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An Osserman-type condition on g.f.f-manifolds
with Lorentz metric

by Letizia Brunetti (Bari)

Abstract. A condition of Osserman type, called the ϕ-null Osserman condition, is
introduced and studied in the context of Lorentz globally framed f -manifolds. An explicit
example shows the naturality of this condition in the setting of Lorentz S-manifolds. We
prove that a Lorentz S-manifold with constant ϕ-sectional curvature is ϕ-null Osserman,
extending a well-known result in the case of Lorentz Sasaki space forms. Then we state
a characterization of a particular class of ϕ-null Osserman S-manifolds. Finally, some
examples are examined.

1. Introduction. The study of the behaviour of the Jacobi operators is
an important topic in Riemannian and, more generally, in semi-Riemannian
geometry. More precisely, let (M, g) be a Riemannian manifold with curva-
ture tensor R and consider a point p in M . For any unit vector X ∈ TpM ,
the symmetric endomorphism RX = Rp(·, X)X : X⊥ → X⊥ is called the
Jacobi operator with respect to X. If the eigenvalues of RX are independent
of the choices of X and p, one says that (M, g) is an Osserman mani-
fold [21].

The Osserman conjecture states that an Osserman manifold is either
flat or locally a rank-one symmetric space, and some progress towards this
conjecture was made in [7–9, 17–19]. Osserman manifolds were also studied
in the Lorentzian context [3, 11, 12], where a complete solution is available.

Recently, Atindogbe and Duggal [1] have introduced and studied suit-
able operators of Jacobi type associated with a semi-Riemannian degenerate
metric.

In [12] the authors defined the Jacobi operator R̄u, u being a null (or
lightlike) vector tangent to a Lorentz manifold M . Given a unit timelike
vector z tangent to M , they introduced and investigated the so-called null
Osserman condition with respect to z (see also [13]).
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Obviously, Lorentz almost contact manifolds can be studied in this con-
text. In particular, a Lorentz Sasaki space form, whose characteristic vec-
tor field ξ is timelike, turns out to be globally null Osserman with respect
to ξ [13]. This result does not hold in the context of Lorentz globally framed
f -manifolds (M2n+s, ϕ, ξα, η

α, g), s≥2, as we will see with a counterexample.

This motivates the introduction of a more general condition of Osserman
type, which we call the ϕ-null Osserman condition.

The main results of this paper give the links between the ϕ-null Osser-
man condition and the behaviour of the ϕ-sectional curvature in Lorentz
S-manifolds. After a preliminary section, where we gather some facts about
g.f.f -manifolds, needed in the rest of the paper, in Section 3 we discuss the
relationship between the null Osserman condition and the Lorentz S-struc-
tures, giving an example of a Lorentz S-space form which does not satisfy
the null Osserman conditions. We endow the compact Lie group U(2) with
a Lorentz S-structure of rank 2. This manifold is an S-space form with two
characteristic vector fields ξ1 and ξ2, ξ1 timelike, that does not satisfy the
null Osserman condition with respect to ξ1.

In Section 4 we introduce the notion of ϕ-null Osserman manifold, and we
state that a Lorentz S-manifold with constant ϕ-sectional curvature is ϕ-null
Osserman with respect to the timelike characteristic vector field. We prove,
in Section 5, an algebraic characterization of the Riemannian curvature ten-
sor field in a particular class of ϕ-null Osserman Lorentz S-manifolds. More-
over, we look at the behaviour of the ϕ-sectional curvature when the Jacobi
operator has a single eigenvalue. In particular, it is interesting to note that
the existence of the only eigenvalue 1 of the Jacobi operator is related to
the ϕ-sectional flatness of the manifold. Finally in the case of 4-dimensional
ϕ-null Osserman manifolds we find a compact example, using the Lie group
U(2), and also a non-compact one.

All manifolds, tensor fields and maps are assumed to be smooth, more-
over we suppose all manifolds are connected. We will use the Einstein con-
vention omitting the sum symbol for repeated indices. Following the nota-
tions of S. Kobayashi and K. Nomizu [16] for the curvature tensor R we
have R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z and R(X,Y, Z,W ) =
g(R(Z,W )Y,X) for any X,Y, Z,W ∈ X(M). The sectional curvature Kp(π)
at p of a non-degenerate 2-plane π = span{X,Y } is given by

Kp(π) = Kp(X,Y ) =
Rp(X,Y,X, Y )

∆(π)
=
gp(Rp(X,Y )Y,X)

∆(π)
,

where ∆(π) = g(X,X)g(Y, Y )− g(X,Y )2 6= 0.

2. Preliminaries. Following [2, 5, 22] we recall some definitions. An
almost contact manifold is a (2n+1)-dimensional manifold M endowed with
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an almost contact structure, i.e. M2n+1 has a (1, 1)-tensor field f such that
rank(f) = 2n, a 1-form η and a vector field ξ satisfying f2(X) = −X+η(X)ξ
and η(ξ) = 1. Moreover, if g is a semi-Riemannian metric on M2n+1 such
that, for any X,Y ∈ X(M2n+1),

g(fX, fY ) = g(X,Y )− εη(X)η(Y ),

where ε = ±1 according to the causal character of ξ, then M2n+1 is called
an indefinite almost contact manifold . Such a manifold is said to be an in-
definite contact manifold if dη = Φ, Φ being defined by Φ(X,Y ) = g(X, fY ).
Furthermore, if the structure (f, ξ, η) is normal, i.e. N = [f, f ]+2dη⊗ξ = 0,
then the indefinite contact structure is called an indefinite Sasaki structure
and, in this case, the manifold (M2n+1, f, ξ, η, g) is called indefinite Sasaki.

In the Riemannian case a generalization of these structures was studied
by Blair [2] and by Goldberg and Yano [15]. In [5] we studied such structures
in semi-Riemannian context.

A manifold M is called a globally framed f -manifold (briefly g.f.f -
manifold) if it is endowed with a nowhere-vanishing (1, 1)-tensor field ϕ of
constant rank such that kerϕ is parallelizable, i.e. there exist global vector
fields ξα, α ∈ {1, . . . , s}, and 1-forms ηα, satisfying

ϕ2 = −I + ηα ⊗ ξα and ηα(ξβ) = δαβ .

