
N−2

−σ dx ≤ C1‖u‖2
∗

for 0 ≤ σ < 2Na
N−2 and all u ∈ Ha; and

�

Ω

|u|2∗(a,σ)

|x|σ
dx ≤ C2‖u‖2

∗(a,σ)

for 2Na
N−2 ≤ σ < 2(1 + a) and all u ∈ Ha. So we get
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�

Ω

|u|r

|x|σ
dx ≤ C2‖u‖r

for 0 ≤ σ < 2(1 + a) and all u ∈ Ha. Now, set δ0 = min{δ, ε/a(ε)}; when
E ⊂ Ω with meas(E) < δ0, we get∣∣∣∣ �

E

f(x, u+n )un
|x|σ

dx

∣∣∣∣ ≤ �

E

|f(x, u+n )un|
|x|σ

dx ≤ a(ε)
�

E

|u2n|
|x|σ

dx+ ε
�

E

|un|r

|x|σ
dx

≤ ε+ εC2C
r
0 .

Hence
{ 	

Ω
f(x,u+n )un
|x|σ dx : n ∈ N

}
is equi-absolutely-continuous. According

to the Vitali convergence theorem (see [Ru]), we deduce that

(2.3)
�

Ω

f(x, u+n )un
|x|σ

dx→
�

Ω

f(x, u+)u

|x|σ
dx

as n→∞. Similarly, we have

(2.4)
�

Ω

F (x, u+n )

|x|σ
dx→

�

Ω

F (x, u+)

|x|σ
dx

as n→∞. Let vn = un − u. Since I ′(un)→ 0 in (Ha)
∗, we obtain

‖un‖2 −
�

Ω

(u+n )2
∗(a,s)

|x|s
dx−

�

Ω

f(x, u+n )un
|x|σ

dx = o(1).

From the Brezis–Lieb lemma (see [HL]), we have

(2.5)



�

Ω

|un|2

|x|2(1+a)
dx−

�

Ω

|un − u|2

|x|2(1+a)
dx→

�

Ω

|u|2

|x|2(1+a)
dx,

�

Ω

|un|2
∗(a,s)

|x|s
dx−

�

Ω

|un − u|2
∗(a,s)

|x|s
dx→

�

Ω

|u|2∗(a,s)

|x|s
dx,

�

Ω

|∇un|2

|x|2a
dx−

�

Ω

|∇un −∇u|2

|x|2a
dx→

�

Ω

|∇u|2

|x|2a
dx,

�

Ω

|un|2
∗(a,s)−2

|x|s
unv dx→

�

Ω

|u|2∗(a,s)−2

|x|s
uv dx, v ∈ Ha,

as n→∞. By (2.3) and (2.5), we get

O(1) = ‖vn‖2 + ‖u‖2 −
�

Ω

(v+n )2
∗(a,s)

|x|s
dx−

�

Ω

(u+)2
∗(a,s)

|x|s
dx(2.6)

−
�

Ω

f(x, u+)u

|x|σ
dx
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and

lim
n→∞

〈I ′(un), u〉 = 〈I ′(u), u〉(2.7)

= ‖u‖2 −
�

Ω

(u+)2
∗(a,s)

|x|s
dx−

�

Ω

f(x, u+)u

|x|σ
dx = 0.

It follows from (2.7) that

I(u) = I(u)− 1

2
〈I ′(u), u〉

=

(
1

2
− 1

2∗(a, s)

) �

Ω

(u+)2
∗(a,s)

|x|s
dx+

1

2

�

Ω

f(x, u+)u

|x|σ
dx−

�

Ω

F (x, u+)

|x|σ
dx.

From (f2), we conclude that

(2.8) I(u) ≥ 0.

Since I(un)→ c (n→∞), combining (2.4) with (2.5), we obtain

I(un) =
1

2
‖un‖2 −

1

2∗(a, s)

�

Ω

(u+n )2
∗(a,s)

|x|s
dx−

�

Ω

F (x, u+n )

|x|σ
dx

=
1

2
‖vn‖2 +

1

2
‖u‖2 − 1

2∗(a, s)

�

Ω

(v+n )2
∗(a,s)

|x|s
dx

− 1

2∗(a, s)

�

Ω

(u+)2
∗(a,s)

|x|s
dx−

�

Ω

F (x, u+)

|x|σ
dx+ o(1)

= I(u) +
1

2
‖vn‖2 −

1

2∗(a, s)

�

Ω

(v+n )2
∗(a,s)

|x|s
dx+ o(1)

= c+ o(1).

