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Universality of derivative and antiderivative operators
with holomorphic coefficients

by Maŕia del Carmen Calderón-Moreno (Sevilla)

Abstract. We prove some conditions on a sequence of functions and on a complex
domain for the existence of universal functions with respect to sequences of certain deriva-
tive and antiderivative operators related to them. Conditions for the equicontinuity of
those families of operators are also studied. The conditions depend upon the “size” of the
domain and functions. Some earlier results about multiplicative complex sequences are
extended.

1. Introduction and notation. In this paper, we denote by C the
complex plane and by G a simply connected domain, i.e., G ⊂ C, G is
nonempty, open and connected, and its complement with respect to the
extended plane is also connected. H(G) denotes, as usual, the space of holo-
morphic functions in G, endowed with the topology of uniform convergence
on compact subsets.

B(a, r) (resp. B(a, r)) is the euclidean open (resp. closed) disk with cen-
ter a and radius r. We agree that B(a,+∞) = C. N is the set of positive inte-
gers. We define K(G) = {K ⊂ G : K is compact} and ‖g‖A = supz∈A |g(z)|,
where g is a complex function defined on a subset A ⊂ C. If A,B ⊂ C then
d(A,B) = inf{|a−b| : a ∈ A, b ∈ B} and diam(A) = sup{|a−b| : a, b ∈ A}.
We adopt the conventions d(a, ∅) = +∞ (a ∈ C), 1/+∞ = 0 and 1/0 = +∞.
The circumscribed radius of G is defined as

R(G) = inf
a∈C

sup
b∈G
|a− b|

= inf{r > 0 : there is an open disk B of radius r with G ⊂ B}
and the inscribed radius of G as
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%(G) = sup
b∈G

inf
a6∈G
|a− b|

= sup{r > 0 : there is an open disk B of radius r with B ⊂ G}.
The numbers diam(G), R(G) and %(G) describe, elementarily, the “size” of
the domain G. A point a∈G is an interior center of G when B(a, %(G))⊂G.
We denote by ct(G) the set of all interior centers of G. In a similar way, a ∈ C
is an exterior center of G if G ⊂ B(a,R(G)), and CT(G) denotes the set of
all exterior centers of G.

If a ∈ G, then we set

∆a(G) = sup
z∈G

inf{r > 0 : a is in the connected component

of B(z, r) ∩G containing z}
(finite or +∞). Finally, we denote by ∆(G) the number (finite or not)

∆(G) = inf
a∈G

∆a(G).

Observe that if ∆a(G) is finite then it is the smallest δ > 0 such that for
any z ∈ G there is a rectifiable arc γ ⊂ G joining a to z with |t − z| < δ
for all t ∈ γ. If ∆(G) is finite then it is the smallest number δ > 0 with the
following property:

(P) Given ε > 0, there is a = a(ε) ∈ G such that for all z ∈ G there is a
rectifiable arc γ ⊂ G joining a to z with |t− z| < δ + ε for all t ∈ γ.

The next proposition has a geometric character and it is interesting in
itself. It will not be used in its totality in the remaining results. In it we
put together some “size” and “shape” properties of a domain. The proof
will not be given, but a few pictures may help the reader to visualize all the
properties.

Proposition 1.1. With the previous notations and conventions, the fol-
lowing properties are satisfied :

(1) 0 < %(G) ≤ 1
2 diam(G) ≤ R(G) ≤

√
3

2 diam(G).
(2) R(G) ≤ ∆(G) ≤ ∆a(G) ≤ diam(G) for all a ∈ G.
(3) The following conditions are equivalent :

(a) G is bounded.
(b) diam(G) < +∞.
(c) R(G) < +∞.
(d) ∆(G) < +∞.
(e) CT(G) has only one point.
(f) CT(G) 6= C.

(4) If G is bounded , then %(G) = R(G) if and only if G is an open disk.
(5) d(a,C \G) ≤ supz∈G |z − a| ≤ ∆a(G) for all a ∈ G.
(6) If G is starlike with respect to a then ∆(G) = supz∈G |z − a|.
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(7) d(a,C \G) = ∆a(G) if and only if G = C or G is an open disk with
center a. In that case, d(a,C \G) = ∆a(G) = radius of G.

