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Rotation surfaces with L1-pointwise 1-type
Gauss map in pseudo-Galilean space
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and Jae Seong Jung (Jinju)

Abstract. We study rotation surfaces in the three-dimensional pseudo-Galilean space
G1

3 such that the Gauss map G satisfies the condition L1G = f(G + C) for a smooth
function f and a constant vector C, where L1 is the Cheng–Yau operator.

1. Introduction. The Gauss map remains an interesting object in Eu-
clidean space and pseudo-Euclidean space and it has been investigated from
various viewpoints by many differential geometers [1], [6], [7], [9], [11], [16],
etc.

If the Gauss map G of a surface M satisfies

(1.1) ∆G = λ(G+ C)

for a constant λ and a constant vector C, where ∆ denotes the Laplacian
operator on M , then M is said to have 1-type Gauss map; it is a special
case of a finite type Gauss map introduced by Chen [3]. A plane, a circular
cylinder and a sphere are surfaces with 1-type Gauss map. However, the
Laplacian operator of the Gauss map of some well-known surfaces such as
a helicoid, a catenoid and a right cone in the three-dimensional Euclidean
space E3 take a somewhat different form:

(1.2) ∆G = f(G+ C)

for a smooth function f and a constant vector C. If the Gauss map G of a
surface M satisfies condition (1.2), M is said to have pointwise 1-type Gauss
map (cf. [11], [4]). Many results on submanifolds with pointwise 1-type Gauss
map were obtained in [1], [4], [8], [11], [17], etc. when the ambient spaces
are the Euclidean space, Minkowski space and Galilean space.
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The Laplacian operator of a hypersurface M immersed in En+1 is a
second-order linear differential operator which arises naturally as the lin-
earized operator of the first variation of the mean curvature for normal
variations of hypersurfaces. From this point of view, the Laplacian operator
∆ can be seen as the first one of a sequence of n operators L0, L1, . . . , Ln−1,
where Lk stands for the linearized operator of the first variation of the
(k + 1)th mean curvature arising from normal variations of hypersurfaces
(cf. [2]). These operators are given by Lk(f) = trace(Pk ◦O2f) for a smooth
function f on M (see Section 2). When k = 0, L0 = −∆ is nothing but
the Laplacian operator; when k = 1 the operator L1 is the operator �
introduced by Cheng and Yau [5] and called the Cheng–Yau operator. Hy-
persurfaces in terms of the linearized operator Lk have been studied in [9],
[12] and [13].

Mimicking the condition (1.2), we can consider the following condition
in terms of the Gauss map and the Cheng–Yau operator:

(1.3) L1G = f(G+ C)

for a smooth function f and a constant vector C.

A surface M is said to have L1-pointwise 1-type Gauss map if its Gauss
map G satisfies condition (1.3). In particular, a L1-pointwise 1-type Gauss
map is said to be of the first kind if (1.3) is satisfied for C = 0; otherwise,
it is said to be of the second kind [10].

Recently, in [9] and [10] the authors studied constant curvature surfaces
and helicoidal surfaces with L1-pointwise 1-type Gauss map.

In this paper, we classify rotation surfaces in the three-dimensional
pseudo-Galilean space G1

3 satisfying condition (1.3).

2. Preliminaries. Let x : M → M̃ be an isometric immersion of a
connected oriented hypersurface into an (n + 1)-dimensional Riemannian

manifold M̃ . Let Õ and O be the Levi-Civita connections on M̃ and M ,
respectively. Then the Gauss and Weingarten formulas are given by

ÕXY = OXY + 〈SX, Y 〉N and ÕXN = −SX

for all tangent vector fields X,Y ∈ X (M), where S and N are the shape
operator and the unit normal vector field of M , respectively. It is well-known
that S defines a self-adjoint linear operator on each tangent space and its
eigenvalues κ1(p), . . . , κn(p) are the principal curvatures of M at p. The
functions sk(p) defined by

sk(p) = σk(κ1(p), . . . , κn(p)), 1 ≤ k ≤ n,

are called the algebraic invariants of the shape operator S of M , where σk
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is the kth symmetric function in Rn given by

σk(t1, . . . , tn) =
∑

1≤i1<···<ik≤n
ti1 · · · tik .

