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On the Cauchy problem for linear PDEs
with retarded arguments at derivatives

by Krzysztof A. Topolski (Gdańsk)

Abstract. We present an existence theorem for the Cauchy problem related to linear
partial differential-functional equations of an arbitrary order. The equations considered
include the cases of retarded and deviated arguments at the derivatives of the unknown
function. In the proof we use Tonelli’s constructive method. We also give uniqueness
criteria valid in a wide class of admissible functions. We present a set of examples to
illustrate the theory.

1. Introduction. We study the Cauchy problem for linear partial dif-
ferential-functional equations of an arbitrary order. We consider the cases of
retarded and deviated arguments at the derivatives of the unknown function.
The proof of our existence theorem is based on the following observation:
by introducing an additional constant delay one can integrate the equation
step by step and then pass to the limit with the added delay. This method
or rather “way of thinking” comes from L. Tonelli who first applied it to
solve a Volterra integral equation (see [T]).

The situation where functional dependence is not only at the unknown
function but also at its derivatives is very difficult, much more so than in the
case with no functionals at derivatives. Even a simple equation may cause
many mathematical problems. A good example is the equation Dtu(t, x) =
Dxu(t, x/2). The method of characteristics does not work here. No existence
or uniqueness result for this equation is known in the class of C1 solutions
or in any class of generalized solutions.

The methods which usually work in the theory of functional-differential
equations can be applied only to very special cases (see [A, L]). Some
nontrivial results can be obtained by considering analytic solutions (see
[ALW1, ALW2]) and solutions analytic with respect to the spatial variable
(see [AL]). The investigations in [A, ALW1, ALW2, L] are based mainly on
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the Nagumo Lemma, fixed point methods or monotone iterative techniques.
The existence of solutions for a majorant problem is usually assumed. The
investigation in each case is rather complicated.

The main advantage of the technique presented in this paper is its sim-
plicity and simplicity of the assumptions. Tonelli’s method seems to be par-
ticularly useful in the study of differential functional equations. For instance,
in our problem the procedure does not vary much whether it is applied
to equations with functionals at the unknown function or at its deriva-
tives.

Tonneli’s constructive method has a long tradition in the study of dif-
ferential equations. Cinquini [C] gives a wide spectrum of its applications
to partial differential equations. In particular the Cauchy problem for first
order partial differential equations is studied in [BV]. Conti [Co] deals with
the Darboux problem. Quasilinear systems of hyperbolic type are considered
in [CC].

Tonelli’s method for a nonlinear parabolic differential-functional Cauchy
problem is considered in [To]. The functional dependence (only at the un-
known function) is in a general form (of a Hale type operator). The exis-
tence of viscosity solutions is proved. According to the author’s knowledge,
the present paper and [To] are the first where Tonnelli’s method is applied
to differential-functional equations.

Set

Θ = (0, T ]× Rn, Θ0 = (−∞, 0]× Rn, E = (−∞, T ]× Rn, T > 0.

Let Z+ denote the set of nonnegative integers. For m = (m1, . . . ,mn) ∈ Zn+
we define |m| = m1+· · ·+mn. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn we
write xy = (x1y1, . . . , xnyn), x/y = (x1/y1, . . . , xn/yn), xm = xm1

1 . . . xmn
n .

We define B(x0, R) = {x ∈ Rn : |x− x0| ≤ R} where R > 0, x0 ∈ Rn (here
|x| is the maximum norm of x ∈ Rn).

Let r ∈ Z+. We consider the Cauchy problem

Dtu(t, x) =
∑
|m|≤r

am(t)Dmu(µm(t), βm(t)x+γm(t))+f(t, x) in Θ,(1.1)

u(t, x) = φ(t, x) in Θ0,(1.2)

where am, µm : [0, T ]→R, µm(t)≤ t, βm = (β1
m, . . . , β

n
m), γm = (γ1

m, . . . , γ
n
m) :

[0, T ] → Rn, m ∈ Zn+. We write Dmu = Dm
x u = Dm1,...,mn

x1,...,xn u for m ∈ Zn+,
D0u = u and Du = D1u (n = 1).

