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Verification of Brannan and Clunie’s conjecture for certain
subclasses of bi-univalent functions

by S. Sivasubramanian (Tindivanam), R. Sivakumar (Tindivanam),
S. Kanas (Rzeszów), and Seong-A Kim (Gyeongju)

Abstract. Let σ denote the class of bi-univalent functions f , that is, both f(z) =
z+a2z

2+ · · · and its inverse f−1 are analytic and univalent on the unit disk. We consider
the classes of strongly bi-close-to-convex functions of order α and of bi-close-to-convex
functions of order β, which turn out to be subclasses of σ. We obtain upper bounds
for |a2| and |a3| for those classes. Moreover, we verify Brannan and Clunie’s conjecture
|a2| ≤

√
2 for some of our classes. In addition, we obtain the Fekete–Szegö relation for

these classes.

1. Introduction and motivations. Let A denote the class of functions
of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n,

which are analytic on the open unit disk U = {z ∈ C : |z| < 1}.
Further we denote by S the subclass of functions in A which are univalent

on U, and for 0 ≤ β < 1, let S∗(β) and C(β) be the subclasses of S consisting
of starlike functions of order β and convex functions of order β, respectively.
Their analytic descriptions are

S∗(β) =
{
f ∈ S : <

(
zf ′(z)

f(z)

)
> β (z ∈ U)

}
,(1.2)

C(β) =
{
f ∈ S : <

(
1 +

zf ′′(z)

f ′(z)

)
> β (z ∈ U)

}
.(1.3)

The class C(0) ≡ C is the class of convex univalent functions.
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It is well known that every function f ∈ S has an inverse f−1 defined by

(f−1 ◦ f)(z) = z (z ∈ U)(1.4)

and

(f ◦ f−1)(w) = w (|w| < r0(f); r0(f) ≥ 1/4).(1.5)

The inverse function may have an analytic continuation to U, with

(1.6) f−1(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · .

Lewin [L] investigated the class of functions f ∈ A such that both f and f−1
are normalized univalent functions on U. A function in this class was called
bi-univalent and the class was denoted by σ. Lewin [L] also showed that
|a2| ≤ 1.51. Further, Brannan and Clunie [BC] conjectured that |a2| ≤

√
2.

Netanyahu [N] obtained an exact upper bound |a2| = 4/3 for the subclass
σ1 of σ that consists of all functions that are bi-univalent and their ranges
contain the unit disk U. However, the exact upper bound of |a2| or bounds
for |an| (n > 2) for functions in the class σ are not known.

Examples of bi-univalent functions are
z

1− z
,

1

2
log

1 + z

1− z
, − log(1− z)

(see also Srivastava et al. [SMG]). However the familiar Koebe function
z/(1− z)2 and its rotations are not members of σ.

Brannan and Taha [BT] introduced certain subclasses of σ, similar to the
familiar subclasses S∗(β) and C(β). They defined that a function f ∈ A is
in the class S∗σ[α] of strongly bi-starlike functions of order α (0 < α ≤ 1) if
the following conditions are satisfied:

(1.7) f ∈ σ and |arg(zf ′(z)/f(z))| < απ/2 (z ∈ U; 0 < α ≤ 1),

and

(1.8) |arg(wg′(w)/g(w))| < απ/2 (w ∈ U; 0 < α ≤ 1),

where g is the analytic continuation of f−1 to U.
The classes S∗σ(β) and Cσ(β) of bi-starlike functions of order β and bi-

convex functions of order β, corresponding to S∗(β) and C(β) defined by
(1.2) and (1.3), were also introduced analogously. Brannan and Taha found
non-sharp estimates on |a2| and |a3| for functions in S∗σ(β) and in Cσ(β)
(for details see [BT]). Following Brannan and Taha [BT], many researchers
(see [AL+, FA, GG, HW, SMG, XSL, XGS, XXS]) have recently introduced
and investigated several interesting subclasses of σ and found non-sharp
estimates on the first two Taylor–Maclaurin coefficients.

For 0 ≤ α ≤ 1, let Kα denote the family of analytic functions f of the
form (1.1) with f ′(z) 6= 0 on U for which there exists a convex function φ
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such that

(1.9) |arg(f ′(z)/φ′(z))| < απ/2.

These classes were introduced by Kaplan [Kap] and later studied by Reade [R].
In particular, K0 is the family of convex univalent functions and K1 is the
family of close-to-convex functions. Moreover, Kα1 is a proper subclass of
Kα2 whenever α1 < α2. Similarly, the class of close-to-convex functions of
order β was introduced by the analytic condition [R]

(1.10) <(f ′(z)/φ′(z)) > β.