Therefore,

(2.9) I(u) +
1

2
‖vn‖2 −

1

2∗(a, s)

�

Ω

(v+n )2
∗(a,s)

|x|s
dx = c+ o(1).

From (2.6) and (2.7), we have

‖vn‖2 −
�

Ω

(v+n )2
∗(a,s)

|x|s
dx = o(1).

Then ‖vn‖ → 0 as n → ∞. Indeed, otherwise there exists a subsequence,
still denoted by vn, such that

(2.10) ‖vn‖2 → k and
�

Ω

(v+n )2
∗(a,s)

|x|s
dx→ k as n→∞,
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where k is a positive constant. By (1.4), we deduce that

‖vn‖2 ≥ A
( �

Ω

(v+n )2
∗(a,s)

|x|s

) 2
2∗(a,s)

for all n ∈ N;

hence k ≥ Ak
2

2∗(a,s) , i.e., k ≥ A
2

2∗(a,s)−2 , which, together with (2.9) and
(2.10), shows that

I(u) = c− 1

2
k +

1

2∗(a, s)
k ≤ c− 2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 < 0.

This contradicts (2.8).

Therefore, ‖vn‖2 → 0 as n → ∞, which implies that un → u in Ha as
n→∞. From the discussion above, I satisfies the (PS)c condition.

Recently, the authors of [KLP] proved that, for 0 ≤ a <
√
µ, 0 ≤ µ <

(
√
µ − a)2, 2Na

N−2 ≤ s < 2(1 + a) and β =
√

(
√
µ− a)2 − µ, A is attained

when Ω = RN by the functions

yε(x) =
(2ε · 2∗(a, s)β2)

1
2∗(a,s)−2

|x|γ′(ε+ |x|(2∗(a,s)−2)β)
2

2∗(a,s)−2

for all ε > 0, where γ′ =
√
µ − a − β. Moreover, the functions yε(x) solve

the equation

−div(|x|−2a∇u)− µ u

|x|2(1+a)
=
|u|2∗(a,s)−2

|x|s
u in RN \ {0},

and satisfy

�

RN

(
|x|−2a|∇yε(x)|2 − µ y2ε(x)

|x|2(1+a)

)
dx =

�

RN

y
2∗(a,s)
ε (x)

|x|s
dx = A

2∗(a,s)
2∗(a,s)−2 .

Let

Cε = (2ε · 2∗(a, s)β2)
1

2∗(a,s)−2 , Uε(x) = yε(x)/Cε.

Choose a cut-off function ϕ ∈ C∞0 (Ω) such that ϕ(x) = 1 for |x| ≤ R,
ϕ(x) = 0 for |x| ≥ 2R and 0 ≤ ϕ(x) ≤ 1, where B2R(0) ⊂ Ω. Set
uε(x) = ϕ(x)Uε(x), vε(x) = uε(x)/(

	
Ω |uε|

2∗(a,s)|x|−s dx)1/2
∗(a,s), so that	

Ω |vε|
2∗(a,s)|x|−s dx = 1. Then we can get the following results by the meth-

ods used in [GY]:

(2.11) A+ C3ε
2

2∗(a,s)−2 ≤ ‖vε‖2 ≤ A+ C4ε
2

2∗(a,s)−2 ,

and
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(2.12)

C5ε
q

2∗(a,s)−2 ≤
�

Ω

|vε|q

|x|σ
dx ≤ C6ε

q
2∗(a,s)−2 , 1 ≤ q < (N − σ)/γ,

C5ε
q

2∗(a,s)−2 |ln ε| ≤
�

Ω

|vε|q

|x|σ
dx ≤ C6ε

q
2∗(a,s)−2 |ln ε|, q = (N − σ)/γ,

C5ε
N−σ−q(

√
µ−a)

(2∗(a,s)−2)β ≤
�

Ω

|vε|q

|x|σ
dx ≤ C6ε

N−σ−q(
√
µ−a)

(2∗(a,s)−2)β , q > (N − σ)/γ.

Moreover, we obtain

(2.13)
�

Ω

|vε|r

|x|σ
dx ≤ C2(2A)r/2 as ε→ 0+.

In fact, using the Hardy–Sobolev inequality and (2.11), one deduces
�

Ω

|vε|r

|x|σ
dx ≤ C2‖vε‖r ≤ C2(A+ C4ε

2
2∗(a,s)−2 )r/2 ≤ C2(2A)r/2 as ε→ 0+.

Lemma 2.2. Suppose that 0 ≤ a <
√
µ, 0 ≤ µ < (

√
µ− a)2, 2Na

N−2 ≤ s <
2(1 + a) and 0 ≤ σ < 2(1 + a). Assume that (f1), (f2) and (1.5) hold. Then
there exists u0 ∈ Ha, u0 6≡ 0, such that

sup
t≥0

I(tu0) <
2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 .

