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Weierstrass division theorem in de�nable
C∞ germs in a polynomially bounded o-minimal stru
tureby Abdelhafed Elkhadiri and Hassan Sfouli (Kénitra)
Abstra
t. We give some examples of polynomially bounded o-minimal expansionsof the ordered �eld of real numbers where the Weierstrass division theorem does not holdin the ring of germs, at the origin of R

n, of de�nable C∞ fun
tions.
Introdu
tion. In this paper we 
onsider the problem of extending theWeierstrass division theorem to some quasianalyti
 lo
al rings of germs of

C∞ fun
tions of n real variables, n ≥ 2. C. L. Childress [4℄ proved that,in the ring of germs of C∞ fun
tions in some �xed quasianalyti
 Denjoy�Carleman 
lass, the Weierstrass division theorem does not hold unless the
lass is analyti
. Another way to yield quasianalyti
 C∞ fun
tions is to
onsider the germs of C∞ fun
tions de�nable in a polynomially boundedo-minimal expansion of the ordered �eld of real numbers. The ring of germs ofthese fun
tions shares some good properties with the analyti
 germs ring, forinstan
e, it is Henselian and 
losed under di�erentiations [9℄. It is unknownwhether it is Noetherian.We give an example of a polynomially bounded o-minimal stru
ture, R,where the Weierstrass division theorem does not hold in the ring of germs, atthe origin, of C∞ fun
tions de�nable in R. In this 
onne
tion the followingquestion asked by Lou van den Dries in [6℄ arises. Does the Weierstrass di-vision theorem hold for the ring of germs of real analyti
 fun
tions de�nablein an o-minimal stru
ture (not ne
essarily polynomially bounded), extend-ing the stru
ture of real numbers? We also give a negative answer to thisquestion.2000 Mathemati
s Subje
t Classi�
ation: Primary 03C50, 26E10; Se
ondary 26E05,03C65.Key words and phrases: o-minimal stru
tures, power series, Weierstrass division the-orem.Partially supported by PARS MI 33. [127℄



128 A. Elkhadiri and H. SfouliFinally, we give a 
ondition under whi
h an element in the ring of germs,at the origin, of C∞ fun
tions, de�nable in a polynomially bounded o-minimal stru
ture, has the Weierstrass division property. As an appli
ation,we give examples of 
losed ideals in these rings.1. De�nitions and re
alls. Throughout this paper, R denotes a �xed(but arbitrary) expansion of the stru
ture R = (R, <, 0, 1,+,−, ·) in a �rst-order language extending {<, 0, 1,+,−, ·}. De�nable means �rst-order de�n-able in R with parameters from R. A fun
tion f : X → R, X ⊆ R, is said tobe de�nable if its graph is de�nable. We say that R is polynomially boundedif for every de�nable fun
tion f : R → R there exists N ∈ N su
h that
|f(t)| ≤ tN for all su�
iently large positive t. We say that R is o-minimalif the de�nable subsets of R are just �nite unions of intervals of all kinds,in
luding singletons.(A) The stru
ture R = (R, <, 0, 1,+,−, ·) is polynomially bounded ando-minimal (by Tarski�Seidenberg); the sets de�nable in this stru
ture arepre
isely the semialgebrai
 sets (see [3℄ for a thorough treatment of semial-gebrai
 sets).(B) A polynomially bounded o-minimal stru
ture in whi
h non-semi-algebrai
 sets are de�nable, due to Denef and van den Dries [5℄, is the ordered�eld of real numbers with restri
ted analyti
 fun
tions:

Ran = (R, <, 0, 1, ·,+,−, (f̃)f∈R{X,m},m∈N)where R{X,m} denotes the ring of all power series in X1, . . . , Xn over R that
onverge in a neighborhood of [0, 1]m, and where for ea
h f ∈ R{X,m}, wede�ne f̃ : R
m → R bỹ

f(x) :=

{
f(x), x ∈ [0, 1]m,

0, x ∈ R
m \ [0, 1]m.The sets de�nable in Ran are the �nitely subanalyti
 sets (see [2℄ for generalfa
ts about subanalyti
 sets).(C) The stru
ture R