Motivated by the works of Brannan and Taha [BT] and Reade [R], we
introduce the following classes:

• Kσ: bi-close-to-convex functions;
• Kσ[α]: strongly bi-close-to-convex functions of order α;
• Kσ(β): bi-close-to-convex functions of order β,

which are analogous to the classes of strongly bi-convex functions of order α
and of strongly bi-starlike functions of order α [BT]. Also, we find estimates
for |a2| and |a3| for functions in these new subclasses. Further we verify
Brannan and Clunie’s [BC] conjecture |a2| ≤

√
2 for some of our subclasses.

In addition, we obtain the Fekete–Szegö inequality for those classes.
Denote also by P the class of analytic functions of the form p(z) =

1 + p1z + p2z
2 + · · · such that <(p(z)) > 0 in U.

To derive our main result we use the following well known lemmas.

Lemma 1.1 ([D, MM]). If p ∈ P, then |pk| ≤ 2 for each k ≥ 1, and

(1.11) |p2 − p21/2| ≤ 2− |p1|2/2.

Lemma 1.2 ([LZ1, LZ2]). If p ∈ P, then p2 = p21 + x(4− p21), and

(1.12) 4p3 = p31 + 2xp1(4− p21)− x2p1(4− p21) + 2ζ(1− |x|2)(4− p21)
for some x, ζ such that |x|, |ζ| ≤ 1.

Lemma 1.3 ([Kan]). If φ ∈ C, then for λ ∈ R,

|c3 − λc22| ≤


1− λ for λ < 2/3,
1 for 2/3 ≤ λ ≤ 4/3,
λ− 1 for λ > 4/3.

2. Coefficient bounds for Kσ[α]. In the present section, we first find
bounds for the first two coefficients of the functions in the class of strongly
bi-close-to-convex of order α. Let us begin with the definitions.

Definition 2.1. Let Aσ(R) denote the class of functions of the form
(1.1), defined on |z| < R, for which the inverse function has an analytic
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continuation to |z| < R with series expansion

f−1(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · .

We call the functions in Aσ(R) bi-analytic in |z| < R.

When R = 1, it will be convenient to omit the reference to the circu-
lar domain in Definition 2.1. Therefore, a bi-analytic function will mean a
function which is bi-analytic on U. We abbreviate Aσ(1) = Aσ.

We note that Aσ is a proper subclass of A.
Definition 2.2. Let 0 ≤ α ≤ 1. A function f ∈ Aσ, given by (1.1),

is said to be strongly bi-close-to-convex of order α if there exist bi-convex
functions φ and ψ such that

|arg(f ′(z)/φ′(z))| < απ/2 (z ∈ U),(2.1)
|arg(g′(w)/ψ′(w))| < απ/2 (w ∈ U).(2.2)

Here, g is the analytic continuation of f−1 to U. We denote the class of
strongly bi-close-to-convex functions of order α by Kσ[α].

Observe that if f is given by (1.1), then

(2.3) g(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · ,

and if

(2.4) φ(z) = z + c2z
2 + c3z

3 + c4z
4 + · · · ,

then

(2.5) ψ(w) = w − c2w2 + (2c22 − c3)w3 − (5c32 − 5c2c3 + c4)w
4 + · · · .

Here φ−1(w) = ψ(w).
We observe that Kσ[α1] ( Kσ[α2] for α1 < α2. Also, Kσ[1] ≡ Kσ will

be called the class of bi-close-to-convex functions. Finally, Kσ[0] ≡ Cσ is the
class of bi-convex functions [BT].

Kaplan [Kap] mentioned that (2.1) and (2.2) might be replaced by
θ2�

θ1

<
{
1 +

zf ′′(z)

f ′(z)

}
dθ > −πα, z = reiθ,

and
θ2�

θ1

<
{
1 +

wg′′(w)

g′(w)

}
dθ > −πα, w = reiθ.

Here, θ1 < θ2 < θ1 + 2π and 0 ≤ r < 1.
Now, we first prove the following theorem.

Proposition 2.1. If f given by (1.1) is in the class Kσ[α] where 0 ≤
α ≤ 1, then f(z) is bi-univalent.
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Proof. For α = 1, the statement follows from the work of Kaplan [Kap]
for close-to-convex functions. When 0 ≤ α < 1, we have Kσ[α] ( Kσ[1],
which completes the proof.

By the above proposition, Kσ[α] is a subclass of σ. By a particular choice
of φ(z) in the statement of Definition 2.2, one can obtain the following other
subclasses of σ:

• |arg(1− z)2f ′(z)| < απ/2 and |arg(1− w)2g′(w)| < απ/2;
• |arg f ′(z)| < απ/2 and |arg g′(w)| < απ/2 (studied by Srivastava et al.