The classical Newton transformations Pk : X (M)→ X (M) are defined from
the shape operator S by

Pk = skP0 − S ◦ Pk−1, k = 1, . . . , n,

where P0 = I denotes the identity operator acting on X (M). We consider
the second-order linear differential operator Lk : C∞(M) → C∞(M) given
by

Lk(f) = trace(Pk ◦ O2f),

where O2f is the Hessian of f . It is a consequence of the Codazzi equation
that

(2.1) Lk(f) = div(Pk(Of)).

Here Of stands for the gradient of f and div for the divergence operator
(see [14]).

Now, let M be a surface and e1, e2 be the principal directions corre-
sponding to the principal curvatures κ1, κ2 of M . By (2.1), for f ∈ C∞(M)
the Cheng–Yau operator L1f of f can be expressed as

L1f = div(P1(Of))

= e1(κ2)e1f + e2(κ1)e2f + κ2(e1e1 − Oe2e2)f + κ1(e2e2 − Oe1e1)f.
Thus, the Cheng–Yau operator L1 is given by [9]

(2.2)
L1 = e1(κ2)Õe1 + e2(κ1)Õe2 + κ2(Õe1Õe1 − ÕOe2e2

) + κ1(Õe2Õe2 − ÕOe1e1
).

Lemma 2.1 ([9]). Let M be an oriented surface in E3 with Gaussian
curvature K and mean curvature H. Then the Gauss map G of M satisfies

(2.3) L1G = −OK − 2KHG.

3. Pseudo-Galilean space. The pseudo-Galilean spaceG1
3 is a Cayley–

Klein space with the absolute figure consisting of an ordered triple {ω, f, I},
where ω is the ideal (absolute) plane in the three-dimensional real projec-
tive space RP3, f the line (the absolute line) in ω and I the fixed hyperbolic
involution of points of f .

Homogeneous coordinates in G1
3 are introduced in such a way that the

absolute plane ω is given by x0 = 0, the absolute line f by x0 = x1 = 0 and
the hyperbolic involution η by η : (x0 : x1 : x2 : x3) 7→ (0 : 0 : x3 : x2). The
last condition is equivalent to the requirement that the conic x22 − x23 = 0
is the absolute conic. Metric relations are introduced with respect to the
absolute figure. In affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x :
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y : z), the distance between the points Pi = (xi, yi, zi) (i = 1, 2) is defined
by (cf. [15])

d(P1, P2) =

{ |x2 − x1| if x1 6= x2,√
|(y2 − y1)2 − (z2 − z1)2| if x1 = x2.

The group motion of G1
3 is a six-parameter group given (in affine coordi-

nates) by
x̄ = a+ x,

ȳ = b+ cx+ y coshϕ+ z sinhϕ,

z̄ = d+ ex+ y sinhϕ+ z coshϕ.

Let x = (x1, y1, z1) and y = (x2, y2, z2) be vectors in G1
3. A vector x is

called isotropic if x1 = 0, otherwise it is non-isotropic. The pseudo-Galilean
scalar product of x and y is defined by

〈x,y〉 =

{
x1x2 if x1 6= 0 or x2 6= 0,

y1y2 − z1z2 if x1 = 0 and x2 = 0.

From this, the pseudo-Galilean norm of a vector x in G1
3 is given by ‖x‖ =√

|〈x,x〉| and all unit non-isotropic vectors are the form (1, y1, z1). There are
four types of isotropic vectors: spacelike (y21−z21 > 0), timelike (y21−z21 < 0),
and two types of lightlike (y1 = ±z1) vectors. A non-lightlike isotropic vector
is a unit vector if y21 − z21 = ±1.