(8) If %(G) = +∞, then ct(G) 6= ∅ if and only if G = C.
(9) If R(G) = ∆(G) then d(CT(G), G) = 0.

(10) If CT(G) ∩G = ∅, then ∆(G) < ∆a(G) for all a ∈ G.
(11) If limn→∞ an = a, then limn→∞∆an(G) = ∆a(G).
(12) There is a ∈ G such that ∆(G) = ∆a(G) if and only if either G is

bounded and CT(G) ⊂ G or G is not bounded.

Remark 1.2. There are domains where the above parameters satisfy

%(G) < R(G) < ∆(G) < diam(G).

Example 1.3. We consider the “horseshoe”

1

1

length=4

3

1

If G is its interior, then
1
2
< %(G) < 1 <

5
2

= R(G) <
√

13 = ∆(G) < 5 = diam(G).

The set of polynomials is dense in H(G) by Runge’s theorem [11]. H(G)
is a second-countable Fréchet space. By Baire’s Category Theorem, H(G)
is a Baire space, i.e., the intersection of a countable family of open dense
subsets is also dense. In a Baire space X, a subset is residual when it contains
a dense Gδ-subset of X. Such a subset is “very large” in X. For this see, for
instance, [7, pp. 213–214 and 238] and [10, pp. 40–41].

The following general notion of universality can be found in [6]: Let
X and Y be topological spaces and Tn : X → Y (n ∈ N) a sequence of
continuous mappings. Then an element x ∈ X is called {Tn}∞n=1-universal
if its orbit {Tnx : n ∈ N} is dense in Y . Several versions of the following
universality criterion can be found in [5].

Theorem 1.4. Let X be a linear topological space that is a Baire space,
Y a linear topological space that is second-countable, D ⊂ X dense in X,
D′ ⊂ Y dense in Y and Tn : X → Y (n ∈ N) a countable family of continu-
ous linear mappings satisfying the following condition:

(A) For every d ∈ D and every d′ ∈ D′ there exists a sequence {xp :
p ∈ N} ⊂ X and positive integers n1 < n2 < . . . such that xp → 0,
Tnp(d)→ 0 and Tnp(xp)→ d′ (p→∞).

Then the subset of {Tn}∞n=1-universal vectors x ∈ X is residual in X.
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We point out that if X and Y are two nontrivial metric linear spaces
and {Tn : n ∈ N} is an equicontinuous family of linear operators from X
into Y , then the orbit {Tnx : n ∈ N} of each x ∈ X is bounded; so there is
no {Tn}∞n=1-universal vector x.

In this paper the derivative and antiderivative operators will be consid-
ered. These are defined as follows. The derivative operators are

Dn : H(G) 3 f 7→ f (n) ∈ H(G) (n ∈ N).

If a point a ∈ G is fixed, the antiderivative operators are

In : H(G) 3 f 7→
z�

a

In−1f(t) dt ∈ H(G) (n ∈ N),

with I0f = f , the integral being taken along any rectifiable arc in G joining
a to z. These operators are linear and continuous. Further, we have

Inf(z) =
1

(n− 1)!

z�

a

(z − t)n−1f(t) dt (∀n ∈ N, ∀f ∈ H(G), ∀z ∈ G).

Along the last few decades the universality of the family of operators
{Dn}∞n=1 has been extensively studied. MacLane [9] stated that there exist
{Dn}-universal vectors in H(C) and Duios Ruis [3] proved that there is a
residual set of such functions. Furthermore Gethner and Shapiro [4] and
Grosse-Erdmann [6, Satz 2.2.8] got the same result for every simply con-
nected domain. Trivially, there cannot be any {In}∞n=1-universal function
f ∈ H(G) because Inf(a) = 0 for n ∈ N. Nevertheless, it is shown in [2] that
there exists a sequence {Cn}∞n=1 ⊂ C with the following property: For every
entire function Φ the set {Qn(z) = InΦ(z) +

∑n−1
j=0 (Cn−j/j!)zj : n ∈ N} is

dense in H(C). Luh [8] extended this to functions Φ which are holomorphic
in an open set with simply connected components. L. Bernal-González [1]
generalized these results by taking into account the operators cnDn, cnI

n,
where {cn}∞n=1 is a sequence in C. Equicontinuity is also studied in [1].