A g.f.f -manifold (M2n+s, ϕ, ξα, η
α), α ∈ {1, . . . , s}, is said to be an

indefinite g.f.f -manifold if g is a semi-Riemannian metric satisfying the
compatibility condition

g(ϕX,ϕY ) = g(X,Y )− εαηα(X)ηα(Y )

for any vector fields X, Y , where εα = ±1 according to whether ξα is
spacelike or timelike. Then, for any α ∈ {1, . . . , s} and X ∈ X(M2n+s), one
has ηα(X) = εαg(X, ξα).

An indefinite g.f.f -manifold is an indefinite S-manifold if it is normal
and dηα = Φ for any α ∈ {1, . . . , s}, where Φ(X,Y ) = g(X,ϕY ) for any
X,Y ∈ X(M2n+s). The normality condition is expressed by the vanishing of
the tensor field Nϕ + 2dηα ⊗ ξα, Nϕ being the Nijenhuis torsion of ϕ.

Note that, for s = 1, we recover the notion of indefinite Sasaki manifold.

We recall that ∇Xξα = −εαϕX and kerϕ is an integrable flat distri-
bution since ∇ξαξβ = 0 for any α, β ∈ {1, . . . , s}. Anyway, an indefinite
S-manifold is never flat and it is never a real space form since, for example,
K(X, ξα) = εα for any non-lightlike X ∈ Imϕp.

For more details we refer the reader to [5], where we describe three ex-
amples of non-compact indefinite S-manifolds. More precisely, we construct
two different indefinite S-structures with metrics of index ν = 2 on R6 and
an indefinite S-structure with Lorentz metric on R4. Moreover, in [6] we
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give explicit examples of compact indefinite g.f.f -manifolds and indefinite
S-manifolds.

We also remark that every g.f.f -manifold is subject to the following
topological condition: it has to be either non-compact or compact with van-
ishing Euler characteristic, since it never admits vanishing vector fields. This
implies that it always admits Lorentz metrics.

Let us fix some notation connected with the curvature tensor field. As
usual, a 2-plane π = span{X,ϕX} in TpM , with p ∈ M and X ∈ Imϕp, is
said to be a ϕ-plane and the sectional curvature at p of such a plane, with X
a non-lightlike vector, is called the ϕ-sectional curvature at p and is denoted
by Hp(X).

An indefinite S-manifold (M,ϕ, ξα, η
α, g) is said to be an indefinite

S-space form if the ϕ-sectional curvature Hp(X) is constant, for any point
and any ϕ-plane. In particular, in [5] it is proved that an indefinite S-
manifold (M,ϕ, ξα, η

α, g) is an indefinite S-space form with Hp(X) = c if
and only if the Riemannian (0, 4)-type curvature tensor field R is given by

(2.1) R(X,Y, Z,W )

= −c+ 3ε

4
{g(ϕY, ϕZ)g(ϕX,ϕW )− g(ϕX,ϕZ)g(ϕY, ϕW )}

− c− ε
4

{
Φ(W,X)Φ(Z, Y )− Φ(Z,X)Φ(W,Y )

+ 2Φ(X,Y )Φ(W,Z)
}
−
{
η̃(W )η̃(X)g(ϕZ,ϕY )

− η̃(W )η̃(Y )g(ϕZ,ϕX) + η̃(Y )η̃(Z)g(ϕW,ϕX)

− η̃(Z)η̃(X)g(ϕW,ϕY )
}

for any vector fields X, Y , Z and W on M , where ε =
∑s

α=1 εα, ξ̃ =
∑s

α=1 ξα
and η̃ = εαη

α.

In regard to the curvature tensor of an indefinite S-manifold, it is im-
portant to recall the following formulas, for any X,Y, Z,W ∈ Imϕ and any
α, β, γ, δ ∈ {1, . . . , s}:

R(X, ξα, X, Y ) = 0, R(ξα, X, ξβ, Y ) = εαεβg(X,Y ),

R(ξα, X, ξβ, ξγ) = 0, R(ξα, ξδ, ξβ, ξγ) = 0,(2.2)

R(X,Y, ϕZ,W ) +R(X,Y, Z, ϕW ) = εP (X,Y ;Z,W ),

where P (X,Y ;Z,W ) = Φ(X,Z)g(Y,W )−Φ(X,W )g(Y,Z)−Φ(Y,Z)g(X,W )
+ Φ(Y,W )g(X,Z).

Finally, we recall some useful properties of a curvature-like algebraic
tensor. Let (V, g) be a pseudo-Euclidean real vector space of index ν, 0 <
ν < dimV . A multilinear map F : V 4 → R is called a curvature-like map
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(or curvature-like algebraic tensor) if it satisfies the following conditions:

F (y, x, z, w) = −F (x, y, z, w),

F (z, w, x, y) = F (x, y, z, w),

F (x, y, z, w) + F (x, z, w, y) + F (x,w, y, z) = 0.

For any non-degenerate 2-plane π = span{z, w} in V it is possible to define
the number

k(z, w) =
F (z, w, z, w)

∆(π)
.

If k(z, w) is constant for any non-degenerate 2-plane and k(z, w) = k then
one gets F (x, y, z, w) = k (g(x, z)g(y, w)− g(y, z)g(x,w)). Now arguments
similar to those in [20, Proposition 28, p. 229] can be used to prove the
following result.

Lemma 2.1. Let (V, g) be a Lorentz real vector space and F : V 4 → R
a curvature-like map. Then the following conditions are equivalent.

(a) F (x, y, z, w) = k (g(x, z)g(y, w)− g(y, z)g(x,w)),
(b) F (x, y, y, x) = 0 for any degenerate plane π = span{x, y} in V .

3. Null Osserman condition and Lorentz S-manifolds. Let (M, g)
be a Lorentz manifold and p ∈ M . Consider S±p (M) = {z ∈ TpM | gp(z, z)
= ±1}, and let Rz : z⊥ → z⊥ be the Jacobi operator with respect to
z ∈ S±p (M).

It is well-known that a Lorentz manifold has constant sectional curvature
at a point p if and only if it satisfies the Osserman condition at p, that is, the
eigenvalues of Rz are independent of z ∈ S+

p (M), or equivalently z ∈ S−p (M)
(see [13]).

Consequently, no Lorentz S-manifold can satisfy the Osserman condition
since such a manifold cannot have constant sectional curvature, as remarked
in Section 2.