The pseudo-Galilean cross product of x and y on G1
3 is defined by

x× y =

∣∣∣∣∣∣∣
0 −e2 e3

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣ ,
where e2 = (0, 1, 0) and e3 = (0, 0, 1).

Consider a Cr-surface M , r ≥ 1, in G1
3 parameterized by

x(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2)).

Let us denote

gi =
∂x

∂ui
, hij =

〈
∂x̃

∂ui
,
∂x̃

∂uj

〉
(i, j = 1, 2),

where ∼ stands for the projection of a vector on the pseudo-Euclidean yz-
plane. A surface M is called admissible if it does not have Euclidean tangent
planes. Therefore a surface M is admissible if and only if x,i 6= 0 for some
i = 1, 2.

Let M be an admissible surface. Then the unit normal vector field U of
a surface M is defined by

U =
1

W
(0, x,1z,2 − x,2z,1, x,1y,2 − x,2y,1),
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where

W =
√
|(x,1y,2 − x,2y,1)2 − (x,1z,2 − x,2z,1)2|.

Moreover, the matrix of the first fundamental form ds2 of M in G3 is
given by (cf. [15])

ds2 =

(
ds21 0

0 ds22

)
,

where ds21 = (g1du1 + g2du2)
2 and ds22 = h11du

2
1 + 2h12du1du2 + h22du

2
2.

Here gi = x,i and hij = 〈x̃,i, x̃,j〉 (i, j = 1, 2).
The Gaussian curvature K of M is defined by means of the coefficients

Lij (i, j = 1, 2) of the second fundamental form, which are the normal
components of x,i,j (i, j = 1, 2), that is,

Lij =
1

g1
〈g1x̃,i,j − gi,jx̃,1, U〉 =

1

g2
〈g2x̃,i,j − gi,jx̃,2, U〉.

Thus, the Gaussian curvature K of M is defined by

(3.1) K = −εL11L22 − L2
12

W 2

and the mean curvature H is given by

(3.2) H = − ε

2W 2
(g22L11 − 2g1g2L12 + g21L22),

where ε (= ±1) is the sign of the unit normal vector field.
In the pseudo-Galilean spaceG1

3, there are two types of rotations: pseudo-
Euclidean rotations given by the normal form

x̄ = x,

ȳ = y cosh t+ z sinh t,

z̄ = y sinh t+ z cosh t,

and isotropic rotations with the normal form

x̄ = x+ bt,

ȳ = y + xt+ bt2/2,

z̄ = z,

where t ∈ R and b = constant > 0.
The trajectory of a single point under a pseudo-Euclidean rotation is a

pseudo-Euclidean circle (i.e., a rectangular hyperbola)

x = constant, y2 − z2 = r2, r ∈ R.
The invariant r is the radius of the circle. Pseudo-Euclidean circles intersect
the absolute line f in the fixed points of the hyperbolic involution (F1, F2).
There are three kinds of pseudo-Euclidean circles: circles of real radius,
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of imaginary radius, and of radius zero. Circles of real radius are time-
like curves (having timelike tangent vectors) and imaginary radius spacelike
curves (having spacelike tangent vectors).

The trajectory of a point under isotropic rotation is an isotropic circle
whose normal form is

z = constant, y =
x2

2b
.

The invariant b is the radius of the circle. The fixed line of the isotropic
rotation (3.2) is the absolute line f .

First of all, we rotate a non-isotropic curve α parameterized by

α(u) = (h(u), g(u), 0) or α(u) = (h(u), 0, g(u))

around the x-axis by pseudo-Euclidean rotation (3.1), where g is a positive
function and h is a smooth function on an open interval I. Then the surface
M of revolution can be written as

(3.3) x(u, v) = (h(u), g(u) cosh v, g(u) sinh v),

or

(3.4) x(u, v) = (h(u), g(u) sinh v, g(u) cosh v),

for any v ∈ R.