In this paper we consider infinite delay. The case of finite delay,
i.e. t − τ ≤ µm(t) ≤ t for some τ > 0, or of no delay, i.e. µm(t) = t,
can be derived from our model by extending the initial function.
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Remark 1.1. One can obtain similar results for the equation

Dtu(t, x) =

l∑
j=1

∑
|m|≤r

aj,m(t)Dmu
(
µj,m(t), βj,m(t)x+ γj,m(t)

)
+f(t, x) in Θ,

where aj,m, µj,m : [0, T ] → R, µj,m(t) ≤ t, βj,m = (β1
j,m, . . . , β

n
j,m), γj,m =

(γ1
j,m, . . . , γ

n
j,m) : [0, T ]→ Rn, m ∈ Zn+, j = 1, . . . , l.

Unless otherwise stated, we will assume:

(H1) |βim(t)| ≤ 1 in [0, T ], i = 1, . . . , n, m ∈ Zn+, |m| ≤ r.
(H2) There exists a continuous function x0(·) : (−∞, T ]→ Rn absolutely

continuous in [0, T ] such that

(1.3) βm(t)x0(t) + γm(t) = x0(µm(t)) for t ∈ [0, T ], m ∈ Zn+, |m| ≤ r.

Remark 1.2. Under assumption (H1) the condition (1.3) states that

|βm(t)x+γm(t)−x0(µm(t))| ≤ |x−x0(t)| for (t, x) ∈ Θ, m ∈ Zn+, |m| ≤ r.

Although (1.3) seems to be rather strong (x0(t) does not depend on m)
it is satisfied for many nontrivial problems. Indeed, (1.1), (1.2) is interesting
even if r = 1, n = 1, γ0 = γ1 ≡ 0 (x0 ≡ 0). In particular the simple equation
Dtu(t, x) = Du(t, βx), |β| < 1, is very difficult. This is due to the fact that
the functional dependence is at the derivative. In the next few remarks we
discuss the condition (1.3).

Remark 1.3. If γm ≡ 0 for all m ∈ Zn+, |m| ≤ r, then every function
βm(·) satisfying (H1) is admissible (x0(t) ≡ 0).

Remark 1.4. If βm(t) = (β1
m, . . . , β

n
m) and γm(t) = (γ1

m, . . . , γ
n
m) are

constant vector functions, µm(t) ≡ t for |m| ≤ r, then (H1), (H2) are sat-
isfied only if βim = 1, γim = 0 (xi0(t) = xi0 ∈ R is arbitrary) or βim < 1,
γim ∈ Rn (xi0(t) = xi0 = γim/(β

i
m − 1)), i = 1, . . . , n, x0 = (x1

0, . . . , x
n
0 ).

Remark 1.5. By Remarks 1.4 and 1.1 we see that our equation can have
any number of elements with no functional dependence (βim ≡ 1, γim ≡ 0 for
i = 1, . . . , n, µm(t) = t).

Remark 1.6. If µm(t) ≡ t for m ∈ Zn+, then (H2) means that x0(t) =
γm(t)/(βm(t)− 1) does not depend on m and it is absolutely continuous
in [0, T ] (we set x0(t) = x0(0) for t ≤ 0).

For a delayed equation we can give a nontrivial example of (1.3).

Example 1.7. n = 1, β ≡ 1, µ(t) = µt, µ < 1, γ(t) =
∑∞

j=1 γjt
j ,

x0(t) =
∑∞

j=1
γj

µj−1
tj . In a similar way we can treat the case |β| ≤ 1.
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2. Tonelli’s method. Define

C0,∞(E) = {u ∈ C(E) : Dmu ∈ C(E), m ∈ Zn+},
C1,∞(Θ) = {u ∈ C(Θ) : Dtu, D

mu ∈ C(Θ), m ∈ Zn+}.
In this section we assume that µm(t), βm(t), γm(t) are bounded mea-

surable, and am(t) are Lebesgue integrable for m ∈ Zn+, |m| ≤ r. Moreover,

f(·, x) for fixed x ∈ Rn is integrable in [0, T ] and
	t
0 f(s, ·) ds ∈ C0,∞(Θ).

Assume that φ ∈ C0,∞(Θ0) is locally bounded in x.

Definition 2.1. We say that u is a C0,∞-solution of (1.1), (1.2) if u is
in C0,∞(E), and

(2.1) u(t, x) = φ(0, x) +

t�

0

f(s, x) ds

+

t�

0

{ ∑
|m|≤r

am(s)Dmu
(
µm(s), βm(s)x+ γm(s)

)}
ds in Θ,

(2.2) u = φ in Θ0.