In [12] the authors introduce another Osserman condition, named the
null Osserman condition. Namely, let (M, g) be a Lorentz manifold, p ∈M
and u a null vector in TpM . Then the orthogonal complement u⊥ of u is a
degenerate vector space since span{u} ⊂ u⊥. Therefore, one can consider the
quotient space ū⊥ = u⊥/span{u} and the canonical projection π : u⊥ → ū⊥.
It is possible to define a positive definite inner product ḡ on ū⊥ putting
ḡ(x̄, ȳ) = g(x, y), where, for any x, y ∈ u⊥, x̄ = π(x) and ȳ = π(y).

From now on, bar-objects will be geometrical objects related to ū⊥. Let
u be a null vector in TpM ; the Jacobi operator with respect to u can be
defined by the linear map R̄u : ū⊥ → ū⊥ such that R̄ux̄ = π(R(x, u)u) ( [12]
and [13, Definition 3.2.1]).

Clearly, R̄u is self-adjoint with respect to ḡ, hence R̄u is diagonalizable.
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In Lorentzian geometry it is well-known that a null vector u and a time-
like vector z are never orthogonal. Hence, in a Lorentz manifold (M, g), the
null congruence set determined by a timelike vector z ∈ TpM at p is defined
by

N(z) = {u ∈ TpM | g(u, u) = 0, g(u, z) = −1}.
A Lorentz manifold (M, g) is called null Osserman with respect to a unit
timelike vector z ∈ TpM at a point p if the characteristic polynomial of R̄u
is independent of u ∈ N(z).

Another set associated to a unit timelike vector z in TpM is the celestial
sphere S(z) of z given by

S(z) = {x ∈ z⊥ | g(x, x) = 1}.

According to a result in [13], using the celestial sphere of z, one can
obtain all the elements of N(z). In fact, one has

∀u ∈ N(z) ∃!x ∈ S(z) u = z + x.

It is very natural to use this definition in the context of Lorentz contact man-
ifolds. Lorentz Sasaki space forms are globally null Osserman with respect
to the timelike characteristic vector field, as stated in [13].

In a Lorentz S-space form an easy example shows that the null Osserman
condition with respect to a timelike characteristic vector does not hold.
Indeed, considering the 4-dimensional manifold U(2) and the Lie algebra
u(2), we denote by ξ1, ξ2, X, Y the left-invariant vector fields on U(2)
determined, in the same order, by the basis {ıE11,−ıE22, E12−E21, ı(E12 +
E21)} of u(2), where (Eij)i,j∈{1,2} is the canonical basis of gl(2,C). Let us

consider the left-invariant 1-forms η1 and η2 determined by the dual 1-forms
of ıE11 and −ıE22, respectively, and the left-invariant tensor field ϕ such
that ϕ(X) = Y , ϕ(Y ) = −X and ϕ(ξ1) = ϕ(ξ2) = 0. The manifold U(2) is
connected and compact with Euler number χ(U(2)) = 0, thus we can define
a left-invariant Lorentz metric g such that the vector fields ξ1, ξ2, X and Y
form an orthonormal basis with g(ξ1, ξ1) = −1. Such a structure on U(2)
has been constructed in the Riemannian context [10] and then adapted to
the Lorentzian case [6].

This structure is a normal indefinite g.f.f -structure and its associated
Sasaki 2-form Φ satisfies Φ = dηα for any α ∈ {1, 2}, so that it turns out to
be a Lorentz S-structure on U(2). Moreover, one sees at once that U(2) has
constant ϕ-sectional curvature 4. We see that U(2) does not satisfy the null
Osserman condition with respect to (ξ1)p, for any p ∈ U(2). In fact, fixing
p ∈ U(2) and putting

u1 = Xp + (ξ1)p, u2 = Yp + (ξ1)p, u3 = (ξ2)p + (ξ1)p,

one has u1, u2, u3 ∈ N((ξ1)p). By (2.1), we have
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R(Yp, u1)u1 = Yp + 3g(Yp, ϕu1)ϕu1 + η̃(u1)η̃(u1)Yp = 5Yp,

R((ξ2)p, u1)u1 =
2∑

α=1

(ξα)p +Xp = (ξ2)p + u1.

Analogously, for u2, we obtain

R(Xp, u2)u2 = Xp + 3Xp +Xp = 5Xp,

R((ξ2)p, u2)u2 =

2∑
α=1

(ξα)p + Yp = (ξ2)p + u2.

For any z ∈ u⊥3 , we have R(z, u3)u3 = −η̃(u3)η̃(u3)ϕ
2z = 0, since η̃(u3) = 0.

Then it is evident that the eigenvalues of R̄u1 and R̄u2 are 5 and 1,
whereas R̄u3 = 0.

4. The ϕ-Null Osserman condition. The example of U(2) inspired
us to introduce a new Osserman condition that will be applied to Lorentz
g.f.f -manifolds.

Let (M,ϕ, ξα, η
α, g), α ∈ {1, . . . , s}, be a Lorentz g.f.f -manifold. It is

easy to check that the timelike vector field must be a characteristic vector
field. Without loss of generality we can assume that ξ1 is the timelike vector
field.

If s ≥ 2 as in the example of U(2), then the flatness of kerϕ influences
the behaviour of the Jacobi operators R̄uα with uα = (ξ1)p + (ξα)p, for any
α ∈ {2, . . . , s} and p ∈ M . Since the matter is related to the null vector
uα = (ξ1)p + (ξα)p, we give the following Osserman condition.

Given a point p of M , the set

Sϕ((ξ1)p) = S((ξ1)p) ∩ Imϕp

is called the ϕ-celestial sphere of (ξ1)p at p. We define the ϕ-null congruence
set Nϕ((ξ1)p), analogous to the null congruence set, putting

Nϕ((ξ1)p) = {u ∈ TpM | u = (ξ1)p + x, x ∈ Sϕ((ξ1)p)}.
Now we are ready to state the definition of the ϕ-null Osserman condition

with respect to the timelike vector (ξ1)p at a point p ∈M .

Definition 4.1. Let (M,ϕ, ξα, η
α, g) be a Lorentz g.f.f -manifold, dimM

= 2n + s, n, s ≥ 1, with timelike vector field ξ1 and consider p ∈ M . The
manifold M is called ϕ-null Osserman with respect to (ξ1)p at a point p ∈M
if the characteristic polynomial of R̄u is independent of u ∈ Nϕ((ξ1)p), that
is, the eigenvalues of R̄u are independent of u ∈ Nϕ((ξ1)p).