All these results will in turn be extended in this paper, by inserting this
time any sequence {cn(z)}∞n=1 of functions in H(G). As in [1], the “size” of
the domain G besides the “size” of {cn(z)}∞n=1 will play an important role.
As can be expected, the formulation of the corresponding properties is more
involved.

With this aim, let {cn(z)}∞n=1 be a sequence of functions in H(G). We
will study the universality and equicontinuity of the families of operators

cn(·)Dn : H(G) 3 f 7→ cn(·)f (n) ∈ H(G)

and
cn(·)In : H(G) 3 f 7→ cn(·)Inf ∈ H(G).

Each of these operators is obviously linear and continuous.
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We associate with the functions cn(z) certain numbers in [0,+∞]. If
K ∈ K(G) and b ∈ G then we define

α1(K) = lim sup
n→∞

(n! sup
z∈K
|cn(z)|)1/n =

1
e

lim sup
n→∞

(n sup
z∈K
|cn(z)|1/n),

α2(K) = lim sup
n→∞

(n! inf
z∈K
|cn(z)|)1/n =

1
e

lim sup
n→∞

(n inf
z∈K
|cn(z)| 1n ),

α3(b) = lim sup
n→∞

(n!|cn(b)|)1/n =
1
e

lim sup
n→∞

(n|cn(b)|1/n),

β1(K) = lim sup
n→∞

(
supz∈K |cn(z)|

n!

)1/n

= e lim sup
n→∞

(
supz∈K |cn(z)|1/n

n

)
,

β2(K) = lim sup
n→∞

(
infz∈K |cn(z)|

n!

)1/n

= e lim sup
n→∞

(
infz∈K |cn(z)|1/n

n

)
.

The equalities hold by Stirling’s formula. Finally, we define

A1 = sup
K∈K(G)

α1(K), A2 = inf
K∈K(G)

α2(K), A3 = sup
b∈G

α3(b),

B1 = sup
K∈K(G)

β1(K), B2 = inf
K∈K(G)

β2(K).

Remark 1.5. It is easy to check the following: If {Kj}∞j=1 is an exhaus-
tive sequence of compact sets in G, i.e., Kj ∈ K(G), Kj ⊂ K0

j+1 for all
j ∈ N and

⋃∞
j=1Kj = G, then

A1 = sup
j∈N

α1(Kj) = lim
j→∞

α1(Kj),

A2 = inf
j∈N

α2(Kj) = lim
j→∞

α2(Kj),

and analogously for B1 and B2.

Remark 1.6. In the particular case that cn(z) ≡ cn is a constant for
each n ∈ N, we have

A1 = A2 = A3 = lim sup
n→∞

(n!|cn|)1/n (= α)

and
B1 = B2 = lim sup

n→∞
(|cn|/n!)1/n (= β).

The numbers α, β were introduced in [1].

Remark 1.7. In general, we can only say that

A2 ≤ A3 ≤ A1 and B2 ≤ B1.

2. Derivative operators. First, we ask if there exists f ∈ H(G) such
that the orbit {cn(·)f (n) : n ∈ N} is dense. The next result furnishes a
sufficient condition.
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Theorem 2.1. If ∆(G) < A2 and cn(z) 6= 0 for all z ∈ G and n ∈ N,
then the subset of f ∈ H(G) such that the orbit {cn(·)f (n) : n ∈ N} is dense
in H(G) is residual.

Proof. Apply Theorem 1.4 to X = Y = H(G), D = D′ = {polynomials}
and Tn = cn(·)Dn (n ∈ N). Fix two polynomials P , Q. Trivially, Tn(P ) = 0
for all n > deg(P ). Choose a ∈ G such that ∆a(G) < A2. Then Q(z) =∑m

j=0 aj(z − a)j for suitable complex constants a0, a1, . . . , am. Consider the
functions fn defined by

fn(z) =
1

(n− 1)!

z�

a

(z − t)n−1Q(t)
cn(t)

dt

=
1

(n− 1)!

m∑

j=0

aj

z�

a

(z − t)n−1(t− a)j

cn(t)
dt,

where the integral is taken along any rectifiable arc in G joining a to z.
These functions are well defined because cn(t) 6= 0 for all t ∈ G and n ∈ N,
and G is simply connected. Also, fn ∈ H(G) and Dnfn(z) = Q(z)/cn(z) for
all n ∈ N and z ∈ G, so Tn(fn) = Q→ Q (n→∞) in H(G).