Of course if there is no delay in (2.1) (i.e. µm(s) = s for each m) the
condition (2.2) is superfluous.

We set f(·, x), am, µm, βm, γm equal to zero for t < 0, and φ(t, x) = φ(0, x)
for t > 0. Thus we can consider a formulation equivalent to (2.1), (2.2):

(2.3) u(t, x) = φ(t, x) +

t�

0

f(s, x) ds

+

t�

0

{ ∑
|m|≤r

am(s)Dmu(µm(s), βm(s)x+ γm(s))
}
ds in E.

Example 2.2. (n = 1, τ = 0, a0(t) ≡ 0, a1(t) ≡ 1). Consider the Cauchy
problem

Dtu(t, x) = Du(µ(t), x) in [0, T ]× R, u(0, x) = φ(x) in R,
where µ(t) = 0 in [0, c], µ(t) = t in (c, T ], c ∈ (0, T ) and φ ∈ C∞(Rn).

The solution is u(t, x) = φ′(x)t + φ(x) in [0, c], u(t, x) = cφ′(t + x − c)
+ φ(t+ x− c) in [c, T ]. Of course u ∈ C0,∞(E) but u /∈ C1,∞(Θ) if φ is not
linear.

We will say u is a C1,∞-solution of (1.1), (1.2) if u ∈ C1,∞(Θ)∩C0,∞(E)
and (1.1), (1.2) are satisfied everywhere.

Remark 2.3. It is clear that every C1,∞-solution of (1.1), (1.2) is a
C0,∞-solution. Moreover, if am, µm, βm, γm for m ∈ Zn+, |m| ≤ r, f(·, x)
in [0, T ] and φ(·, x) in (−∞, 0] are continuous, then every C0,∞-solution of
(1.1), (1.2) is a C1,∞-solution.
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Remark 2.4. If (H1), (H2) hold, we can reduce our problem to the case
γm(t) ≡ 0, |m| ≤ r. We set ū(t, x) = u(t, x+x0(t)). It is not difficult to check
that u satisfies (2.1), (2.2) if and only if ū does with γ̄m(t) ≡ 0, |m| ≤ r,
φ̄(t, x) = φ(t, x+ x0(t)) in Θ0 and x̄0(t) ≡ 0 (see Remark 1.1). If we assume
that x0(t) is continuously differentiable, then the equivalence also holds for
C1,∞-solutions.

Let g ∈ C0,∞(E). For R > 0 and p = 0, 1, . . . we define

LpR[g](t) = sup{|Dig(s, x)| : s ≤ t, |x| ≤ R, i ∈ Zn+, |i| ≤ p}.

Let µ(t) = max{µm(t) : m ∈ Zn+, |m| ≤ r} and a(s) =
∑
|m|≤r |am(s)|.

For every bounded and nondecreasing function v : (−∞, T ] → R+ we
define

(2.4) A[v](t) =

t�

0

a(s)v(µ(s)) ds for t ∈ (−∞, T ]

and its iterations

Aj [v](t) =

t�

0

a(s)Aj−1[v](µ(s)) ds for t ∈ (−∞, T ],

j = 1, 2, . . . , where A1[v] = A[v], A0[v] = v. Of course, for j = 2, 3, . . . ,

Aj [v](t) =

t�

0

µ(s1)�

0

. . .

µ(sj−1)�

0

a(s1)a(s2) . . . a(sj)v(µ(sj)) dsj . . . ds2ds1

(clearly Aj [v](t) = 0, t ∈ (−∞, 0], j = 1, 2, . . .).

Define F (t, x) =
	t
0 f(s, x) ds, (t, x) ∈ E. Note that F (t, x) = 0 for t ≤ 0.

Assumption 2.5. Suppose that φ ∈ C0,∞(Θ0), F ∈ C0,∞(E), and for
every R > 0 and every k ∈ Z+,

∞∑
j=0

Aj [1](T )Ljr+kR [φ](0) <∞,(2.5)

∞∑
j=0

Aj [Ljr+kR [F ]](T ) <∞.(2.6)

Notice that (2.5) (resp. (2.6)) does not imply that φ (resp. F ) is analytic
with respect to x.