Remark 4.2. If (M,ϕ, ξ, η, g) is a Lorentz almost contact manifold, then
it can be considered as a Lorentz g.f.f -manifold with s = 1. Obviously,
S((ξ)p) = Sϕ((ξ)p) and N((ξ)p) = Nϕ((ξ)p), for any p ∈ M . It follows that
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the null Osserman condition with respect to ξp at a point p coincides with
the ϕ-null Osserman condition at the same point.

It is clear that U(2) satisfies the ϕ-null Osserman condition with respect
to (ξ1)p at a point p ∈ U(2). In fact, consider an arbitrary unit vector z of
Imϕp and put z = aXp+bYp. Setting u4 = z+(ξ1)p, we have u4 ∈ Nϕ((ξ1)p)
and u⊥4 = span{Xp+a(ξ1)p, Yp+ b(ξ1)p, (ξ2)p} = span{ϕu4, u4, (ξ2)p}. Then

(4.1)

R(ϕu4, u4)u4 = ϕu4 + 3ϕu4 + ϕu4 = 5ϕu4,

R((ξ2)p, u4)u4 =

2∑
α=1

(ξα)p − ϕ2u4 = (ξ2)p + (ξ1)p + z = (ξ2)p + u4.

It follows that the eigenvalues of R̄u are 5 and 1, for any u = z + (ξ1)p in
Nϕ((ξ1)p) with z ∈ Imϕp and g(z, z) = 1, hence the eigenvalues of R̄u are
independent of the choice of u ∈ Nϕ((ξ1)p).

Remark 4.3. It is evident that u ∈ Nϕ((ξ1)p) if and only if −u ∈
Nϕ(−(ξ1)p), since Sϕ((ξ1)p) = Sϕ(−(ξ1)p) and −x, x ∈ Sϕ((ξ1)p). Further-
more, ū⊥ = −ū⊥ and R̄u = R̄−u, thus, for any p ∈M , the ϕ-null Osserman
condition with respect to (ξ1)p is equivalent to the ϕ-null Osserman condi-
tion with respect to −(ξ1)p.

In [13] the null Osserman condition was extended to the whole manifold
by giving first the definition of a pointwise null Osserman manifold with
respect to a timelike line subbundle L of the tangent bundle, and then of
a globally null Osserman manifold with respect to L. Namely, a Lorentz
manifold (M, g), dimM ≥ 3, is called pointwise null Osserman with respect
to L if it is null Osserman with respect to each timelike unit z ∈ L, and
globally null Osserman with respect to L if it is pointwise null Osserman
with respect to L and moreover the common characteristic polynomial of all
the R̄u’s, for u ∈ N(z), is independent of the unit z ∈ L.

Looking for a similar extension of the ϕ-null Osserman condition to the
whole Lorentz g.f.f -manifold, it is natural to consider the timelike line bun-
dle L = span{ξ1}; hence, considering Remark 4.3, we give the following
definition.

Definition 4.4. Let (M,ϕ, ξα, η
α, g) be a Lorentz g.f.f -manifold,

dimM = 2n+s, n, s ≥ 1, with timelike vector field ξ1. Then M is said to be a
globally ϕ-null Osserman manifold with respect to ξ1 if it is ϕ-null Osserman
with respect to (ξ1)p for any p ∈M , and the common characteristic polyno-
mial of all the R̄u’s, for u ∈ Nϕ((ξ1)p), is independent of the p choice in M .

Looking again at the example of U(2) one can see at once that it is a
globally ϕ-null Osserman manifold with respect to ξ1. In fact, it is clear that
the eigenvalues of R̄u are independent of the point p.
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In the next theorem we prove, more generally, that each Lorentz S-space
form satisfies the ϕ-null Osserman condition.

Theorem 4.5. Let (M,ϕ, ξα, η
α, g), dimM = 2n + s, be a Lorentz

S-manifold with ξ1 timelike and constant ϕ-sectional curvature, and let
p ∈ M . Then M satisfies the ϕ-null Osserman condition with respect to
the timelike characteristic vector at p.

Proof. Let p ∈ M . Denoting by c the ϕ-sectional curvature, (2.1) holds
with ε = s− 2.

Let u ∈ Nϕ((ξ1)p), u = (ξ1)p + x1 with x1 ∈ Sϕ((ξ1)p), and consider
x ∈ u⊥. We have

g(ϕu, ϕu) = g(u, u)−
s∑

α=1

εαη
α(u)ηα(u) = η1(u)η1(u) = 1,(4.2)

g(ϕx, ϕu) = g(x, u)−
s∑

α=1

εαη
α(x)ηα(u) = η1(x).(4.3)

By (2.1), (4.2) and (4.3) we compute R(x, u, u, w) for any w ∈ TpM to
obtain

(4.4) Rp(x, u, u, w)

= −c+ 3(s− 2)

4
{g(ϕx, ϕw)− η1(x)g(ϕu, ϕw)}

−3
4(c− s+ 2)g(x, ϕu)g(w,ϕu)

−{η̃(w)η̃(x) + η̃(w)η1(x) + g(ϕw,ϕx) + η̃(x)g(ϕw,ϕu)}.

Let us consider an orthonormal base {x1, ϕx1, x3, . . . , x2n} of Imϕp. It

induces the bases B = {u, ϕx1, (ξ2)p, . . . , (ξs)p, x3, . . . , x2n} of u⊥ and B =
{ϕx1, (ξ̄2)p, . . . , (ξ̄s)p, x̄3, . . . , x̄2n} of ū⊥. For brevity, we denote them by
B = {ei}1≤i≤m and B̄ = {ēi}1≤i≤m−1, where m = 2n + s − 1. In general,
for any x ∈ u⊥,

(4.5) R̄u(x̄) = −
m−1∑
i=1

Rp(x, u, u, ei)ēi.