Then, by Theorem 1.4, it is sufficient to find a subsequence {fnp}∞p=1 of
{fn}∞n=1 such that fnp → 0 in H(G) (p →∞). If we fix z ∈ G then, by the
definition of ∆a(G), a is in the connected component of B(z,∆a(G) ∪ G)
containing z. Therefore there is a rectifiable arc γz ⊂ G joining a to z with
|z − t| < ∆a(G) for all t ∈ γz.

Fix K ∈ K(G). We can get a compact set L so that
⋃
z∈K γz ⊂ L ⊂ G

and supz∈K length(γz) = S <∞. If z ∈ K and n ∈ N, we have

|fn(z)| ≤ 1
(n− 1)!

m∑

j=0

|aj|
�

γz

|z − t|n−1|t− a|j
|cn(t)| dt(1)

≤ C∆a(G)n

(n− 1)! inft∈L |cn(t)| ,

where

C :=
1

∆a(G)

m∑

j=0

|aj |Sj+1 ∈ (0,+∞).

Because ∆a(G) < A2 and L ∈ K(G), we have ∆a(G) < α2(L), and then
there exist ν > 0 and a sequence n1 < n2 < . . . of positive integers with
∆a(G) < ν < ((np − 1)! inft∈L |cnp(t)|)1/np for all p ∈ N, so

∆a(G)np

(np − 1)! inft∈L |cnp(t)|
≤
(
∆a(G)
ν

)np
→ 0 (p→∞)

and, by (1), fnp → 0 (p→∞) uniformly on K. So the theorem is proved.
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Now, we give a necessary condition for the existence of {cn(·)Dn}∞1 -
universal functions. We recall that ct(G) 6= ∅ and %(G) is infinite if and only
if G = C (Proposition 1.1(8)). In this case, ct(G) = C. For the next two
theorems we can drop the hypothesis of simple connectedness of G.

Theorem 2.2. Assume that there is a function f ∈ H(G) whose orbit
{cn(·)f (n) : n ∈ N} is dense in H(G). Then:

(a) If ct(G) 6= ∅ and %(G) < +∞, then %(G) ≤ infb∈ct(G) α3(b).
(b) If G = C, then α3(b) = +∞ for all b ∈ C.
(c) If ct(G) = ∅, then %(G) ≤ A3.

Proof. (a) Assume that infb∈ct(G) α3(b) < %(G). So there is a center
b ∈ ct(G) such that α3(b) < %(G). Fix r ∈ (α3(b), %(G)). By assumption
B(b, r) ⊂ G, limn→∞ n!|cn(b)|/rn = 0 and, in view of Cauchy’s inequalities,

|cn(b)f (n)(b)| ≤ |cn(b)| ·
n!‖f‖B(b,r)

rn
→ 0 (n→∞).

Thus the sequence {cn(b)f (n)(b)}∞n=1 is bounded, and so {cn(·)f (n)}∞n=1 can-
not aproximate the constant function g(z) = 1+supn∈N |cn(b)f (n)(b)| on the
compact set K = {b}. This is a contradiction and (a) is proved.

(b) Again assume that α3(b) < +∞ for some b ∈ C. Let r ∈ (α3(b),+∞)
be. Then limn→∞ n!|cn(b)|/rn = 0 and an argument similar to that for (a)
leads to a contradiction.

(c) Suppose that A3 < %(G). Then there are b ∈ G and r ∈ (A3, %(G))
such that B(b, r) ⊂ G. So, lim supn→∞(n!|cn(b)|)1/n < r and just as in (a)
and (b) we have a contradiction.

The following two results furnish necessary and sufficient conditions for
the equicontinuity. We distinguish the cases G 6= C, G = C.

Theorem 2.3. Let G ( C be a domain and let F be the family of oper-
ators {cn(·)Dn : n ∈ N}. We have:

(a) If A1 = 0, then F is equicontinuous.
(b) If F is equicontinuous, then A2 = 0.

Proof. (a) Fix a basic neighborhood of the origin ofH(G), i.e., V (ε,K) =
{f ∈ H(G) : |f(z)| < ε ∀z ∈ K}, where ε > 0 and K ∈ K(G). We must find
δ > 0 and L ∈ K(G) satisfying

(2)
⋃

n∈N
(cn(·)Dn)(V (δ, L)) ⊂ V (ε,K).