R
an := (Ran, (x 7→ xr)r∈R), where we set xr = 0 for

x ≤ 0, is a polynomially bounded o-minimal expansion of (R,+, ·) [10℄. The
lass of sets de�nable in this stru
ture properly 
ontains the 
lass of �nitelysubanalyti
 sets. By [10℄, the fun
tion xr : (0,∞) → R is de�nable in Ran ifand only if r is rational.(D) The stru
ture RG is an expansion of Ran by adding fun
tions givenby multisummable real series. Among the basi
 operations of RG are the C∞fun
tions f : [0, 1] → R, whose restri
tions to (0, 1] extend to holomorphi




Weierstrass division theorem 129fun
tions on a se
tor
S(R, φ) := {z ∈ C : 0 < |z| < R, |arg z| < φ}for some R > 1 and φ > π/2, su
h that there exist positive 
onstants A,Bwith |f (n)(z)| ≤ ABn(n!)2 for all z ∈ S(R, φ), and

lim
S(R,φ)∋z→0

f (n)(z) = f (n)(0).An example of su
h a fun
tion is
f(x) =

∞\
0

e−t

1 + xt
dt for 0 ≤ x ≤ 1.(1.1)Its Taylor expansion at 0 is the divergent series ∑∞

n=0(−1)nn!xn. The stru
-ture RG is polynomially bounded and o-minimal (see [7℄).Let U be an open subset of R
n (n ≥ 1), and let f : U → R be given.We say that f is CN , N ∈ N ∪ {∞}, at a ∈ U if f is CN on some openneighborhood of a, and that f is analyti
 at a if f is real analyti
 on someopen neighborhood of a.Given a ∈ R

n we de�ne an equivalen
e relation ∼ on the set of real-valuedfun
tions whose domain 
ontains a neighborhood of a by f ∼ g if there isa neighborhood V of a, V ⊆ dom(f) ∩ dom(g), su
h that f⌈V = g⌈V . Theequivalen
e 
lasses are 
alled germs at a. The equivalen
e 
lasses of de�nablefun
tions that are C∞ at a are 
alled de�nable C∞ germs at a. These germs
an be added and multiplied in the usual way and are easily seen to forma ring, denoted by D∞
a . We also let Dw

a denote the ring of de�nable realanalyti
 germs at a. For a = 0 ∈ R
n, we write D∞

n and Dw
n as appropriate.Clearly, Dw

a ⊆ D∞
a for all a ∈ R

n. By [9, Prop. 2℄, Dw
a and D∞

a are lo
al rings,and the maximal ideals of D∞
n and Dw

n are ea
h generated by the germs at0 of the 
oordinate fun
tions x 7→ xi : R
n → R, i = 1, . . . , n.If R is polynomially bounded and o-minimal, then the fun
tion

T : D∞
n → R[[X1, . . . , Xn]]sending the germ at 0 of a de�nable fun
tion f : R

n → R, C∞ at 0, toits formal Taylor expansion at 0, is an inje
tive ring homomorphism [9℄;thus, if R is polynomially bounded and o-minimal, we have D∞
n ≃ T [D∞

n ].In the following, when R is polynomially bounded and o-minimal, we willnot distinguish notationally between a germ and its image under T , i.e., itsTaylor expansion at the origin.From [10℄, if R is a polynomially bounded o-minimal expansion of Ransu
h that D∞
1 = Dw

1 , then D∞
n = Dw

n for all n ≥ 1. In [9℄, it is shown that
D∞

1 = Dw
1 for R

R
an. For R = RG we 
an see that Dw

1 is stri
tly 
ontainedin D∞
1 .



130 A. Elkhadiri and H. SfouliA lo
al ring R with maximal idealm is 
alled Henselian if given P ∈ R[T ]and a ∈ R with P (a) ∈ m and P ′(a) invertible, there exists b ∈ R with
P (b) = 0 and a ≡ b mod m. It is easy to see that the impli
it fun
tiontheorems (C∞ and analyti
 versions) yield de�nable fun
tions when the dataare de�nable; thus D∞

n and Dw
n are Henselian rings.2. Weierstrass systems. Let K be a �eld of 
hara
teristi
 0 and