By (4.4) and (4.5) we get

R̄u(ϕx1) =

{
c+ 3(s− 2)

4
+

3

4
(c− s+ 2)

}
ϕx1 + ϕx1 = (c+ 1)ϕx1,

R̄u(x̄j) =
c+ 3(s− 2)

4
x̄j + x̄j =

c+ 3s− 2

4
x̄j , ∀j ∈ {2, . . . , 2n},

R̄u((ξ̄β)p) =

s∑
γ=2

η̃((ξβ)p)η̃((ξγ)p)(ξ̄γ)p =

s∑
γ=2

(ξ̄γ)p, ∀β ∈ {2, . . . , s}.
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It follows that the representation matrix of R̄u with respect to B̄ is indepen-
dent of the choice of u ∈ Nϕ((ξ1)p). In particular, it is easy to compute that
the other eigenvalues are 0 and s− 1, with eigenvectors x̄α = (ξ̄2)p − (ξ̄α)p,
α ∈ {3, . . . , s}, and x̄ =

∑s
β=2(ξ̄β)p, respectively.

By the above proof we note that, as for U(2), each Lorentz S-manifold
(M,ϕ, ξα, η

α, g) with dimM = 2n+ s and constant ϕ-sectional curvature is
globally ϕ-null Osserman with respect to ξ1.

From now on, since the Osserman conditions are formulated pointwise,
to simplify the notation we omit any reference to the point.

5. The ϕ-null Osserman condition on Lorentz S-manifolds with
additional assumptions. In this section we proceed with the study of
ϕ-null Osserman manifolds; we will find an expression for the curvature
tensor field of a ϕ-null Osserman Lorentz S-manifold with two characteris-
tic vector fields, using a suitable expression for null vectors. An analogous
statement can be found in different contexts [13]. In the first part of this
section we collect the technical issues needed for the main result, which will
be provided in the second subsection.

5.1. Technical results. In [14] the authors gave an explicit construc-
tion of a complex structure on a (4m + 2)-dimensional globally Osserman
manifold with exactly two distinct eigenvalues of the Jacobi operators with
multiplicities 1 and 4m (see also [13]). We will use such a construction,
adapting it when the manifold satisfies the ϕ-null Osserman condition at a
point.

Following [12, 13] we recall that if (M, g) is a Lorentz manifold and u
is a null vector of TpM , then a non-degenerate subspace W ⊂ u⊥ such
that dimW = dim ū⊥ is called a geometric realization of ū⊥. Moreover, let
π|W : (W, g) → (ū⊥, g) be an isometry, where we use the same letter g
to denote the non-degenerate metrics on W and ū⊥ for simplicity. A vector
x ∈W is said to be a geometrically realized eigenvector of R̄u in W cor-
responding to an eigenvalue λ if π|W (x) = x̄ is an eigenvector of R̄u with
eigenvalue λ (see [13]).

Remark 5.1. Let (M,ϕ, ξα, η
α, g) be a (2n+ s)-dimensional ϕ-null Os-

serman Lorentz S-manifold at a point p ∈ M and u ∈ Nϕ(ξ1). We suppose
that the Jacobi operator R̄u, restricted to u⊥ ∩ Imϕ, has exactly two eigen-
values, c1 and c2, with multiplicities 1 and 2n− 2.

Since u = ξ1 + x with x ∈ Sϕ(ξ1), using (2.2), it is easy to see that the
eigenvalues and the eigenvectors of the Jacobi operator R̄u are connected
with those of Rx|x⊥∩Imϕ. Namely, one can prove that v ∈ x⊥ ∩ Imϕ is an
eigenvector of Rx related to the eigenvalue λ if and only if it is a geometri-
cally realized eigenvector of R̄u related to the eigenvalue λ+ 1 (see [4]).
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Now, fix p ∈ M and, following [14], identify Sϕ(ξ1) ∼= S2n−1. For any
x ∈ S2n−1 we consider the operator Rx : x⊥ ∩ Imϕ → x⊥ ∩ Imϕ and the
line bundle over the sphere S2n−1 defined by the eigenspace corresponding
to the eigenvalue c1− 1 of Rx. Since any line bundle over a sphere is trivial,
we have a map J : Sϕ(ξ1) → Sϕ(ξ1) such that Jx = vx for any x ∈ Sϕ(ξ1),
where v is a global unit section of the line bundle. To simplify the writing,
we put λ = c1− 1 and µ = c2− 1. Then the proofs of the following sequence
of claims proceed along the same lines as the proofs in [14], which the reader
is referred to for details.

Claim (a). The map J satisfies J2(x) = −x and J(−x) = −J(x) for
any x ∈ Sϕ(ξ1).

Considering the 2-plane Vx = span{x, Jx}, if w is a unit vector in Vx,
then there exists θ ∈ [0, 2π[ such that w = cos(θ)x + sin(θ)Jx. Defining
z(w) = − sin(θ)x + cos(θ)Jx, one proves that z(w) is an eigenvector of Rw
corresponding to λ, then z(w) = ±Jw. Using this last formula, it follows
that J2(x) = −x and J(−x) = −J(x) for any x ∈ Sϕ(ξ1).

Claim (b). J : Imϕ→ Imϕ is linear.

The map J is extended to Imϕ putting J(ax) = aJ(x), where a ∈ R.
Assuming that J(cos(θ)x+sin(θ)y) = cos(θ)Jx+sin(θ)Jy for all angles θ and
any unit vectors x, y such that y⊥Vx, we obtain J(x′+y′) = J(x′) + J(y′),
for any x′, y′ such that y′ ⊥ Vx′ , which implies the claim.

Claim (c). J(cos(θ)x+ sin(θ)y) = cos(θ)Jx+ sin(θ)Jy for all angles θ
and any unit vectors x, y such that y ⊥ Vx.

Define J ′ = ±J and consider Aθ = cos(θ)x + sin(θ)y, Bθ = cos(θ)Jx
+sin(θ)J ′y. Assuming that Bθ is an eigenvector of RAθ

, one has Bθ = ±JAθ
for any angle θ. For θ = 0 one has Bθ = JAθ; then the plus sign occurs. For
θ = π/2 it follows that J ′y = Bθ = JAθ = Jy, i.e. J ′ = J , which implies
the claim.

Claim (d). RAθ
(Bθ) = λBθ.

The above formula is equivalent to R(Bθ, Aθ, Aθ, Bθ) = −λ. Expanding
this last formula in terms of x, Jx, y and J ′y one finds

R(Jx, x, y, J ′y) +R(J ′y, x, y, Jx) = µ− λ.
After proving the following two technical lemmas, one obtains (d).

Lemma 5.2 ([14]).