Pick a cycle γ ⊂ G \K (see [Rud, p. 287]) such that Cauchy’s formula

f (n)(z) =
n!

2πi �
γ

f(t)
(t− z)n+1 dt
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holds for n ∈ N, z ∈ K and f ∈ H(G). Observe that

M := sup
n∈N

n! supz∈K |cn(z)|
d(K, γ)n

is a finite constant because A1 = 0. Choose δ= 2πεd(K, γ)/(1+M length(γ))
and L = γ. If n ∈ N, f ∈ V (δ, L) and z ∈ K we have

|cn(z)f (n)(z)| =
∣∣∣∣
n!cn(z)

2πi �
γ

f(t)
(t− z)n+1 dt

∣∣∣∣

≤ n! supz∈K |cn(z)|
2πd(K, γ)n+1 · ‖f‖γ · length(γ)

<
M

2πd(K, γ)
· δ · length(γ) < ε.

Consequently, (2) is satisfied and hence F is equicontinuous.
(b) It remains to show that if A2 > 0 then F is not equicontinuous.

Fix a ∈ G and put R := d(a,C \ G) = |a − b|, where b ∈ C \ G. Fix r
with 0 < r < R and R − r < A2. So K := B(a, r) is a nonempty compact
subset of G. Let ε = 1, L ∈ K(G) and δ > 0. Let m > 0 be so small that
m/|z − b| < δ if z ∈ L. Then the function f(z) := m/(z − b) belongs to
V (δ, L) and

(3) sup{|cn(z)f (n)(z)| : z ∈ K} ≥ n! ·m
(R− r)n+1 inf

z∈K
|cn(z)|.

But R− r < A2, so that R− r < α2(K) and

sup
n∈N

{
n! ·m

(R− r)n+1 inf
z∈K
|cn(z)|

}
= +∞.

Therefore, by (3),
⋃

n∈N
(cn(·)Dn)(V (δ, L)) 6⊂ V (1,K),

which implies that F is not equicontinuous.

Let us see now what happens in the case G = C.

Theorem 2.4. Consider the following properties:

(a) There is an exhaustive sequence {Kj}j≥1 in K(C) such that each
α1(Kj) is finite.

(b) The family F = {cn(·)Dn : n ∈ N} of operators on H(C) is equicon-
tinuous.

(c) There is no f ∈ H(C) such that the orbit {cn(·)f (n) : n ∈ N} is dense
in H(C).

(d) {f ∈ H(C) : {cn(·)f (n) : n ∈ N} is dense in H(C)} is not residual.
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Then the following implications hold :

(a)⇒(b)⇒(c)⇒(d).

Proof. It is trivial that (b)⇒(c)⇒(d). To prove that (a)⇒(b) we fix
ε > 0 and K ∈ K(C). There is j ∈ N such that K ⊂ Kj because {Kj}j≥1 is
exhaustive. But α1(Kj) is finite, so there exists n0 ∈ N with

sup
n≥n0

(n! sup
z∈Kj

|cn(z)|)1/n <∞.

We can now follow the proof of Theorem 2.3(1) step by step with the sole
exception that we may choose the cycle γ in such a way that

sup
n≥n0

(n! sup
z∈Kj

|cn(z)|)1/n ≤ d(Kj, γ).

Then, by choosing L = γ and δ = 2πεd(Kj, γ)/length(γ), we obtain
⋃

n≥n0

(cn(·)Dn)(V (δ, L)) ⊂ V (ε,Kj) ⊂ V (ε,K)

and so we have (b) and the theorem is proved.

3. Antiderivative operators. We furnish a sufficient condition to get
a certain property of {cn(·)In}∞n=1-universality, which generalizes those given
in [1] and [2]. It also turns out to be a sufficient condition for the equicon-
tinuity of the family {cn(·)In : n ∈ N}. Recall that in the definition of In

(n ∈ N), a point a ∈ G has been fixed.

Lemma 3.1. If B1 ≤ 1/∆a(G) and f ∈ H(G), then {cn(·)Inf}∞n=1 con-
verges to zero uniformly on compact subsets of G.