Remark 2.6. If µ is nondecreasing and for some i ≥ 1 the iteration µi

is not positive in [0, T ], then Aj [v] ≡ 0 for every v and j ≥ i+1. In this case
all φ ∈ C0,∞(Θ0) and F ∈ C0,∞(E) satisfy (2.5), (2.6).
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A simple example of µ such that Remark 2.6 can be applied is µ(t) = t−h
for a given h > 0. We can also consider µ(t) = 0 in [0, h] and µ(t) = t−h in
(h, T ] for a given T > h > 0. Another example is:

Example 2.7. Set µ(t) = 0 in [0, ε], µ(t) = αt in (ε, T ] for 0 < ε < T

and 0 < α < 1. It is easy to show that µi(t) = 0 in [0, εα1−i], µi(t) = αit
in (εα1−i, T ] for i < 1 + ln (ε/T )/lnα = ε0 and µi(t) ≡ 0 for i ≥ ε0.

In order to see that the condition Aj [v] ≡ 0 for large j is not necessary to
consider nonanalytic data we refer the reader to Section 4 (see Remark 4.10).

Proposition 2.8. A sufficient condition for (2.6) to hold is

(2.7)

∞∑
j=0

Aj [1](T )[Ljr+kR [F ]](T ) <∞

for all R > 0 and k ∈ Z+.

Proof. This follows easily from the monotonicity of A.

Proposition 2.9. Sufficient conditions for (2.5), (2.6), respectively, are:[ T�
0

a(s) ds
]

lim sup
j→∞

j

√
LjrR [φ](0)/j! < 1,(2.8)

[ T�
0

a(s) ds
]

lim sup
j→∞

j

√
LjrR [F ](T )/j! < 1,(2.9)

for every R > 0.

Proof. Suppose that (2.8) and (2.9) hold. First we will show that[ T�
0

a(s) ds
]

lim sup
j→∞

j

√
Ljr+kR [φ](0)/j! < 1,(2.10)

[ T�
0

a(s) ds
]

lim sup
j→∞

j

√
Ljr+kR [F ](T )/j! < 1,(2.11)

for every R > 0 and every k ∈ Z+.

If r = 0, then both limits are zero for every k. If r > 0, then our statement
follows from(

Ljr+k

j!

)1/j

≤
(
L(j+k)r

j!

)1/j

=

[(
L(j+k)r

(j + k)!

) 1
j+k
] j+k

j
(

(j + k)!

j!

)1/j

,

where Lm denotes LmR [φ](0) or LmR [F ](T ) for m ∈ N.

Let A0[v] be defined by (2.4) with µ(t) = t. Assume that (2.10), (2.11)

hold. The conditions (2.5) follow from the inequality Aj [1](t) ≤ Aj0[1](t) and
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from the fact that Aj0[1](t) = [A0[1](t)]j/j!, A0[1](t) = A[1](t) =
	t
0 a(s) ds.

In the proof of (2.6) we also use the inequality

Aj [Ljr+kR [F ]](T ) ≤ Aj [1](T )[Ljr+kR [F ]](T ),

which gives (2.7) and yields (2.6) by Proposition 2.8.

Proposition 2.9 is particularly useful if µ(t) = t. In the case of nontrivial
delay it is better to use (2.5), (2.6) since these conditions give more general
existence results than (2.8), (2.9) (see examples at the end of the paper).

By the Ascoli–Arzelà lemma and a diagonal argument we can prove

Theorem 2.10. Suppose that gl ∈ C(Rn), l = 1, 2, . . . , are equicontinu-
ous and uniformly bounded on B(R) = {x ∈ Rn : |x| ≤ R} for every R > 0.
Then gl has a locally uniformly convergent subsequence.

Theorem 2.11. Suppose that Assumption 2.5 holds. Then there exists
at least one C0,∞-solution of (1.1), (1.2).

Proof. In view of Remark 2.4 we can assume that γm ≡ 0.

Let α > 0. Consider

(2.12) u(t, x) = φ(t, x) + F (t, x)

+

t�

0

{ ∑
|m|≤r

am(s)Dmu(µm(s)− α, βm(s)x)
}
ds in E.

We solve (2.12) by the method of steps.

