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Comparison theorems for infinite systems of
parabolic functional-differential equations

by Danuta Jaruszewska-Walczak (Gdańsk)

Abstract. The paper deals with a weakly coupled system of functional-differential
equations

∂tui(t, x) = fi(t, x, u(t, x), u, ∂xui(t, x), ∂xxui(t, x)), i ∈ S,
where (t, x) = (t, x1, . . . , xn) ∈ (0, a)×G, u = {ui}i∈S and S is an arbitrary set of indices.
Initial boundary conditions are considered and the following questions are discussed: es-
timates of solutions, criteria of uniqueness, continuous dependence of solutions on given
functions. The right hand sides of the equations satisfy nonlinear estimates of the Perron
type with respect to the unknown functions. The results are based on a theorem on ex-
tremal solutions of an initial problem for infinite systems of ordinary functional-differential
equations.

1. Introduction. For any metric spaces X and Y , let C(X,Y ) denote
the class of all continuous functions from X to Y . Put D = (0, a)×G where
a > 0 and G ⊂ Rn is an open bounded domain. Let D0 = [−r0, 0] × G
and Σ = (0, a) × ∂G where r0 ≥ 0 and ∂G is the boundary of G. Write
∆ = D0 ∪D ∪Σ.

Let S be an arbitrary set of indices and

X = {p = {pk}k∈S : pk ∈ R, k ∈ S}.
For p, p ∈ X where p = {pk}k∈S , p = {pk}k∈S we write p ≤ p if pk ≤ pk for
k ∈ S.

For a sequence {p(m)}m∈N, p(m) = {p(m)
k }k∈S ∈ X, and for a point p =

{pk}k∈S ∈ X we write limm→∞ p(m) = p if limm→∞ p
(m)
k = pk for all k ∈ S.

Denote by | · |0 the supremum norm in the space of bounded real continu-
ous functions defined on ∆. For a sequence {u(m)}m∈N, u(m) = {u(m)

k }k∈S ∈
C(∆,X), and for a function u = {uk}k∈S ∈ C(∆,X), we write limm→∞ u(m)

= u if limm→∞ |u(m)
k − uk|0 = 0 for all k ∈ S.
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Let Mn×n denote the set of all real n × n matrices. For r, r̃ ∈ Mn×n,
r = [rjk]j,k=1,...,n, r̃ = [r̃jk]j,k=1,...,n, we write r ≤ r̃ if

n∑

j,k=1

(rjk − r̃jk)λjλk ≤ 0 for any λ = (λ1, . . . , λn) ∈ Rn.

Write Γ = D×X×C(∆,X)×Rn×Mn×n and let f = {fi}i∈S , fi : Γ → R,
and α = {αi}i∈S, αi : D0 ∪Σ → R, be given functions.

Let a function c = {ci}i∈S , ci : Σ → R+, be given. Define

Σci = {(t, x) ∈ Σ : ci(t, x) 6= 0}.
Assume that a function b = {bi}i∈S , bi : Σci → R+, is given and bi(t, x) ≥
Bi > 0 on Σci for i ∈ S.

Suppose that for every i ∈ S and (t, x) ∈ Σci there is a direction li(t, x)
∈ Rn such that for some h0 > 0,

(t, x+ hli(t, x)) ∈ D, h ∈ [0, h0].

We consider the initial boundary value problem

∂tui(t, x) = fi(t, x, u(t, x), u, ∂xui(t, x), ∂xxui(t, x)), i ∈ S,(1)

ui(t, x) = αi(t, x), (t, x) ∈ D0 ∪ (Σ \Σci), i ∈ S,(2)

bi(t, x)ui(t, x) − ci(t, x)
dui
dli

(t, x) = αi(t, x), (t, x) ∈ Σci , i ∈ S,(3)

where u = {ui}i∈S.
We say that a function u = {ui}i∈S , u : ∆→ X, is a regular solution of

system (1) if:

(i) u ∈ C(∆,X),
(ii) for each i ∈ S the derivatives ∂tui, ∂xui, ∂xxui exist and they are

continuous in D,
(iii) u satisfies system (1) for every (t, x) ∈ D.

If in addition, for every i ∈ S, the derivative dui
dli

(t, x) exists at each
(t, x) ∈ Σci , then a regular solution is said to be Σc-regular in D.