(1) R(z, v)w = −R(z, w)v when v, w and z are unit vectors such that
v ⊥ w and w, v ⊥ Vz.

(2) R(z, v)w = 0 when v, w and z are unit vectors such that z ⊥ Vv and
z, v ⊥ Vw.
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(3) 2R(x, y, J ′y, Jx) = R(Jx, x, y, J ′y).
(4) 2R(J ′y, x, y, Jx) = R(Jx, x, y, J ′y).

Lemma 5.3 ([14]). The curvature tensor satisfies

R(Jx, x, y, J ′y) = ±2(µ− λ)

3
.

Now we give some remarks about a null vector of a Lorentz S-manifold
with two characteristic vector fields and next we prove a lemma.

Remark 5.4. Let (M,ϕ, ξα, η
α, g), α ∈ {1, 2}, be a Lorentz S-manifold

with timelike vector field ξ1 and u a null vector in TpM , p ∈ M . Since
TM = Imϕ⊕ kerϕ, one can write

u = λx+ aξ1 + bξ2,

where x ∈ Imϕ such that g(x, x) = 1. Since u is a null vector, we have
λ2 + b2 = a2, so there exists θ ∈ [0, 2π[ such that

u = a(cos(θ)x+ ξ1 + sin(θ)ξ2).

We take a = 1, since it is not restrictive, hence

(5.1) u = cos(θ)x+ ξ1 + sin(θ)ξ2,

For cos(θ) 6= 0 consider the vector w = tan(θ)ξ1+(1/ cos(θ))ξ2. It is easy
to check that w is a unit vector orthogonal to u, therefore

u⊥ = span{u, ϕx, x2, ϕx2, . . . , xn, ϕxn, w}.
Any y ∈ u⊥ can be written as

(5.2) y = ρu+ νy′ + κw,

where y′ ∈ span{ϕx, x2, ϕx2, . . . , xn, ϕxn} ⊂ Imϕp ∩ u⊥ and ρ, κ, ν ∈ R.
We define two (1, 3)-type tensors S∗ and S∗ putting

S∗(x, y)v = η̃(y)η̃(v)x− η̃(x)η̃(v)y + g(y, v)η̃(x)ξ̃ − g(x, v)η̃(y)ξ̃,

S∗(x, y)v = −g(ϕy, ϕv)ϕ2x+ g(ϕx, ϕv)ϕ2y.

Remark 5.5. If u ∈ Nϕ(ξ1) and y ∈ Imϕ ∩ u⊥, then

g(S∗(u, y)u, y)− g(S∗(u, y)u, y) = 0.

The following lemma gives an expression for a curvature-like map F
that vanishes on a particular type of degenerate 2-plane and has a suitable
behaviour with respect to the characteristic vector fields.

Lemma 5.6. Let (M,ϕ, ξα, η
α, g), α ∈ {1, 2}, be a Lorentz g.f.f -manifold

with timelike vector field ξ1. Let p ∈ M and let F : (TpM)4 → R be a
curvature-like map such that, for any x, y, v ∈ Imϕ and any α, β, γ ∈ {1, 2},

(5.3)
F (x, ξα, y, v) = 0, F (ξα, x, ξβ, y) = εαεβg(x, y),

F (ξα, x, ξβ, ξγ) = 0, F (ξ1, ξ2, ξ1, ξ2) = 0.
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Then the following statements are equivalent:

(a) F vanishes on any degenerate 2-plane π = span{u, y} with u ∈
Nϕ(ξ1) and y ∈ u⊥ ∩ Imϕ,

(b) F (x, y, v, z) = g(S∗(x, y)v, z) − g(S∗(x, y)v, z) for any x, y, v, z ∈
TpM .

Proof. An easy computation, using Remark 5.5, shows that (b)⇒(a).
Conversely, fix p ∈M and consider the curvature-like map H such that,

for any x, y, z, v ∈ TpM ,

(5.4) H(x, y, v, z) = F (x, y, z, w)− g(S∗(x, y)v, z) + g(S∗(x, y)v, z).

Condition (a) and Remark 5.5 imply that H vanishes on any degenerate
2-plane span{u, y} with u ∈ Nϕ(ξ1) and y ∈ u⊥ ∩ Imϕ. We start by proving
that H vanishes on any degenerate 2-plane. To see this, let u be a null vector
of TpM , as in (5.1), such that cos θ 6= 0. By the hypotheses and using (5.2),
for any y ∈ u⊥ we have

g(S∗(u, y)u, y)

= (ρg(ϕu, ϕu) + νg(ϕu, ϕy′))2 − g(ϕu, ϕu)(ρ2g(ϕu, ϕu) + ν2g(ϕy′, ϕy′))

= ρ2g(ϕu, ϕu)2 − ρ2g(ϕu, ϕu)2 − ν2g(ϕy′, ϕy′)g(ϕu, ϕu)

= −ν2g(y′, y′)g(ϕu, ϕu),

g(S∗(u, y)u, y) = −η̃(u)η̃(u)g(y, y),

F (u, y, u, y) = ν2F (u, y′, u, y′) + 2κνF (u, y′, u, w) + κ2F (u,w, u, w)

= ν2 cos2(θ)F (x, y′, x, y′) + (1− sin θ)2(ν2g(y′, y′) + κ2)

= ν2g(ϕu, ϕu)F (x, y′, x, y′) + η̃(u)η̃(u)g(y, y)

= ν2g(ϕu, ϕu)F (u′, y′, u′, y′)− ν2g(ϕu, ϕu)g(y′, y′)

+ η̃(u)η̃(u)g(y, y),

where u′ = x+ ξ1 which belongs to Nϕ(ξ1). Hence

(5.5) H(u, y, u, y) = ν2g(ϕu, ϕu)F (u′, y′, u′, y′)

with u′ = x+ ξ1 and y ∈ u⊥ ∩ Imϕ.
If cos θ = 0, then u = ξ1 ± ξ2 and u⊥ = span{u} ⊕ Imϕ. By direct

computation, it is easy to check that

(5.6) H(u, y, u, y) = 0

for any y ∈ u⊥.
Equations (5.5) and (5.6) clearly imply that H vanishes on any degen-

erate 2-plane. Applying Lemma 2.1 to H one has

F (x, y, v, z) = k(g(x, v)g(y, z)− g(y, v)g(x, z)) + g(S∗(x, y)v, z)(5.7)

− g(S∗(x, y)v, z).
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By definition of k, using the hypotheses and (5.4), we deduce

k =
H(ξα, x, ξα, x)

εαg(x, x)
=
F (ξα, x, ξα, x)− g(x, x)

εαg(x, x)
= 0.