Let N ∈ N with (N − 1)α < T ≤ Nα and tj = jα, 0 ≤ j < N , tN = T .
Set Ej = E ∩ {(t, x) : t ≤ tj} for j = 0, 1, . . . , N (E0 = Θ0 and EN = E).

We define uj : E → R, j = 0, 1, . . . , N , by induction: u0 = φ in E,

(2.13) uj(t, x) = u0(t, x) + F (t, x)

+

t�

0

{ ∑
|m|≤r

am(s)Dmuj−1(µm(s)− α, βm(s)x)
}
ds in Ej

and uj(t, x) = u(tj , x) in E\Ej for j = 1, . . . , N . It is clear that uj = uj−1 in
Ej−1 and uα = uN solves (2.12). Let k ∈ Z+. Applying Di, i ∈ Zn+, |i| = k,
to both sides in (2.13) we obtain

(2.14) Diuj(t, x) = Diu0(t, x) +DiF (t, x)

+

t�

0

{ ∑
|m|≤r

am(s)[βm(s)]iDm+iuj−1(µm(s)− α, βm(s)x)
}
ds in Ej .



276 K. A. Topolski

Since |[βm(s)]i| ≤ 1, we write

|Diuj(t, x)| ≤ |Diu0(0, x)|+ |DiF (t, x)|

+

t�

0

{ ∑
|m|≤r

|am(s)| |Dm+iuj−1(µm(s)− α, βm(s)x)|
}
ds in Ej .

Fix R > 0. Then we define Lpj (t) = LpR[uj ](t), F
p(t) = LpR[F ](t) and

Lp0 = Lp0(0) = Lp0[φ](0), p ∈ Z+. Of course Lpj (t) is nondecreasing in t, j, p
and F p(t) is nondecreasing in t, p. By the standard argument,

Lkj (t) ≤ Lk0 + F k(t) +

t�

0

{ ∑
|m|≤r

|am(s)|L|m|+kj−1 (µm(s)− α)
}
ds in [0, tj ],

and since µm(s) ≤ µ(s),

Lkj (t) ≤ Lk0 + F k(t) +

t�

0

a(s)Lr+kj−1(µ(s)− α) ds in [0, tj ].

Since Lpj (t) = Lpj (tj) for t ∈ [tj , T ] we obtain

Lkj (t) ≤ Lk0 + F k(t) +

t�

0

a(s)Lr+kj−1(µ(s)) ds in [0, T ].

Hence

Lkj (t) ≤ Lk0 + F k(t) +A[Lr+kj−1 ](t) in [0, T ].

for j = 1, . . . , N . This gives by induction

LkN (t) ≤
N∑
j=0

Aj [1](t)Ljr+k0 +

N∑
j=0

Aj [F jr+k](t) ≤ LkR(t),

where

(2.15) LkR(t) =

∞∑
j=0

Aj [1](t)Ljr+k0 +

∞∑
j=0

Aj [F jr+k](t).

Since uα = uN belongs to C0,∞(E) and satisfies (2.12), we can write

(2.16) Diu(t, x) = Diφ(t, x) +

t�

0

Dif(s, x) ds

+

t�

0

{ ∑
|m|≤r

am(s)[βm(s)]iDm+iu(µm(s)− α, βm(s)x)
}
ds in E

for i ∈ Zn+. Moreover, all derivatives Diuα, |i| = k, are bounded by LkR(T )
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for |x| ≤ R. By (2.16) for |i| = k and |x| ≤ R we obtain

|Diuα(t, x)−Diuα(t̄, x)| ≤∣∣∣ t�
t̄

{ ∑
|m|≤r

|am(s)| |Dm+iuα(µm(s)−α, βm(s)x)|
}
ds
∣∣∣ ≤ Lk+r

R (T )
∣∣∣ t�
t̄

|a(s)| ds
∣∣∣.

Now we set α = αl, l = 1, 2, . . . , αl → 0 as l→∞. By Theorem 2.10 we
find that uαl

converges locally uniformly (taking a subsequence if necessary)
with all its derivatives. Next letting α = αl → 0 in (2.12) we get (2.3) for
the limit.

Remark 2.12. If u is a C0,∞-solution of (1.1), (1.2) obtained by Tonelli’s
method, then LkR[u](t) ≤ LkR(t) where LkR(t) is given by (2.15).