Proof. We consider the functions

g(t) = I(tvε) =
t2

2
‖vε‖2 −

t2
∗(a,s)

2∗(a, s)
−

�

Ω

F (x, tvε)

|x|σ
dx,

g̃(t) =
t2

2
‖vε‖2 −

t2
∗(a,s)

2∗(a, s)
.

Note that g(t)→ −∞ as t→∞, g(0) = 0, g(t) > 0 as t→ 0+, so supt≥0 g(t)
is attained for some t0 > 0. Since

0 = g′(t0) = t0

(
‖vε‖2 − t2

∗(a,s)−2
0 − 1

t0

�

Ω

f(x, t0vε)vε
|x|σ

dx

)
,

we have

‖vε‖2 = t
2∗(a,s)−2
0 +

1

t0

�

Ω

f(x, t0vε)vε
|x|σ

dx ≥ t2
∗(a,s)−2

0 ,

which, together with (2.11), shows that

t0 ≤ ‖vε‖
2

2∗(a,s)−2
4
= t0 ≤ (2A)

1
2∗(a,s)−2 .

By (f1), for any ε̃ > 0, there exists a(ε̃) > 0 such that

|f(x, t)| ≤ ε̃|t|r−1 + a(ε̃)|t| for all x ∈ Ω and t > 0.

Hence, we obtain
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‖vε‖2 ≤ t2
∗(a,s)−2

0 + ε̃
�

Ω

|t0|r−2|vε|r

|x|σ
dx+ a(ε̃)

�

Ω

|vε|2

|x|σ
dx.

Set ε̃ = (4C2(2A)
r−2

2∗(a,s)−2 (2A)r/2)−1A. By (2.11)–(2.13), for ε small,

A ≤ ‖vε‖2 ≤ t2
∗(a,s)−2

0 + ε̃C2(2A)
r−2

2∗(a,s)−2 (2A)r/2 + 1
4A = t

2∗(a,s)−2
0 + 1

2A,

that is,

(2.14) t
2∗(a,s)−2
0 ≥ A/2.

On the one hand, from (2.11) we will deduce that

(2.15) ‖vε‖
2·2∗(a,s)
2∗(a,s)−2 ≤ A

2∗(a,s)
2∗(a,s)−2 + C7ε

2
2∗(a,s)−2 .

In order to prove this, we first prove the following inequality:

(2.16) (a+ b)λ ≤ aλ + λ(a+ 1)λ−1b, a > 0, 0 ≤ b ≤ 1, λ ≥ 1.

In fact, set

h(x) = (a+ x)λ − aλ − λ(a+ 1)λ−1x, a > 0, 0 ≤ x ≤ 1, λ ≥ 1.

Clearly, h′(x) < 0, x ∈ (0, 1), so h(b) ≤ h(0) = 0; then (2.16) holds. Let

a = A, b = C3ε
2

2∗(a,s)−2 , λ = 2∗(a,s)
2∗(a,s)−2 ; then (2.15) holds.

On the other hand, the function g̃(t) attains its maximum at t0, and
is increasing in the interval [0, t0]; together with (2.11), (2.14), (2.15) and
F (x, t) ≥ C8|t|ρ which is directly derived from (f2), we deduce that

g(t0) ≤ g̃(t0)−
�

Ω

F (x, t0vε)

|x|σ
dx

=
2∗(a, s)− 2

2 · 2∗(a, s)
‖vε‖

2·2∗(a,s)
2∗(a,s)−2 −

�

Ω

F (x, t0vε)

|x|σ
dx

≤ 2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 + C9ε

2
2∗(a,s)−2 −

�

Ω

F (x, t0vε)

|x|σ
dx

≤ 2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 + C9ε

2
2∗(a,s)−2 − C8

�

Ω

tρ0|vε|ρ

|x|σ
dx

≤ 2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 + C9ε

2
2∗(a,s)−2 − C8

(
A

2

) ρ
2∗(a,s)−2 �

Ω

|vε|ρ

|x|σ
dx,

where C9 = C7
2∗(a,s)−2
2·2∗(a,s) . Furthermore, from (2.12), we get

�

Ω

|vε|ρ

|x|σ
dx ≥ C5ε

N−σ−ρ(
√
µ−a)

(2∗(a,s)−2)β .

By (1.5), we obtain

2

2∗(a, s)− 2
>
N − σ − ρ(

√
µ− a)

(2∗(a, s)− 2)β
.
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Choosing ε small enough, we have

sup
t≥0

I(tvε) = g(t0) <
2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 .