Substituting this in (5.7), we obtain our assertion.

5.2. Main results. Now, we consider the following two standard tensor
fields of type (1, 3), evaluating them at the point p:

R0(x, y)v = g(πI(y), πI(v))πI(x)− g(πI(x), πI(v))πI(y),

RJ(x, y)v = g
(
J(πI(y)), πI(v)

)
J(πI(x))− g

(
J(πI(x)), πI(v)

)
J(πI(y))

+ 2g
(
πI(x), J(πI(y))

)
J(πI(v)),

where πI : TpM → Imϕ, is the projection on Imϕ, and J is an almost
Hermitian structure on Imϕ.

It is useful to note that RJ and R0 vanish on triplets containing a char-
acteristic vector and that, for any x, y, v ∈ TpM , they are orthogonal to ξ1
and ξ2.

Now we are ready to prove the following result.

Theorem 5.7. Let (M,ϕ, ξα, η
α, g), α ∈ {1, 2} and n > 1, be a (2n+2)-

dimensional Lorentz S-manifold with timelike vector field ξ1. The following
three statements are equivalent:

(a) M is ϕ-null Osserman with respect to ξ1 and for any u ∈ Nϕ(ξ1)
the Jacobi operator R̄u|Imϕ∩u⊥ has exactly two distinct eigenvalues
c1 and c2 with multiplicities 1 and 2(n− 1), respectively.

(b) There exist an almost Hermitian structure J on Imϕp and c1, c2 ∈ R
such that, for any x, y, v ∈ TpM ,

R(x, y)v = S∗(x, y)v − S∗(x, y)v + c2R
0(x, y)v +

c1 − c2
3

RJ(x, y)v.

(c) (i) For any v ∈ span{ξ1} and x ∈ ξ⊥1 ,

R(x, v)v = (η1(v))2(x− η̃(x)ξ2).

(ii) There exist an almost Hermitian structure J on Imϕp and c1, c2
in R such that, for any v, y, x ∈ ξ⊥1 ,

R(x, y)v = η2(v)(η2(y)x− η2(x)y)

+ (g(y, v)η2(x)− g(x, v)η2(y))ξ̃

+ g(ϕy, ϕv)ϕ2x− g(ϕx, ϕv)ϕ2y + c2R
0(x, y)v

+
c1 − c2

3
RJ(x, y)v.

Proof. We begin by proving (a)⇒(b). Under the assumption (a), by Re-
mark 5.1 we know that Imϕp is endowed with an almost Hermitian structure
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J such that Jx is an eigenvector of R̄u relative to the eigenvalue c1. To prove
(b), we consider the curvature-like map F on TpM given by

(5.8) F (x, y, v, z) = R(x, y, v, z) + µg(R0(x, y)v, z) + τg(RJ(x, y)v, z),

where µ, τ ∈ R.

We want to apply Lemma 5.6 to F . Concerning the hypotheses of Lem-
ma 5.6, we see at once that F satisfies (5.3) since F = R if one of its four
arguments is a characteristic vector and moreover since (2.2) hold. Thus we
must only compute F (u, y, u, y) for any degenerate vector u ∈ Nϕ(ξ1) and
y ∈ u⊥ ∩ Imϕ.

Namely, considering a null vector u ∈ Nϕ(ξ1) and a vector y ∈ u⊥∩ Imϕ,
we find suitable values of µ and τ in R for which F vanishes on the degenerate
2-plane π = span{u, y}.

Putting y1 = Jx1 ∈ u⊥, one computes

F (y1, u, u, y1) = −g(R(y1, u)u, y1) + µg(R0(y1, u)u, y1)(5.9)

+ τg(RJ(y1, u)u, y1) = −c1 + µ+ 3τ.

Analogously, if y2 and y′2 are orthonormal eigenvectors of R̄u with respect
to the eigenvalue c2, then

F (y2, u, u, y2) = −g(R(y2, u)u, y2) + µg(R0(y2, u)u, y2)(5.10)

+ τg(RJ(y2, u)u, y2) = −c2 + µ,

F (y2, u, u, y
′
2) = −g(R(y2, u)u, y′2) + µg(R0(y2, u)u, y′2)(5.11)

+ τg(RJ(y2, u)u, y′2) = 0,

F (y2, u, u, y1) = −g(R(y2, u)u, y1) + µg(R0(y2, u)u, y1)(5.12)

+ τg(RJ(y2, u)u, y1) = 0.

Now, imposing F = 0, we get

(5.13) µ = c2 and τ = (c1 − c2)/3.

Therefore, since a vector y in u⊥ ∩ Imϕ can be written as y = ay1 + bjy
j
2,

where y1 and yj2 are eigenvectors of R̄u in u⊥∩ξ⊥1 corresponding to c1 and c2,
respectively, by (5.9)–(5.12) we have

F (y, u, u, y) = a2F (y1, u, u, y1) + abjF (y1, u, u, y
j
2) + abkF (yk2 , u, u, y1)

+ bkbjF (yk2 , u, u, y
j
2) = 0.

Therefore, applying Lemma 5.6, we obtain F (x, y, v, z) = g(S∗(x, y)v, z) −
g(S∗(x, y)v, z) for any x, y, v, z ∈ TpM . Then, by (5.8) and (5.13), we get

R(x, y, v, z) = g(S∗(x, y)v, z)− g(S∗(x, y)v, z)− c2g(R0(x, y)v, z)

− c1 − c2
3

g(RJ(x, y)v, z).
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Thus

R(x, y)v = −S∗(x, y)v + S∗(x, y)v + c2R
0(x, y)v +

c1 − c2
3

RJ(x, y)v.