In view of Remark 2.3 we can formulate

Theorem 2.13. Assume that am, µm : (0, T )→ R, βm, γm : (0, T )→ Rn,
m ∈ Zn+, |m| ≤ r, are continuous. Suppose that the hypothesis of Theo-
rem 2.11 holds with x0(·) continuously differentiable in [0, T ]. Then there
exists at least one C1,∞-solution of (1.1), (1.2).

3. Uniqueness of solutions

Theorem 3.1. Suppose that u is a C0,∞-solution of (1.1), (1.2). Let
(2.5), (2.6) hold for some k ∈ Z+ and

(3.1) lim
p→∞

Ap[Lpr+kR [u]](T ) = 0 for every R > 0.

Then

LkR[u](T ) ≤
∞∑
j=0

Aj [1](T )Ljr+kR [φ](0) +
∞∑
j=0

Aj [Ljr+kR [F ]](T ).

Proof. Let u = φ in Θ0 and γm ≡ 0 (see Remark 2.4). Applying Di,
i ∈ Zn+, to both sides of (2.3) (γm ≡ 0) we get

Diu(t, x) = Diφ(t, x) +DiF (t, x)

+

t�

0

{ ∑
|m|≤r

am(s)[βm(s)]iDm+iu(µm(s), βm(s)x)
}
ds.

This gives

|Diu(t, x)| ≤ |Diφ(t, x)|+ |DiF (t, x)|

+

t�

0

{ ∑
|m|≤r

|am(s)| |Dm+iu(µm(s), βm(s)x)|
}
ds in Θ.

Taking the supremum over the past for x ∈ B(x0, R), R > 0, |i| ≤ k, we
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obtain

LkR[u](t) ≤ LkR[φ](0) + LkR[F ](T ) +

t�

0

a(s)Lr+kR [u](µ(s)) ds,

and consequently

LkR[u](t) ≤ LkR[φ](0) + LkR[F ](T ) +A[Lr+kR [u]](t).

Iterating p times we obtain

LkR[u](t) ≤
p−1∑
j=0

Aj [1](T )Ljr+kR [φ](0) +

p−1∑
j=0

Aj [Ljr+kR [F ]](T ) +Ap[Lrp+kR [u]](t).

By letting p→∞ we complete the proof.

Theorem 3.2. Suppose that φ ∈ C0,∞(Θ0) and F ∈ C0,∞(E). Then
there exists at most one C0,∞-solution of (1.1), (1.2) satisfying (3.1) with
k = 0.

Proposition 3.3. If u is a C0,∞-solution of (1.1), (1.2) obtained by
Tonelli’s method under Assumption 2.5, then u satisfies (3.1) for every k.

Proof. By Remark 2.12 we obtain

Ap[Lpr+k[u]](t) ≤ Ap
[ ∞∑
j=0

Ljr+pr+k0 Aj [1]
]
(t) +Ap

[ ∞∑
j=0

Aj [F jr+pr+k]
]
(t)

=

∞∑
j=0

L
(j+p)r+k
0 Aj+p[1](t) +

∞∑
j=0

Aj+p[F (j+p)r+k](t)

=
∞∑
j=p

Ljr+k0 Aj [1](t) +
∞∑
j=p

Aj [F jr+k](t).

By applying Assumption 2.5 we complete the proof.

Remark 3.4. Suppose that LkR[φ](0) =Lk[φ](0) and LkR[F ](t) =Lk[F ](t)
for every k ∈ Z+ and t ∈ [0, T ] (i.e. φ, F have spatial derivatives bounded in
Θ0 and in (−∞, t]×Rn, respectively). Then we can drop assumption (H2).
Theorems 2.11 and 3.2 give existence and uniqueness results in the class of
C0,∞ functions with spatial derivatives bounded in (−∞, t]× Rn.

4. Examples. Let p = (p1, . . . , pn) ∈ Rn and p > 0 (i.e. pi > 0 for
i = 1, . . . , n). Define

X0,∞
loc (E, p) =

{
u ∈ C0,∞(E) :

∀R>0 ∃MR≥0 ∀m∈Zn
+
|Dmu(t, x)| ≤ pmMR in (−∞, T ]×B(R)

}
,

X0,∞
loc (Θ0, p) =

{
u ∈ C0,∞(Θ0) :

∀R>0 ∃MR≥0 ∀m∈Zn
+
|Dmu(t, x)| ≤ pmMR in (−∞, 0]×B(R)

}
,

where B(R) = {x ∈ Rn : |x| ≤ R} and pm = pm1
1 . . . pmn

n .
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Remark 4.1. It is easy to verify that u ∈ X0,∞
loc (E, p) if and only if u(t, ·)

is an entire real function for each t and ∃M≥0 ∀m∈Zn
+
|Dmu(t, 0)| ≤ pmM .