Proof. Let z ∈ G be. From the definition of ∆a(G), there exists a rec-
tifiable arc γz ⊂ G joining a to z such that |z − t| < ∆a(G) for all t ∈ γz.
Fix K ∈ K(G). Then we may choose a compact set L and arcs γz in such a
way that

⋃
z∈K γz ⊂ L ⊂ G, supz∈K length(γz) = S <∞ and |z− t| ≤M =

a constant < ∆a(G) for all z ∈ K and t ∈ γz. Fix M1 ∈ (M,∆a(G)). Since
B1 ≤ 1/∆a(G), there is n0 ∈ N such that supz∈K |cn(z)|/(n− 1)! ≤ 1/Mn−1

1
whenever n ≥ n0. If z ∈ K, n ≥ n0 and f ∈ H(G), we obtain

|cn(z)Inf(z)| =
∣∣∣∣
cn(z)

(n− 1)!

�

γz

(z − t)n−1f(t) dt

∣∣∣∣

≤ supz∈K |cn(z)|
(n− 1)!

Mn−1‖f‖L length(γz)

≤ S‖f‖L
(
M

M1

)n−1

→ 0 (n→∞).

Thus limn→∞ ‖cn(·)Inf‖K = 0, as required.
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Theorem 3.2. Assume that B1 ≤ 1/∆a(G). Then there exists a se-
quence {Cn}∞n=1 ⊂ C such that for every f ∈ H(G) the sequence

{
Qn(z) = cn(z)Inf(z) +

n−1∑

j=0

Cn−j
j!

zj : n ∈ N
}

has the following properties:

(a) {Qn(z) : n ∈ N} is dense in H(G).
(b) For every compact set B ⊂ G with connected complement and every

function g which is continuous on B and holomorphic in the interior of B,
there is a subsequence of {Qn(z) : n ∈ N} converging to g uniformly on B.

(c) For every Lebesgue-measurable set E ⊂ G and every Lebesgue-measu-
rable function g : E → C ∪ {∞}, there is a subsequence of {Qn(z) : n ∈ N}
converging almost everywhere to g on E.

Proof. Part (a) is a direct application of Lemma 3.1 and the above men-
tioned result of [8] to the domain G and the function Φ ≡ 0. Parts (b) and
(c) are straightforward consequences of [8, Lemma 3].

Theorem 3.3. (a) If B1 ≤ 1/∆a(G), then the family F = {cn(·)In :
n ∈ N} of operators defined on H(G) is equicontinuous.

(b) If B2 > 1/d(a,C \G), then the family F is not equicontinuous.

Proof. (a) Fix K ∈ K(G) and ε > 0. As in the proof of Lemma 3.1, find
L ∈ K(G) and finite constants M , M1, S (with M1 ∈ (M,∆a(G))) such that

|cn(z)Inf(z)| ≤ S · δ
(
M

M1

)n−1

≤ S · δ = ε

whenever δ = ε/S, n ≥ n0, z ∈ K and ‖f‖L ≤ δ. Therefore
⋃

n≥n0

(cn(·)In)(V (δ, L)) ⊂ V (ε,K).

Thus the family {cn(·)In : n ≥ n0} is equicontinuous, and hence so is F .
(b) Fix two positive constants µ, ν with 1/d(a,C \ G) < µ < ν < B2.

Let δ > 0 and L ∈ K(G). Consider the compact set K = {z : |z−a| = 1/µ}.
Then there exists m ∈ N with δ(ν/µ)m > 1 and infz∈K |cm(z)| > m!νm. The
constant function f ≡ δ is obviously in V (δ + 1, L) and for any z ∈ K we
have

|cm(z)Imf(z)| =
∣∣∣∣δ · cm(z) · (z − a)m

m!

∣∣∣∣

≥
∣∣∣∣δ · inf

z∈K
|cm(z)| · (1/µ)m

m!

∣∣∣∣ ≥ δ
(
ν

µ

)m
> 1,

so (cm(·)In)(V (δ + 1, L)) 6⊂ V (1,K). Hence F is not equicontinuous.



Derivative and antiderivative operators 207

Corollary 3.4. Assume that G = B(a,R) (R ∈ (0,+∞]) and consider
the family of operators F = {cn(·)In : n ∈ N}. We have:

(a) If B1 ≤ 1/R, then F is equicontinuous on H(G).
(b) If F is equicontinuous on H(G), then B2 ≤ 1/R.
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