The proof (b)⇒(c) is straightforward. In fact, for any v ∈ span{ξ1} and
x ∈ ξ⊥1 ,

R(x, v)v = S∗(x, v)v = (η1(v))2(x+η̃(x)ξ1+ε1η̃(x)ξ̃) = (η1(v))2(x−η̃(x)ξ2),

which implies (c)(i).
For any v, y, x ∈ ξ⊥1 , by (b) one gets

R(x, y)v = η2(y)η2(v)x− η2(x)η2(v)y + (g(y, v)η2(x)− g(x, v)η2(y))ξ̃

+

(
−S∗ + c2R

0 +
c1 − c2

3
RJ
)

(x, y)v,

which is (c)(ii).
Finally, we prove (c)⇒(a). Consider u ∈ N(ξ1) with u = ξ1 +x1 and put

y1 = Jx1. One has

R(y1, u)u = R(y1, ξ1)ξ1 +R(y1, x1)ξ1 +R(y1, ξ1)x1 +R(y1, x1)x1.

Using (c), we have

R(y1, ξ1)ξ1 = y1 and R(y1, x1)x1 = (c1 − 1)y1.

By (ii), for any v ∈ ξ⊥1 , it is clear that

g(R(y1, x1)ξ1, v) = −g(R(y1, x1)v, ξ1) = 0,

g(R(y1, ξ1)x1, v) = g(R(x1, v)y1, ξ1) = 0.

On the other hand, if v = ξ1, then

g(R(y1, x1)ξ1, ξ1) = 0, g(R(y1, ξ1)x1, ξ1) = −g(y1, x1) = 0.

Hence, R̄u(y1) = c1y1.
Analogously, considering y2 ∈ (span{x1, y1})⊥ ∩ Imϕ, we have

R(y2, u)u = R(y2, ξ1)ξ1 +R(y2, x1)ξ1 +R(y2, ξ1)x1 +R(y2, x1)x1.

As for y1, using (c), it is easy to check that R(x1, v)y2 = 0 and R(y2, x1)v
= 0. Moreover, applying (i), we get

R(y2, ξ1)ξ1 = y2.

The relation (ii) implies

R(y2, x1)x1 = (c2 − 1)y2.

Therefore R̄u(y2) = c2y2.
Finally, to prove the ϕ-null Osserman condition, we have to check that

no eigenvalue depends on u ∈ Nϕ(ξ1). In fact, by (c) we find

R(ξ2, ξ1)ξ1 = 0, R(ξ2, x1)x1 = g(x1, x1)ξ̃ = ξ1 + ξ2.
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It is easy to see that, for any v ∈ ξ⊥1 ,

g(R(ξ2, ξ1)x1, v) + g(R(ξ2, x1)ξ1, v) = g(R(ξ2, v)x1, ξ1)− 2g(R(ξ2, x1)v, ξ1)

= 2g(x1, v)− g(x1, v) = g(x1, v).

Moreover, since

g(R(ξ2, ξ1)x1, ξ1) + g(R(ξ2, x1)ξ1, ξ1) = −g(R(ξ2, ξ1)ξ1, x1) = 0,

one obtains R(ξ2, ξ1)x1 +R(ξ2, x1)ξ1 = x1. Then R(ξ2, u)u = ξ2 + ξ1 + x1 =
ξ2 + u, so R̄u(ξ2) = ξ2. This proves (a).

Remark 5.8. Since R has to satisfy the last formula in (2.2), for any
x, y, v, z ∈ Imϕ one gets

(5.14)

(1− c2)P (x, y; v, z) +
c1 − c2

3

(
g(RJ(x, y)ϕv, z) + g(RJ(x, y)v, ϕz)

)
= 0.

If ϕx1 realizes geometrically an eigenvector of R̄u, with u = ξ1+x1 ∈ Nϕ(ξ1),
related to the eigenvalue c1, then ϕ = ±J and (5.14) yields c1−4c2 + 3 = 0,
according to the case of Lorentz S-space forms.

By Theorem 4.5, it is a simple matter to prove the following result in
the particular case of the Jacobi operator with exactly one eigenvalue.

Proposition 5.9. Let (M,ϕ, ξα, η
α, g), α ∈ {1, 2} and n > 1, be a

(2n+ 2)-dimensional Lorentz S-manifold with timelike vector field ξ1. Then
M is ϕ-null Osserman with respect to ξ1, and the Jacobi operator R̄u|u⊥∩Imϕ

has a single eigenvalue λ, if and only if it is a Lorentz S-space form with
ϕ-sectional curvature c = 0. Moreover, λ = 1.

Now we deal with the case n = 1, which is a special case because it is
clear that any 4-dimensional Lorentz g.f.f -manifold is ϕ-null Osserman with
respect to ξ1. More precisely, for any u = ξ1 + x1 ∈ Nϕ(ξ1) the only eigen-
vector of the Jacobi operator R̄u|u⊥∩Imϕ is realized geometrically by ϕx1 in

u⊥ ∩ ξ⊥1 . Unlike the result of Proposition 5.9, the eigenvalue of the Jacobi
operator need not be 1, as in the case of U(2). When the only eigenvalue
is 1, the ϕ-sectional curvature is zero.

In order to clarify this statement we give an example. Let R4 be endowed
with the Lorentz S-structure, constructed as follows [5]. Denoting the stan-
dard coordinates by {x, y, z1, z2}, we define on R4 two vector fields and two
1-forms putting

ξα =
∂

∂zα
, ηα = dzα + ydx,

for any α ∈ {1, 2}. The tensor fields ϕ and g are given in the standard basis
by
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F :=


0 −1 0 0

1 0 0 0

0 y 0 0

0 y 0 0

, G :=


1/2 0 −y y

0 1/2 0 0

−y 0 −1 0

y 0 0 1

,
respectively. It is easy to check that (R4, ϕ, ξα, η

α, g), α ∈ {1, 2}, is a Lorentz
S-manifold with different causal type of the characteristic vector fields.
Moreover, it is a Lorentz space form with ϕ-sectional curvature c = 0. There-
fore, by (2.1),

R(X,Y, V ) = η̃(X)g(ϕV, ϕY )

2∑
α=1

ξα − η̃(Y )g(ϕV, ϕX)

2∑
α=1

ξα

− η̃(Y )η̃(V )ϕ2X + η̃(V )η̃(X)ϕ2Y

for any X,Y, V ∈ X(R4). Since Imϕ = 〈X,Y 〉, where X =
√

2( ∂
∂x−yξ1−yξ2)

and Y =
√

2 ∂
∂y , one has

R̄uϕZ = ϕZ, R̄uξ2 = ξ2,

for any Z = aX + bY and u = ξ1 + Z, where a2 + b2 = 1. Then the only
eigenvalue of R̄u, where u ∈ Nϕ(ξ1), is 1.
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