A Σc-regular solution u = {ui}i∈S of (1) is called a parabolic solution
of (1) in D if for any two symmetric matrices r, r̃ ∈ Mn×n such that r ≤ r̃,
the inequality

fi(t, x, u(t, x), u, ∂xui(t, x), r) ≤ fi(t, x, u(t, x), u, ∂xui(t, x), r̃)

is satisfied for (t, x) ∈ D, i ∈ S.
Differential systems with a deviated argument and differential-integral

problems can be obtained from (1) by specializing the operator f . Note that
various models of the functional dependence in partial equations are used in
the literature. Detailed comparisons between different models are presented
in [4].
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The classical theory of parabolic differential inequalities has been de-
scribed in the monographs [7]–[9], [16].

As is well known, they found applications in differential problems. The
basic examples of such applications are: estimates of solutions of partial
equations, estimates of the domain of existence of solutions, criteria of
uniqueness and error estimates for approximate solutions. Moreover, discrete
versions of differential inequalities are frequently used to prove convergence
of approximation methods. The numerical method of lines and difference
methods are classical examples.

Recently numerous papers have been published concerning parabolic
functional-differential problems. Existence results can be found in [1]–[3].
They are based on the method of successive approximations introduced by
T. Ważewski for systems without functional dependence [17]. The Chap-
lygin method is also used in existence theorems for parabolic functional-
differential problems.

Functional-differential inequalities of parabolic type and uniqueness re-
sults for initial boundary value problems were first treated in [10]–[13]. Those
papers deal with finite systems of weakly coupled functional-differential
equations. This means that every equation contains the vector of unknown
functions and the derivatives of only one function.

Infinite systems of parabolic functional-differential inequalities were con-
sidered in [15]. Monotonicity conditions and Lipschitz estimates are the main
assumptions on the right hand sides of the system in that paper. Uniqueness
results for infinite systems of parabolic functional-differential equations with
initial boundary conditions can be found in [14]. The Lipschitz condition
with respect to the functional variable is assumed in [14] and bounded solu-
tions are considered. It is important in [14], [15] that the Lipschitz constant
is common for all functions in the system of equations or inequalities. Sim-
ilar problems for infinite systems and their solutions defined on unbounded
domains and belonging to the function class E1,∞

2 were examined in [5], [6].
The aim of this paper is to study general comparison theorems for

parabolic functional-differential infinite systems. The first part deals with ex-
tremal solutions of infinite systems of ordinary functional-differential equa-
tions. The second part contains comparison theorems for parabolic prob-
lems, uniqueness criteria for solutions of problem (1)–(3) and a result on
continuous dependence of solutions on given functions.

It is essential to our considerations that the right hand sides of the
equations satisfy nonlinear estimates of the Perron type with respect to the
unknown functions. We deal with infinite systems of functional-differential
equations as comparison problems for (1).

The paper generalizes results of [10], [11], [14] and [15].



264 D. Jaruszewska-Walczak

2. Extremal solutions of ordinary functional-differential sys-
tems. Put X+ = {p = {pk}k∈S : pk ≥ 0, k ∈ S}. Let C([−r0, a),X+) de-
note the space of all functions w = {wi}i∈S such that wi ∈ C([−r0, a),R+),
i ∈ S. Put Γ̃ = (0, a)×X+ × C([−r0, a),X+).

Assumption H[σ]. Suppose that σ = {σi}i∈S, σi ∈ C(Γ̃ ,R+), and

1) σ satisfies the Volterra condition, i.e. for each (t, p) ∈ (0, a) × X+
and w,w ∈ C([−r0, a),X+) such that w(τ) = w(τ) for τ ∈ [−r0, t] we have
σ(t, p, w) = σ(t, p, w),

2) the following monotonicity condition holds: if i ∈ S, (t, p, w), (t, p, w)
∈ Γ̃ , p = {pi}i∈S, p = {pi}i∈S and p ≤ p, pi = pi, and w(t) ≤ w(t) on
[−r0, a) then σi(t, p, w) ≤ σi(t, p, w),

3) there is L ∈ X+ such that

σ(t, p, w) ≤ L on Γ̃ .

Lemma 1. Suppose Assumption H[σ] is satisfied and η∈C([−r0, 0],X+).
Then on [−r0, a) there exists the maximum solution ω(·, η) = {ωi(·, η)}i∈S
of the problem

w′(t) = σ(t, w(t), w),(4)

w(t) = η(t), t ∈ [−r0, 0].(5)

Moreover , if ϕ ∈ C([−r0, a),X+) satisfies the functional-differential in-
equality

D−ϕ(t) ≤ σ(t, ϕ(t), ϕ)(6)

and the initial estimate ϕ(t) ≤ η(t), t ∈ [−r0, 0], then

ϕ(t) ≤ ω(t, η) for t ∈ (0, a).