Next, we consider the isotropic rotations. By rotating the isotropic curve
α(u) = (0, h(u), g(u)) about the z-axis by isotropic rotation (3.2), we obtain
a surface

(3.5) x(u, v) =

(
v, h(u) +

v2

2b
, g(u)

)
,

where h and g are smooth functions and b 6= 0 [15].

4. Rotation surface generated by a non-isotropic curve. Let M
be a rotation surface generated by a non-isotropic curve α(u) = (u, g(u), 0).
Then M is parameterized by

(4.1) x(u, v) = (u, g(u) cosh v, g(u) sinh v),

where g(u) is a positive function. By using the natural frame {xu,xv} of M
we define an orthonormal frame {e1, e2} by

(4.2)

e1 =
xu
‖xu‖

= (1, g′(u) cosh v, g′(u) sinh v),

e2 =
xv
‖xv‖

= (0, sinh v, cosh v);

from this the Gauss map G of M is given by

(4.3) G = (0, cosh v, sinh v).
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On the other hand, the Gaussian curvature K and the mean curvature H
are given by

(4.4) K = −εg
′′(u)

g(u)
, H =

1

2g(u)
.

Thus from (2.3), (4.3) and (4.4) the operator L1G of the Gauss map G can
be expressed as

(4.5) L1G =

(
ε
g(u)g′′′(u)− g′(u)g′′(u)

g(u)2

)
e1 + ε

g′′(u)

g(u)2
G.

4.1. Rotation surface with L1-harmonic Gauss map. First of all,
we consider a rotation surface M with L1-harmonic Gauss map, that is,
L1G = 0. From (4.5) we have

g(u)g′′′(u)− g′(u)g′′(u) = 0, g′′(u) = 0,

and it follows that g(u) = au + b with a, b ∈ R. In this case, M is a flat
surface. If a = 0, M is a Lorentzian hyperbolic cylinder y2 − z2 = b2. If
a 6= 0, M is a Lorentzian cone (ax+ b)2 = y2 − z2.

Theorem 4.1. Let M be a rotation surface defined by (4.1) in the three-
dimensional pseudo-Galilean space G1

3. Then M has L1-harmonic Gauss
map if and only if it is an open part of a Lorentzian hyperbolic cylinder or
a Lorentzian cone.

4.2. Rotation surface with L1-pointwise 1-type Gauss map of
the first kind. In this subsection, we study rotation surfaces with L1-
pointwise 1-type Gauss map of the first kind. From (4.5) we can obtain the
equations

g(u)g′′′(u)− g′(u)g′′(u) = 0, ε
g′′(u)

g(u)2
= f.

The first equation implies g′′(u) = cg(u), where c ∈ R. So, from (4.4) the
Gaussian curvature K is constant. On the other hand, rotation surfaces with
constant Gaussian curvature were obtained in [15].

Thus, we have the following theorem.

Theorem 4.2. Let M be a rotation surface defined by (4.1) in the three-
dimensional pseudo-Galilean space G1

3. Then M has L1-pointwise 1-Gauss
map of the first kind if and only if M is an open part of one of the following
surfaces:

1. x(u, v) = (u, a cos(ku+ b) cosh v, a cos(ku+ b) sinh v), c = −k2,
2. x(u, v) = (u, a cosh(ku+ b) cosh v, a cosh(ku+ b) sinh v), c = k2,

where a, b, k ∈ R.
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4.3. Rotation surface with L1-pointwise 1-type Gauss map of
the second kind. Let M be a rotation surface with L1-pointwise 1-type
Gauss map of the second kind. Then equation (1.3) is satisfied for a non-zero
constant vector C = (c1, c2, c3) and a smooth function f and we have

(4.6)

ε
g(u)g′′′(u)− g′(u)g′′(u)

g(u)2
= f〈C, e1〉,

ε
g′′(u)

g(u)2
= f(1 + 〈C,G〉), 0 = 〈C, e2〉.