K[[X1, . . . , Xn]] the formal power series ring in X = (X1, . . . , Xn) over K.(In this paper we need only the 
ases K = R and K = C.)Definition 2.1 ([6℄). We de�ne a Weierstrass system over K to be afamily (An) of rings su
h that for all n the following 
onditions hold:(w1) K[X1, . . . , Xn] ⊂ An ⊂ K[[X1, . . . , Xn]], and if σ is a permutationof {1, . . . , n} and f(X1, . . . , Xn) ∈ An, then f(Xσ(1), . . . , Xσ(n)) ∈
An. Moreover, for ea
h m > 0, An+m ∩ K[[X1, . . . , Xn]] = An.(w2) If f ∈ An is a unit in K[[X1, . . . , Xn]], then f is a unit in An.(w3) (Weierstrass division) If f ∈ An+1 and f(0, Xn+1) ∈ K[[Xn+1]] isnon-zero of order d, then for every g ∈ An+1 there are Q ∈ An+1and Ri ∈ An, i = 1, . . . , d− 1, su
h that

g = Qf + (Rd−1X
d−1
m+1 + · · · +R0).We dedu
e that, for ea
h n ∈ N, An is a Noetherian lo
al ring withmaximal ideal XAn and 
ompletion K[[X1, . . . , Xn]].Examples 2.2.(1) If R = R, the system (Dw

n )n∈N is a Weierstrass system (K = R)(algebrai
 germs, see [3℄).(2) The system (R〈X1, . . . , Xn〉)n∈N is a Weierstrass system. Here thering R〈X1, . . . , Xn〉 
onsists of all power series in R[[X1, . . . , Xn]]that 
onverge in some neighborhood of the origin.3. Some 
ounterexamples. Re
all that the stru
ture RG is model 
om-plete, polynomially bounded and o-minimal [7℄.We �rst give an example whi
h shows that the Weierstrass division the-orem does not generalize to the germs of C∞ fun
tions de�nable in thestru
ture RG .We suppose R = RG and we put Φ :=
∑∞

n=0(−1)nn!Y 2n. We 
an seethat Φ is the Taylor expansion at 0 of the fun
tion
g(x) :=

∞\
0

e−t

1 + tx2
dt.Note that g(x) = f(x2), where f is the fun
tion given by the equation (1.1)of Se
tion 1.



Weierstrass division theorem 131Let P := Y 2 + X2. If the Weierstrass division holds in the system
(D∞

n )n∈N, then there are R0, R1 ∈ D∞
1 and Q ∈ D∞

2 su
h that
Φ = (X2 + Y 2)Q+R1Y +R0.(3.1)By substitution Y = iX and Y = −iX in the last equation, we �nd that
R0 =

∞∑

n=0

n!X2n, R1 = 0.Sin
e R0 is de�nable in RG and its Taylor series, at the origin, has all it 
o-e�
ients non-negative, by [7, Corollary 8.6℄ this series must 
onverge, whi
his a 
ontradi
tion.As indi
ated in the introdu
tion, this leads us to ask if the Weierstrassdivision theorem holds for the ring of germs of real analyti
 fun
tions de�n-able in an o-minimal stru
ture, a question asked by Lou van den Dries in [6℄.We give here a negative answer.Re
all that the stru
ture Re = (R, exp|[0,1]) is model 
omplete, polyno-mially bounded and o-minimal [12℄.Example 3.1. If R = Re, then the Weierstrass division theorem doesnot hold in the system (Dw
n )n∈N; in parti
ular, (Dw

n )n∈N is not a Weierstrasssystem.Indeed, let P := X2 + Y 2 and put exp(Y ) :=
∑∞

n=0 Y
n/n! ∈ R[[X,Y ]].If the Weierstrass division theorem holds in the system (Dw
n )n∈N, then thereare R0, R1 ∈ Dw

1 and Q ∈ Dw
2 su
h that

exp(Y ) = PQ+R1Y +R0.(3.2)By substitution Y = iX and Y = −iX in the last equation, we have
R0 + iXR1 = exp(iX), R0 − iXR1 = exp(−iX),hen
e

R0 = cos(X), R1 = sin(X)/X.But we know, by a result of R. Bian
oni [1℄, that the restri
tion of the sinefun
tion to any interval is not de�nable in Re, hen
e the 
ontradi
tion.Remark 3.2. By using the result of R. Bian
oni, we 
an also see that if
R = (R, sin⌈[0, π]), then the Weierstrass division theorem does not hold inthe system of germs, at the origin, of C∞ fun
tions de�nable in R.4. Weierstrass division property. We �x a polynomially boundedo-minimal stru
ture R extending R = (R, <, 0, 1,+,−, ·). Let U be an openset in R

n. We denote by En(U) the ring of C∞ fun
tions on U ⊂ R
n and by

D∞
n (U) the subring of En(U) of de�nable fun
tions on U . We re
all that D∞

nis the ring of germs of C∞ fun
tions, in a neighborhood of the origin in R
n,de�nable in R.