Proof. Let ψ = {ψi}i∈S ∈ C([−r0, a),X+) and take k ∈ S, ξ ∈
C([−r0, a),R+). Put

P [k, ψ, ξ] = {Pi[k, ψ, ξ]}i∈S, Pi[k, ψ, ξ] =
{
ψi for i 6= k,
ξ for i = k.

(7)

It follows ([8]) that there exists the right hand maximum solution Wk[ψ] of
the Cauchy problem

ξ′(t) = σk(t, P [k, ψ, ξ](t), P [k, ψ, ξ]),

ξ(t) = ηk(t), t ∈ [−r0, 0],

and the solution is defined on [−r0, a). Put W [ψ] = {Wk[ψ]}k∈S. It follows
from the monotonicity condition for σ that for ψ, ψ̃ ∈ C([−r0, a),X+) such
that ψ(t) ≤ ψ̃(t) on [−r0, a) we have

W [ψ](t) ≤W [ψ̃ ](t) on (0, a).
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Denote by Ω the class of all ψ ∈ C([−r0, a),X+) satisfying the differential
inequality

D−ψ(t) ≤ σ(t, ψ(t), ψ)

and the initial estimate ψ(t) ≤ η(t), t ∈ [−r0, 0].
The function

ω̃k(t) = sup{Wk[ψ](t) : ψ ∈ Ω}, t ∈ [−r0, a), k ∈ S,
exists and is continuous on [−r0, a). Moreover ω̃k(t) = ηk(t) for t ∈ [−r0, 0],
k ∈ S. Thus ω̃ = {ωk}k∈S ∈ C([−r0, a),X+) and W [ψ](t) ≤ W [ω̃](t) for
ψ ∈ Ω, t ∈ (0, a). Therefore

ω̃(t) ≤W [ω̃](t), t ∈ (0, a).(8)

On the other hand, we have

d

dt
Wk[ω̃](t) = σk(t, P [k, ω̃,Wk[ω̃]](t), P [k, ω̃,Wk[ω̃]])

≤ σk(t, P [k,W [ω̃],Wk[ω̃]](t), P [k, [ω],Wk[ω̃]])

and consequently W [ω̃] ∈ Ω. This gives

ω̃(t) ≥W [ω̃](t), t ∈ (0, a).(9)

Inequalities (8) and (9) imply that ω̃ = W [ω̃]. Thus ω̃ is the right hand
maximum solution of (4), (5).

It follows from (6) that ϕ ∈ Ω and this completes the proof.

Lemma 2. Suppose Assumption H[σ] is satisfied and η∈C([−r0, 0],X+).
Let ϕ = {ϕi}i∈S ∈ C([−r0, a),X+) and let ω(·, η) be the right hand maxi-
mum solution of (4), (5). Put

Jk = {τ ∈ (0, a) : ϕk(τ) > ωk(τ, η)}, k ∈ S.
If for each k ∈ S,

D−ϕk(t) ≤ σk(t, ϕ(t), ϕ)

for t ∈ Jk, and ϕ(t) ≤ η(t) for t ∈ [−r0, 0] then

ϕ(t) ≤ ω(t, η) for t ∈ (0, a).

Proof. Let k ∈ S and let γk(·, ηk) be the right hand maximum solution
of the problem

ξ′(t) = σk(t, P [k, ϕ, ξ](t), P [k, ϕ, ξ]),

ξ(t) = ηk(t), t ∈ [−r0, 0],

where P [k, ϕ, ξ] is given by (7) with ψ = ϕ.
Fix k ∈ S. For t ∈ Jk we have

D−ϕk(t) ≤ σk(t, P [k, ϕ, ϕk](t), P [k, ϕ, ϕk])
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and ϕk(t) ≤ ηk(t), t ∈ [−r0, 0]. Thus

ϕk(t) ≤ γk(t, ηk) for t ∈ (0, a).(10)

Put γ(·, η) = {γk(·, ηk)}k∈S . We have

d

dt
γk(t, ηk) = σk(t, P [k, ϕ, γk(·, ηk)](t), P [k, ϕ, γk(·, ηk)])

≤ σk(t, γ(t, η), γ(·, η)), t ∈ (0, a), k ∈ S.
It follows from Lemma 1 that

γk(t, ηk) ≤ ωk(t, η), t ∈ (0, a), k ∈ S,
which together with (10) gives the assertion of Lemma 2.

3. Comparison theorems. We will estimate functions of several vari-
ables by means of functions of one variable. Therefore we will need the
operator V : C(∆,X) → C([−r0, a),X+) defined in the following way: for
z = {zi}i∈S ∈ C(∆,X) and t ∈ [−r0, a) let V z = {Viz}i∈S where

(Viz)(t) = max{|zi(t, x)| : x ∈ G}, i ∈ S.
For p = {pi}i∈S ∈ X write |p| = {|pi|}i∈S.