Let us distinguish the following cases:

1. If c1 = 0, then from 〈C, e2〉 = 0 we can obtain

c2g(u) cosh v − c3g(u) sinh v = 0.

Since {sinh v, cosh v} forms a set of linearly independent functions, we get

c2 = 0, c3 = 0,

because g(u) is a positive function. In this case, the constant vector C van-
ishes identically. This is a contradiction.

2. If c1 6= 0, then from 〈C, e1〉 = c1, 〈C, e2〉 = 0 and 〈C,G〉 = 0 the
constant vector C becomes C = c1e1, which is impossible because e1 is a
non-constant vector except for g′(u) = 0. If g′(u) = 0, from (4.6) the smooth
function f is identically zero.

Theorem 4.3. There do not exist rotation surfaces defined by (4.1) in
G1

3 with L1-pointwise 1-Gauss map of the second kind.

5. Rotation surface generated by isotropic curve. In this sec-
tion, we consider isotropic rotations. By rotating an isotropic curve α(u) =
(0, h(u), g(u)) about the z-axis by an isotropic rotation, we obtain a rotation
surface parameterized by

(5.1) x(u, v) =

(
v, h(u) +

v2

2b
, g(u)

)
,

where b is a non-zero constant. We assume that the isotropic curve is pa-
rameterized by arc length, that is,

(5.2) h′(u)2 − g′(u)2 = −ε.

Then the orthonormal frame {e1, e2} of the tangent space of M is given by

(5.3)
e1 = (0, h′(u), g′(u)),

e2 = (1, v/b, 0).
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On the other hand, the Gauss map G of M is

(5.4) G = (0,−g′(u),−h′(u)).

From (3.1) and (3.2), the Gaussian curvature K and the mean curvature H
are given by

(5.5) K = −h
′′(u)

b
, H = −εh

′′(u)

2g′(u)
.

Thus the operator L1G of the Gauss map G can be expressed as

(5.6) L1G =
h′′′(u)

b
e1 −

εh′′(u)2

bg′(u)
G.

5.1. Rotation surface with L1-harmonic Gauss map. Suppose
that a rotation surface M satisfies L1G = 0. Then, from (5.6), h(u) = au+b
and g(u) = ±

√
a2 + εu+ c with a, b, c ∈ R.

Theorem 5.1. Let M be a rotation surface defined by (5.1) in the three-
dimensional pseudo-Galilean space G1

3. Then M has L1-harmonic Gauss
map if and only if M is parameterized by

x(u, v) =

(
v, c1u+ c2 +

v2

2b
, c3u+ c4

)
,

where ci (i = 1, . . . , 4) are constants.

5.2. Rotation surface with L1-pointwise 1-type Gauss map of
the first kind. Let M be a rotation surface with L1-pointwise 1-type Gauss
map of the first kind. Then from (5.6) we have

(5.7)
h′′′(u)

b
e1 −

εh′′(u)2

bg′(u)
G = fG,

which implies h′′′(u) = 0, and it follows that the Gaussian curvature K is a
constant K0. Combining this with the result in [15] we have the following
theorem:

Theorem 5.2. Let M be a rotation surface generated by an isotropic
curve in the three-dimensional pseudo-Galilean space G1

3. Then M has L1-
pointwise 1-type Gauss map of the first kind if and only if M is parameterized
as

x(u, v) =

(
v, h(u) +

v2

2b
, g(u)

)
,

where either

h(u) = bK0u
2/2 + c1u+ c2,

g(u) = − 1

2bK0

(
(c1 − bK0u)

√
(c1 − bK0)2 − 1− cosh−1(c1 − bK0u) + c2

)
,
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or

h(u) = bK0u
2/2 + c1u+ c2,

g(u) = − 1

2bK0

(
(c1 − bK0u)

√
(c1 − bK0)2 + 1 + sinh−1(c1 − bK0u) + c2

)
.