Moreover, if u ∈ X0,∞
loc (E, p), then |Dmu(t, x)| ≤ pmMe

∑n
i=1 pi|xi| for x ∈ Rn,

j = 0, 1, . . . , uniformly in t.

It is not difficult to show that if u, v ∈ X0,∞
loc (E, p), then u+v ∈ X0,∞

loc (E, p)

and uv ∈ X0,∞
loc (E, 2p).

Example 4.2 (n = 1). Let P (t, x), Q(t, x) be two polynomials with
respect to x continuous in t and α(t), β(t) be continuous scalar functions.
Every function of the type eα(t)x[P (t, x) cosβ(t)x + Q(t, x) sinβ(t)x] or a

finite sum of such functions belongs to X0,∞
loc (E, p).

Example 4.3. The function φ(t, x) = e
∑n

i=1 x
2
i does not belong to

X0,∞
loc (E, p) for any p.

We define

X0,∞(E, p) = {u ∈ C0,∞(E) : ∃M≥0 ∀m∈Zn
+
|Dmu(t, x)| ≤ pmM in E},

X0,∞(Θ0, p) = {u ∈ C0,∞(Θ0) : ∃M≥0 ∀m∈Zn
+
|Dmu(t, x)| ≤ pmM in Θ0}.

Theorem 4.4. Suppose that (H1) and (H2) hold, and φ ∈ X0,∞
loc (Θ0, p),

F ∈ X0,∞
loc (E, p). Then there exists a unique solution of (1.1), (1.2) in

X0,∞
loc (E, p). Suppose that (H1) holds, φ ∈ X0,∞(Θ0, p), F ∈ X0,∞(E, p).

Then there exists a unique solution of (1.1), (1.2) in X0,∞(E, p).

Proof. For φ ∈ X0,∞
loc (Θ0, p) and F ∈ X0,∞

loc (E, p) we have LkR[φ](0) ≤
MRp

k and LkR[F ](T ) ≤MRp
k. This gives (2.5), (2.6), and by Theorems 2.11

and 3.2 the existence of a unique solution u in the class of C0,∞ functions
satisfying (3.1) with k = 0. By Remark 2.12 we can verify that u is in

X0,∞
loc (E, p). Since all elements of X0,∞

loc (E, p) satisfy (3.1), the proof of the
first part is complete. The second part can be proved similarly (see Re-
mark 3.4).

Remark 4.5. Since X0,∞(E, p) is in fact a Bernstein class of real ana-
lytic functions considered in [RW], Theorem 4.4 (its second part) extends
the main result of [RW] to the class of functional differential equations. In
this case we can follow the contraction argument used in [RW] instead of
Tonelli’s method. We use the fact that the space X0,∞(E, p) equipped with
the supremum norm is complete. It seems to be difficult to adopt this rea-

soning to the space X0,∞
loc (E, p) or all the more to the function space defined

by the condition (2.6).

The following examples show that our main existence result in Theo-
rem 2.11 is not limited to the case given in Theorem 4.4.
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Example 4.6. Consider the problem (n = 1, r = 1, T > 0)

(4.1) Dtu(t, x) = a(t)Du(µ(t), β(t)x+γ(t)) in Θ, u(0, x) = ex
2
, x∈R.

For simplicity we set f ≡ 0.
Based on the formula

(4.2) φ(j+1)(x) = 2xφ(j)(x) + 2jφ(j−1)(x)

for φ(x) = ex
2

we see that LjR[φ](0) = φ(j)(R) and

lim
j→∞

j

√
LjR[φ](0)/j! = 0.

This in view of Proposition 2.9 gives a global existence result.

Example 4.7. Consider the problem (n = 1, r = 2)

(4.3) Dtu(t, x) = a(t)D2u(µ(t), β(t)x+ γ(t)) in Θ, u(0, x) = ex
2
, x ∈ R.