[SMG]).

Theorem 2.1. Let 0 ≤ α ≤ 1, and let f given by (1.1) be in the class
Kσ[α]. Then

|a2| ≤
√
1 + 2α,(2.6)

|a3| ≤ 1 + 2α.(2.7)

Proof. From (2.1) and (2.2) we get

(2.8) f ′(z) = φ′(z)[p(z)]α

for some p ∈ P. Similarly, there exists q ∈ P such that

(2.9) g′(w) = ψ′(w)[q(w)]α.

Now, p, q have series representations

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · ,(2.10)

q(w) = 1 + q1w + q2w
2 + q3w

3 + · · · .(2.11)

Then, from (2.8) and (2.9), we obtain

2a2 = 2c2 + αp1,(2.12)
3a3 = 3c3 + 2αc2p1 + αp2 +

1
2α(α− 1)p21,(2.13)

−2a2 = −2c2 + αq1,(2.14)
6a22 − 3a3 = 6c22 − 3c3 − 2c2αq1 + αq2 +

1
2α(α− 1)q21.(2.15)

From (2.12) and (2.14), we additionally get p1 = −q1. Now, adding (2.13)
and (2.15), we obtain

(2.16) 6a22 = 6c22 +2αc2(p1− q1) +α
(
p2− 1

2p
2
1 + q2− 1

2q
2
1

)
+ 1

2α
2(p21 + q21).

Making use of Lemma 1.1 we get

6|a22| ≤ 6|c2|2 + 2α|c2| |p1 − q1|
+ α

(
2− 1

2 |p1|
2 + 2− 1

2 |q1|
2
)
+ 1

2α
2(|p1|2 + |q1|2)

= 6|c2|2 + 2α|c2| |p1 − q1|+ α
(
2− 1

2(1− α)|p
2
1|+ 2− 1

2(1− α)|q1|
2
)
.
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Now, applying the estimate |ck| ≤ 1, |pk| ≤ 2 and |qk| ≤ 2 for k = 1, 2, . . . ,
we obtain

6|a22| ≤ 6 + 8α+ 4α.

Therefore, |a22| ≤ 1 + 2α, proving (2.6).
For (2.7), we apply a similar procedure to relation (2.13).

For α = 0, we obtain the following corollary from Theorem 2.1.

Corollary 2.1. Let f given by (1.1) be in the class Kσ[0] = Cσ. Then
|a2| ≤ 1.

We note that when 0 ≤ α ≤ 1/2, relation (2.6) gives |a2| ≤
√
2, as below.

Therefore, Brannan and Clunie’s [BC] conjecture holds for the subclasses
Kσ[α], 0 ≤ α ≤ 1/2.

Corollary 2.2. Let f given by (1.1) be in the class Kσ[α] and 0 ≤ α
≤ 1/2. Then |a2| ≤

√
2.

Theorem 2.2. Let 0 ≤ α ≤ 1, and let f given by (1.1) be in the class
Kσ[α]. Then

(2.17) |a3 − λa22| ≤



(1− λ)
(
1 + 4

3α+ 1
3αM

)
for λ < 0,

(1− λ)
(
1 + 4

3α
)
+ 1

3αM for 0 ≤ λ < 2/3,
1 + 4

3α(1− λ) +
1
3αM for 2/3 ≤ λ < 1,

1 + 4
3α(λ− 1) + 1

3αM for 1 ≤ λ ≤ 4/3,
(λ− 1)

(
1 + 4

3α
)
+ 1

3αM for 4/3 < λ < 2,

(λ− 1)
(
1 + 4

3α+ 1
3αM

)
for λ ≥ 2,

where

(2.18) M ≤ 2.

Proof. Using (2.13) and (2.16) we obtain

a3 − λa22 = c3 +
2
3αc2p1 +

1
3αp2 +

1
6α(α− 1)p21

− λ
[
c22 +

1
3αc2(p1 − q1) +

1
6α(p2 + q2) +

1
12α(α− 1)(p21 + q21)

]
.

By the relations q1 = −p1, |c2| ≤ 1 and |p1| ≤ 2 we get from the above

|a3 − λa22| ≤ |c3 − λc22|+ 4
3α|1− λ|+

1
6α|2− λ|

[∣∣p2 − 1
2p

2
1

∣∣+ 1
2α|p

2
1|
]

+ 1
6α|λ|

[∣∣q2 − 1
2q

2
1

∣∣+ 1
2α|q

2
1|
]
.