5.3. Rotation surface with L1-pointwise 1-type Gauss map of
the second kind. We suppose that a rotation surface M satisfies the con-
dition L1G = f(G+ C) for some smooth function f and non-zero constant
vector C = (c1, c2, c3). Then from (5.6) we have

−εh
′′′(u)

b
= f〈C, e1〉,(5.8)

−h
′′(u)2

bg′(u)
= f(ε+ 〈C,G〉,(5.9)

〈C, e2〉 = 0.(5.10)

From the scalar product of C and e2 of (5.10), we find c1 = 0. By taking
the covariant derivative of (5.10) with respect to e2 we have

0 = Õe2〈C, e2〉 =

〈
C,−εh

′(u)

b
e1 − ε

g′(u)

b
G

〉
,

which implies that c2(h
′(u)2 − g′(u)2) = 0. Thus c2 = 0. Combining (5.8)

and (5.9) we get

εh′′′(u)(ε+ 〈C,G〉)− h′′(u)2

g′(u)
〈C, e1〉 = 0;

from this equation, we have the following ODE:

(5.11) (1 + εc3h
′(u))h′′′(u) + c3h

′′(u)2 = 0.

To solve (5.11), we set h′(u) = y(u); then

(1 + εc3y(u))y′′(u) + c3y
′(u)2 = 0.

Again, we set y′(u) = p(u) then the above equation becomes

(1 + εc3y)
dp

dy
+ c3p = 0,

and its general solution is

(5.12) p(u) = d1(1 + εc3y(u))−ε,

where d1 ∈ R.
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If ε = 1, then from (5.12) we find

y(u)2 +
2

c3
y(u)− 2

c3
(d1u+ d2) = 0,

that is,

y(u) = − 1

c3
± 1

c3

√
1 + 2c3(d1u+ d2),

where d2 ∈ R. Thus the general solution of (5.11) is

(5.13) h(u) = − 1

c3
u± 1

3c23d1
(1 + 2c3(d1u+ d2))

3/2 + d3,

where d3 ∈ R. On the other hand, from (5.2) the function g(u) is given by

(5.14) g(u) = ±
�(

1 +

(
− 1

c3
± 1

c3

√
1 + 2c3(d1u+ d2)

)2)1/2

du.

If ε = −1, then from (5.12) we get

y(u) =
dh

du
=

1

c3
(1− e−c3(d1u+d2)),

it follows that we have the general solution of (5.11) as

(5.15) h(u) =
1

c3

(
u+

1

c3d1
e−c3(d1u+d2)

)
+ d3

with d3 ∈ R, and from (5.2) the function g(u) is given by

(5.16) g(u) = ±
�( 1

c23
(1− e−c3(d1u+d2))2 − 1

)1/2

du.

Consequently, we have the following theorem:

Theorem 5.3. Let M be a rotation surface generated by an isotropic
curve in the three-dimensional pseudo-Galilean space G1

3. Then M has L1-
pointwise 1-type Gauss map of the second kind if and only if M is parame-
terized as

x(u, v) =

(
v, h(u) +

v2

2b
, g(u)

)
,

where either

h(u) = − 1

c3
u± 1

3c23d1
(1 + 2c3(d1u+ d2))

3/2 + d3,

g(u) = ±
�(

1 +

(
− 1

c3
± 1

c3

√
1 + 2c3(d1u+ d2)

)2)1/2

du



266 D. W. Yoon et al.

or

h(u) =
1

c3

(
u+

1

c3d1
e−c3(d1u+d2)

)
+ d3,

g(u) = ±
�( 1

c23
(1− e−c3(d1u+d2))2 − 1

)1/2

du,

with d1, d2, d3 ∈ R.
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