Theorem 1. Suppose that Assumption H[σ] is satisfied and the function
f = {fi}i∈S , fi : Γ → R, satisfies the estimates

fi(t, x, p, z, 0, 0) sign pi ≤ σi(t, |p|, V z), i ∈ S,
where (t, x, p, z) ∈ D × X × C(∆,X). Suppose that u = {ui}i∈S is a Σc-
regular parabolic solution of (1) in D satisfying the initial inequalities

|ui(t, x)| ≤ ηi(t), (t, x) ∈ D0, i ∈ S,
and boundary inequalities

|ui(t, x)| ≤ ωi(t, η), (t, x) ∈ Σ \Σci , i ∈ S,∣∣∣∣bi(t, x)ui(t, x)− ci(t, x)
dui
dli

(t, x)

∣∣∣∣ ≤ Biωi(t, η), (t, x) ∈ Σci , i ∈ S,

where η = {ηi}i∈S ∈ C([−r0, 0],X) and ω(·, η) = {ωi(·, η)}i∈S is the maxi-
mum solution of (4), (5). Under these assumptions we have

|u(t, x)| ≤ ω(t, η) on ∆.(11)

Proof. Put Wi(t) = max{|ui(t, x)| : x ∈ G} for i ∈ S, t ∈ [−r0, a) and
let W = {Wi}i∈S . We will prove that for fixed i ∈ S,

D−Wi(t) ≤ σi(t,W (t),W )

where t ∈ Ei = {t′ ∈ (0, a) : Wi(t′) > ωi(t′, η)}. Fix t̃ ∈ Ei. There is xi ∈ G
such that

(a) Wi( t̃) = ui( t̃, xi) or (b) Wi( t̃) = −ui( t̃, xi).
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Consider the case (a). We conclude that ( t̃, xi) is an interior point of D and
thus ∂xui( t̃, xi) = 0, ∂xxui(t̃, xi) ≤ 0. We obtain

D−Wi( t̃) ≤ ∂tui( t̃, xi) = fi( t̃, xi, u( t̃, xi), u, ∂xui( t̃, xi), ∂xxui( t̃, xi))

≤ fi( t̃, xi, u( t̃, xi), u, 0, 0)≤ σi( t̃, |u( t̃, xi)|, V u)≤ σi( t̃,W ( t̃),W ).

If we consider the case (b) then ∂xui( t̃, xi) = 0 and −∂xxui(t̃, xi) ≤ 0. Since
D−Wi( t̃) ≤ −∂tui( t̃, xi) and signui( t̃, xi) = −1 we have

D−Wi( t̃) ≤ fi( t̃, xi, u( t̃, xi), u, ∂xui( t̃, xi), ∂xxui( t̃, xi)) signui( t̃, xi)

≤ fi( t̃, xi, u( t̃, xi), u, 0, 0) signui( t̃, xi) ≤ σi( t̃,W ( t̃),W ).

The assertion follows from Lemma 2.

Theorem 2. Suppose that the function σ = {σi}i∈S satisfies Assump-
tion H[σ] and the functions f = {fi}i∈S, fi : Γ → R, g = {gi}i∈S,
gi : Γ → R satisfy the estimates

(fi(t, x, p, z, q, r)− gi(t, x, p, z, q, r)) sign(pi − pi)
≤ σi(t, |p− p|, V (z − z)), i ∈ S,

for (t, x, p, z, q, r), (t, x, p, z, q, r) ∈ Γ . Suppose that u = {ui}i∈S is a Σc-
regular parabolic solution of (1) in D and v = {vi}i∈S is a Σc-regular
solution of the system

∂tvi(t, x) = gi(t, x, v(t, x), v, ∂xvi(t, x), ∂xxvi(t, x)), i ∈ S.
Let the initial inequalities

|ui(t, x)− vi(t, x)| ≤ ηi(t, x), (t, x) ∈ D0, i ∈ S,
and boundary inequalities

|ui(t, x)− vi(t, x)| ≤ ωi(t, η), (t, x) ∈ Σ \Σci , i ∈ S,∣∣∣∣bi(t, x)(ui(t, x)− vi(t, x))− ci(t, x)
d(ui − vi)

dli
(t, x)

∣∣∣∣ ≤ Biωi(t, η),

(t, x) ∈ Σci , i ∈ S,
where η = {ηi}i∈S ∈ C([−r0, 0],X+), hold true. Under these assumptions
we have

|ui(t, x)− vi(t, x)| ≤ ωi(t, η), (t, x) ∈ D, i ∈ S.