The expressions
∣∣p2 − 1

2p
2
1

∣∣ + 1
2α|p

2
1| and

∣∣q2 − 1
2q

2
1

∣∣ + 1
2α|q

2
1| have the same

bounds, so that we obtain

|a3 − λa22| ≤ |c3 − λc22|+ 4
3α|1− λ|

+ 1
6α[|2− λ|+ |λ|]

[∣∣p2 − 1
2p

2
1

∣∣+ 1
2α|p

2
1|
]
.
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Making use of Lemma 1.3, and proceeding as in the previous theorem yields
the assertion.

3. Coefficient bounds for Kσ(β)

Definition 3.1. Let 0 ≤ β < 1, and let f ∈ Aσ given by (1.1) be such
that f ′(z) 6= 0 on U. Then f is said to be bi-close-to convex of order β if
there exist bi-convex functions φ, ψ ∈ Cσ such that

<
(
f ′(z)

φ′(z)

)
> β (z ∈ U),(3.1)

<
(
g′(w)

ψ′(w)

)
> β (w ∈ U),(3.2)

where g is the analytic continuation of f−1 to U. We denote by Kσ(β) the
class of bi-close-to-convex functions of order β.

Let g, φ, ψ have Taylor expansions as in (2.3), (2.4) and (2.5). We note
that Kσ(β2) ( Kσ(β1) when β1 < β2, and Kσ(0) = Kσ, the class of bi-close-
to-convex functions.

We first prove the following proposition.

Proposition 3.1. If f given by (1.1) is in the class Kσ(β), 0 ≤ β < 1,
then f is bi-univalent.

Proof. For β = 0, this follows from the work of Kaplan [Kap] for close-
to-convex functions; and for 0 < β < 1, Kσ(β) is a subclass of Kσ(0).

Theorem 3.1. Let f given by (1.1) be in the class Kσ(β), 0 ≤ β < 1.
Then

|a2| ≤
√
3− 2β,(3.3)

|a3| ≤ 3− 2β(3.4)

and

(3.5) |a3 − λa22| ≤



(1− λ)
(
1 + 4

3(1− β) +
1
3N
)

for λ < 0,
(1− λ)

(
1 + 4

3(1− β)
)
+ 1

3N for 0 ≤ λ < 2/3,
1 + 4

3(1− β)(1− λ) +
1
3N for 2/3 ≤ λ < 1,

1 + 4
3(1− β)(λ− 1) + 1

3N for 1 ≤ λ ≤ 4/3,
(λ− 1)

(
1 + 4

3(1− β)
)
+ 1

3N for 4/3 < λ < 2,

(λ− 1)
(
1 + 4

3(1− β) +
1
3N
)

for λ ≥ 2,

where

(3.6) N ≤ 2(1− β).
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Proof. From (3.1) and (3.2) we get

f ′(z)

φ′(z)
= β + (1− β)p(z), g′(w)

ψ′(w)
= β + (1− β)q(w),

for some p, q ∈ P with series representations (2.10) and (2.11). Hence,

(3.7) f ′(z) = φ′(z)[β + (1− β)p(z)], g′(w) = ψ′(w)[β + (1− β)q(w)].
From the two equations in (3.7), we obtain

2a2 = 2c2 + (1− β)p1,(3.8)
3a3 = 3c3 + 2(1− β)c2p1 + (1− β)p2,(3.9)
−2a2 = −2c2 + (1− β)q1,(3.10)

6a22 − 3a3 = 6c22 − 3c3 − 2(1− β)c2q1 + (1− β)q2.(3.11)

Then (3.8) and (3.11) yield q1 = −p1. Adding (3.9) and (3.11), we obtain

(3.12) 6a22 = 6c22 + 2(1− β)c2(p1 − q1) + (1− β)(p2 + q2).

By the relations q1 = −p1, |ck| ≤ 1 and Lemma 1.1, we have

|a2|2 ≤ 3− 2β.

This gives (3.3).
To obtain (3.4), we apply a similar procedure to relation (3.9).
Now, by (3.9) and (3.12), for all real λ,

a3 − λa22 = c3 +
2
3(1− β)c2p1 +

1
3(1− β)p2

− λ
[
c22 +

1
3(1− β)c2(p1 − q1) +

1
6(1− β)(p2 + q2)

]
.

Hence,

|a3 − λa22| ≤ |c3 − λc22|+ 4
3(1− β)|1− λ|+

1
3(1− β)[|2− λ|+ |λ|].

By Lemma 1.3, we obtain (3.5).

Corollary 3.1. Let f given by (1.1) be in Kσ(β) and 1/2 ≤ β < 1.
Then |a2| ≤

√
2.

Proof. Obvious from (3.3), since 1/2 ≤ β < 1.

Corollary 3.1 verifies Brannan and Clunie’s [BC] conjecture for the sub-
classes Kσ(β), where 1/2 ≤ β < 1.
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