132 A. Elkhadiri and H. SfouliLet f ∈ D∞
n . We say that f is regular of order p with respe
t to xn if theTaylor series of f at the origin, Tf , is regular of order p with respe
t to xn.Definition 4.1. Let f ∈ D∞

n be regular of order p with respe
t to xn.Then f is said to have theWeierstrass division property if given g ∈ D∞
n thereexist unique elements q ∈ D∞

n and rj(x1, . . . , xn−1) ∈ D∞
n−1, 0 ≤ j ≤ p − 1,su
h that

g = fq +

p−1∑

j=0

rjx
j
n.We remark that the uniqueness assumption is super�uous, sin
e the rings

(D∞
n )n are quasianalyti
.As in the analyti
 
ase, any f ∈ D∞

n having the Weierstrass divisionproperty 
an be fa
torized uniquely as QP , where Q ∈ D∞
n is unit and

P ∈ D∞
n−1[xn] is a moni
 polynomial of degree p.Let U be a subset of R

n and let a1, . . . , ap be real fun
tions on U . We
onsider the polynomial P (x, t) = tp + a1(x)t
p−1 + · · ·+ ap(x) as a fun
tionon U × C.Definition 4.2. We say that the polynomial P (x, t) is hyperboli
 if, forea
h x ∈ U , all the roots of t 7→ P (x, t) are real.We suppose that U is a de�nable bounded 
onne
ted open subset of R

nand the fun
tions a1, . . . , ap are C∞ on the 
losure of U . Then there exists
η > 0 su
h that, for ea
h x ∈ U , all the roots of t 7→ P (x, t) are in I = ]−η, η[.Theorem 4.3. Suppose that the polynomial P (x, t) is hyperboli
 and
a1, . . . , ap are in D∞

n (U). Then for ea
h g ∈ En+1(U × R) whose restri
tionto U × I is in D∞
n+1(U × I), there exist Q ∈ D∞

n+1(U × I) and rj ∈ D∞
n (U),

0 ≤ j ≤ p− 1, su
h that
g(x, t) = P (x, t)Q(x, t) +

p−1∑

j=0

rj(x)t
j, ∀(x, t) ∈ U × I.Furthermore, Q and r1, . . . , rp−1 are uniquely determined.Proof. Let g ∈ En+1(U × R). By the di�erentiable preparation theorem[11, IX.2.7℄, there exist Q ∈ En+1(U × R) and rj ∈ En(U), j = 1, . . . , p− 1,su
h that

g(x, t) = Q(x, t)P (x, t) +

p−1∑

j=0

rj(x)t
j, ∀(x, t) ∈ U × R,(4.1)Let us �rst prove that rj ∈ D∞

n (U) for ea
h 0 ≤ j ≤ p − 1. For ea
h
l = 1, . . . , p, we put
Bl = {x ∈ U : ∃t1, . . . , tl, ti 6= tj if i 6= j, and P (x, ti) = 0, ∀i = 1, . . . , l}.



Weierstrass division theorem 133With Bp+1 = ∅, we have the sequen
e of in
lusions
∅ = Bp+1 ⊂ Bp ⊂ Bp−1 ⊂ · · · ⊂ B1 = U.We put Aq = Bq −Bq+1, 1 ≤ q ≤ p; then U =

⋃p
q=1Aq. We remark that Aqis de�nable for ea
h q = 1, . . . , p.We will show that the restri
tion of rj , 0 ≤ j ≤ p − 1, to ea
h Aq isde�nable. Suppose �rst that q = p, hen
e Ap = Bp. For ea
h x ∈ Ap, thefun
tion t 7→ P (x, t) has p distin
t roots. By the proof of Lemma 2 in [8,�20℄, there exist αi : Ap → R 
ontinuous, 1 ≤ i ≤ p, su
h that, for ea
h

x ∈ Ap, α1(x) < · · · < αp(x) and α1(x), . . . , αp(x) are the roots of P (x, t).We remark that the fun
tions αi, 1 ≤ i ≤ p, are de�nable and αi(Ap) ⊂ Ifor all i = 1, . . . , p. For ea
h x ∈ Ap, the fun
tions r1(x), . . . , rp−1(x) aredetermined, from (4.1), by the relation



1 α1(x) . . . α1(x)
p−1

1 α2(x) . . . α2(x)
p−1... ... ... ...