Proof of Theorem 1.1. By (f1), for any ε > 0, there exists b(ε) > 0 such
that

|f(x, t)| ≤ ε|t|+ b(ε)|t|r−1 for (x, t) ∈ Ω × (0,∞),

|F (x, t)| ≤ 1

2
ε|t|2 +

b(ε)

r
|t|r for (x, t) ∈ Ω × (0,∞).

Combining this with the Hardy–Sobolev inequality, (1.2) and (2.2), we have

I(u) =
1

2
‖u‖2 − 1

2∗(a, s)

�

Ω

(u+)2
∗(a,s)

|x|s
dx−

�

Ω

F (x, u+)

|x|σ
dx

≥ 1

2
‖u‖2 − (Ca,s)

2∗(a,s)/2

2∗(a, s)
‖u+‖2∗(a,s) − ε

2

�

Ω

|u|2

|x|σ
dx− b(ε)

r

�

Ω

|u|r

|x|σ
dx

≥ 1

2
‖u‖2 − (Ca,s)

2∗(a,s)/2

2∗(a, s)
‖u+‖2∗(a,s) − Cε

2
‖u‖2 − C2b(ε)

r
‖u‖r

for ε small enough. So there exists α > 0 such that I(u) ≥ α for all u ∈
∂BR = {u ∈ Ha : ‖u‖ = R}, where R > 0 is small enough. By Lemma 2.2,
there exists u0 ∈ Ha such that u0 6≡ 0 and

sup
t≥0

I(tu0) <
2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 .

From the nonnegativity of F (x, t), we obtain

I(tu0) =
1

2
t2‖u0‖2 −

t2
∗(a,s)

2∗(a, s)

�

Ω

(u+0 )2
∗(a,s)

|x|s
dx−

�

Ω

F (x, tu+0 )

|x|σ
dx

≤ 1

2
t2‖u0‖2 −

t2
∗(a,s)

2∗(a, s)

�

Ω

(u+0 )2
∗(a,s)

|x|s
dx,

which implies that I(tu0) → −∞ as t → ∞. Hence we can choose t1 > 0
such that ‖t1u0‖ > R and I(t1u0) ≤ 0. Applying the Mountain Pass Lemma
of [Ra], there is a sequence {un} ⊂ Ha satisfying

I(un)→ c ≥ α, I ′(un)→ 0,

where

c = inf
h∈τ

max
t∈[0,1]

I(h(t)) and τ = {h ∈ C([0, 1], Ha) : h(0) = 0, h(1) = t1u0}.

Note that

0 < α ≤ c = inf
h∈τ

max
t∈[0,1]

I(h(t)) ≤ max
t∈[0,1]

I(tt1u0) ≤ sup
t≥0

I(tu0)

<
2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 .
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Now Lemma 2.1 suggests {un} ⊂ Ha has a convergent subsequence, still
denoted by {un}. Assume that {un} converges to some u ∈ Ha. From the
continuity of I ′, we know that u is a weak solution of problem (2.1). Hence
u ≥ 0 from 〈I ′(u), u−〉 = 0, where u− = min{u, 0}.

Moreover, suppose u ≡ 0. By (2.9) and (2.10), if k = 0, we get c =
I(0) = 0, which contradicts c > 0; if k > 0, we obtain

c =

(
1

2
− 1

2∗(a, s)

)
k ≥ 2∗(a, s)− 2

2 · 2∗(a, s)
A

2∗(a,s)
2∗(a,s)−2 ,

which contradicts c < 2∗(a,s)−2
2·2∗(a,s) A

2∗(a,s)
2∗(a,s)−2 .

Therefore, u 6≡ 0 and u is a nontrivial solution of problem (1.1). By
the Strong Maximum Principle, u is a positive solution of problem (1.1), so
Theorem 1.1 holds.

Proof of Theorem 1.3. By Theorem 1.1 problem (1.1) has a positive
solution u1. Set g(x, t) = −f(x,−t) for t ∈ R. It follows from Theorem 1.1
that the equation

−div(|x|−2a∇u)− µ u

|x|2(1+a)
=
|u|2∗(a,s)−2

|x|s
u+

g(x, u)

|x|σ

has a positive solution v. Let u2 = −v. Then u2 is a solution of the equation

−div(|x|−2a∇u)− µ u

|x|2(1+a)
=
|u|2∗(a,s)−2

|x|s
u+

f(x, u)

|x|σ
.

It is obvious that u1 6= 0, u2 6= 0 and u1 6= u2. So problem (1.1) has at least
two nontrivial solutions. Therefore, Theorem 1.3 holds.
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