Setting 2j + 1, 2j, 2j − 1 in (4.2) we get

φ(2j+2)(x) = (4x2 + 8j + 2)φ(2j)(x)− 8j(2j − 1)φ(2j−2)(x)

and

aj =
4x2 + 8j + 2

j + 1
− 16j − 8

j + 1

1

aj−1

where aj = 1
j+1

φ2j+2(x)
φ2j(x)

. This gives

(4.4) lim
j→∞

j

√
L2j
R [φ](0)/j! = 4.

Hence in view of Proposition 2.9 a solution exists in the interval [0, T ]

where T is such that
	T
0 a(s) ds < 1/4. This result corresponds to a well

known property of the heat equation (nonfunctional case µ(t) ≡ t, β(t) ≡ 1,

γ(t) ≡ 0) which states that solutions bounded by Mecx
2

exist only in [0, 1/4)
(see [F]).

The next example shows that conditions (2.5), (2.6) are more general
than (2.8), (2.9).

Example 4.8. Consider the problem (n = 1, r = 2, T = 1)

(4.5) Dtu(t, x) = D2u(tα, β(t)x) in Θ, u(0, x) = ex
2
, x ∈ R,

where α > 1. We will show that (4.5) has a solution in [0, 1]. Indeed, in this
case

Aj [1](t) =
1

(α+ 1) . . . (αj−1 + · · ·+ 1)
tα

j−1+···+1

and

lim
j→∞

j

√
Aj [1](t)j! = lim

j→∞
(1− α)

j + 1

1− αj+1
tα

j
= 0,
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for t ∈ [0, 1]. Thus in view of (4.4) and Cauchy’s root test the condition (2.5)
holds.

Example 4.9. Consider the problem (n = 1, r = 2, T > 0)

(4.6) Dtu(t, x) = D2u(αt, β(t)x) in Θ, u(0, x) = ex
2
, x ∈ R,

where 0 < α < 1. We have Aj [1](t) = αj(j−1)/2tj/j!. Since

lim
j→∞

j

√
Aj [1](t)j! = lim

j→∞
tα(j−1)/2 = 0,

by the same argument as in Example 4.8 the solution exists in [0, T ] for all
T > 0.

Remark 4.10 (nonanalytic solutions). Consider the problem of Ex-
ample 4.9 with a new initial function φ. Suppose that φ is in the Gevrey
class of order σ > 1 (see [G]). Then for every R > 0, LjR[φ](0) ≤M1+j

R (j!)σ

where MR ≥ 0. It is not difficult to verify that (2.5) holds for every R > 0
and k ∈ Z+.

5. Remarks. If we drop the assumption µ(t) ≤ t the uniqueness may
fail.

Example 5.1 (many solutions in the case of an advanced argument).
Consider the problem

(5.1) Dtu = 2Du(
√
t, x), (t, x) ∈ [0, T ]× R, u(0, x) = 0, x ∈ R.

A function u(t, x) = Ct2ex is a solution of (5.1) for every C ∈ R.

It is clear that Tonelli’s method works for C∞ functions in x. Indeed, it
follows from (2.13) that the initial function has to be infinitely differentiable.
It is not surprising that this method may not work for a function which is
smooth but not analytic in x (in a neighborhood of zero). This can be easily
seen even in the nonfunctional case.

Example 5.2. Consider the problem (r = 1, n = 1),

(5.2) Dtu(t, x) = Du(t, x) in Θ, u(0, x) = φ(x) in R = Θ0.

Let φ ∈ C∞(R) be such that Dkφ(0) = 0 for all k ∈ Z+ and φ > 0 elsewhere

(an example is φ(x) = e−1/x2 , x 6= 0, φ(0) = 0). It is not difficult to check
that after applying our method we get

Dku(t, x) = Dkφ(x) +

t�

0

Dk+1u(s− α, x) ds in Θ.

Moreover, for all α the solution uα has the property uα(t, 0) = 0 (we see this
step by step). On the other hand we know, by the method of characteristics,
that the unique solution of (5.2) is given by ũ(t, x) = φ(t+x). Since ũ(t, 0) =
φ(t) > 0 for t > 0, none of the subsequences of uα converges to ũ.
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Remark 5.3. All the results in this paper can be extended to strongly
coupled systems.
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