Proof. Put Wi(t) = max{|ui(t, x) − vi(t, x)| : x ∈ G} for i ∈ S, t ∈
[−r0, a). Fix i ∈ S. Let Wi( t̃) > ωi( t̃, η). There is xi ∈ G such that

(a) Wi( t̃) = ui( t̃, xi)− vi( t̃, xi) or (b) Wi( t̃) = −(ui( t̃, xi)− vi( t̃, xi)).
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In case (a) we obtain ∂xui( t̃, xi) = ∂xvi( t̃, xi), ∂xxui( t̃, xi) ≤ ∂xxvi( t̃, xi) and

D−Wi( t̃)≤ ∂tui( t̃, xi)− ∂tvi( t̃, xi)
≤ fi( t̃, xi, ui( t̃, xi), u, ∂xui( t̃, xi), ∂xxui( t̃, xi))
− fi( t̃, xi, ui( t̃, xi), u, ∂xui( t̃, xi), ∂xxvi( t̃, xi))
+ fi( t̃, xi, ui( t̃, xi), u, ∂xui( t̃, xi), ∂xxvi( t̃, xi))

− gi( t̃, xi, vi( t̃, xi), v, ∂xui( t̃, xi), ∂xxvi( t̃, xi))≤ σi( t̃,W ( t̃),W ),

and analogously in case (b). The above inequalities and Lemma 2 complete
the proof.

An immediate consequence of Theorem 2 is the following uniqueness
theorem.

Theorem 3. Suppose that the function σ = {σi}i∈S satisfies Assump-
tion H[σ] and w(t) = 0, t ∈ [−r0, a), is a unique solution of (4) such that
w(t) = 0 for t ∈ [−r0, 0], i.e. ω(t, 0) = 0. Let the function f = {fi}i∈S,
fi : Γ → R, satisfy the estimates

(fi(t, x, p, z, q, r)− fi(t, x, p, z, q, r)) sign(pi − pi)
≤ σi(t, |p− p|, V (z − z)), i ∈ S,

for (t, x, p, z, q, r), (t, x, p, z, q, r) ∈ Γ . Then the problem (1)–(3) admits at
most one Σc-regular parabolic solution in D.

The next theorem concerns continuous dependence of solutions.

Theorem 4. Suppose that all assumptions of Theorem 3 hold true and
u = {ui}i∈S is a Σc-regular parabolic solution of (1)–(3) in D. For ε > 0
and f ε = {f εi }i∈S , f εi : Γ → R, αε = {αεi}i∈S , αεi : D0 ∪ Σ → R, let
vε = {vεi }i∈S be a Σc-regular solution in D of the problem

∂tvi(t, x) = f εi (t, x, v(t, x), v, ∂xvi(t, x), ∂xxvi(t, x)), i ∈ S,
vi(t, x) = αεi (t, x) on D0 ∪ (Σ \Σci), i ∈ S,

bi(t, x)vεi (t, x)− ci(t, x)
dvεi
dli

(t, x) = αεi (t, x), (t, x) ∈ Σci , i ∈ S.

Suppose that

|fi(t, x, p, z, q, r)− f εi (t, x, p, z, q, r)| ≤ ε on Γ,

|α(t, x)− αε(t, x)| ≤ ε on D0 ∪Σ.
Denote by ωε = {ωεi }i∈S the right hand maximum solution of the infinite
system

w′i(t) = σi(t, w(t), w) + ε, i ∈ S,
with the initial conditions

wi(t) = max{ε, ε/Bi} on [−r0, 0], i ∈ S.
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Under these assumptions

|vεi (t, x)− ui(t, x)| ≤ ωεi (t) on D for i ∈ S.
Proof. Fix i ∈ S. We have

(fi(t, x, p, z, q, r)−f εi (t, x, p, z, q, r)) sign(pi−pi) ≤ σi(t, |p−p|, V (z−z))+ε

for (t, x, p, z, q, r), (t, x, p, z, q, r) ∈ Γ . Since ωε is nondecreasing and ωεi (0) =
max{ε, ε/Bi} we get ε ≤ Biω

ε
i (t), t ∈ (0, a), i ∈ S. Theorem 2 now yields

the assertion.

Remark 1. If all the assumptions of Theorem 4 are satisfied then for
each i ∈ S we have

lim
ε→0

ωεi (t) = 0 uniformly on [−r0, a).

Indeed, for each i ∈ S, the functions ωεi : [−r0, a) → R, ε > 0, satisfy the
assumptions of the Ascoli–Arzelà theorem and they are nondecreasing with
respect to ε. Hence the assertion follows.
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