1 αp(x) . . . αp(x)
p−1







r0(x)...
rp−1(x)


 =




g(x, α1(x))...
g(x, αp(x))




Sin
e the determinant, say ∆(x), of the matrix is not null, ∆(x) =∏
i<j(αi(x) − αj(x))

2, and the fun
tions x 7→ g(x, αi(x)), 1 ≤ i ≤ p, arede�nable on Ap, we see that r0|Ap
, . . . , rp−1|Ap

are de�nable.Consider now Ap−1 = Bp−1 − Bp. As for Ap, for ea
h x ∈ Ap−1, thefun
tion t 7→ P (x, t) has p− 1 distin
t roots, one of them double. Again bythe proof of Lemma 2 in [8, �20℄, there exist αi : Ap−1 → R 
ontinuous andde�nable, 1 ≤ i ≤ p−1, su
h that, for ea
h x ∈ Ap−1, α1(x) < · · · < αp−1(x)and α1(x), . . . , αp−1(x) are the roots of P (x, t). For i = 1, . . . , p− 1, we put
Λi =

{
x ∈ Ap−1 :

∂P (x, αi(x))

∂t
= 0

}
;

then Ap−1 =
⋃p−1

i=1 Λi.We want to show that, for ea
h j = 1, . . . , p− 1, the restri
tion of rj toea
h Λi, 1 ≤ i ≤ p − 1, is de�nable. We prove it for Λ1, for the others theproof is the same.For ea
h x ∈ Λ1, the roots of P (x, t) are α1(x) < · · · < αp−1(x) and
α1(x) is a double root. We have the following identity, obtained from (4.1):

∂g(x, t)

∂t
= Q(x, t)

∂P (x, t)

∂t
+
∂Q(x, t)

∂t
P (x, t) +

p−1∑

j=1

rj(x)t
j−1,(4.2)
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e the following relation:



1 α1(x) α1(x)
2 . . . α1(x)

p−1

0 1 2α1(x) . . . (p− 1)α1(x)
p−2

1 α3(x) α3(x)
2 . . . α3(x)

p−1... ... ... ... ...
1 αp(x) αp(x)

2 . . . αp(x)
p−1







r0(x)...
rp−1(x)




=




g(x, α1(x))
∂g
∂t

(x, α1(x))...
g(x, αp(x))



,

where the se
ond line in the matrix is obtained from (4.2) and the other linesfrom (4.1). Now the matrix
M :=




1 α1(x) α1(x)
2 . . . α1(x)

p−1

0 1 2α1(x) . . . (p− 1)α1(x)
p−2

1 α3(x) α3(x)
2 . . . α3(x)

p−1... ... ... ... ...
1 αp(x) αp(x)

2 . . . αp(x)
p−1




is again non-singular for ea
h x ∈ Λ1. We 
an see this by taking the homo-geneous system with this matrix, i.e.,
M




X1...
Xp


 = 0.(4.3)

Indeed, if λ = (λ1, . . . , λp) ∈ R
p is a solution of (4.3), then the polynomial

λ1 + λ2t + · · · + λpt
p−1 has p roots, hen
e λ1 = . . . = λp = 0. We dedu
ethat the restri
tion of ea
h rj , 1 ≤ j ≤ p− 1, to Λ1 is de�nable.Suppose now that p > 1 and q < p − 1, and 
onsider Aq = Bq − Bq+1.There exist de�nable 
ontinuous fun
tions αi : Aq → R, 1 ≤ i ≤ q, su
hthat, for ea
h x ∈ Aq, α1(x) < · · · < αq(x) and α1(x), . . . , αq(x) are theroots of P (x, t). For ea
h �nite sequen
e of positive integers n1, . . . , nq with

n1 + · · · + nq = p, let
Λn1,...,nq

= {x ∈ Aq : αj(x) is a root of order nj , 1 ≤ j ≤ q}.Then Aq =
⋃
Λn1,...,nq

, where the union is over all n1, . . . , nq su
h that
n1 + · · ·+nq = p. We have to show that the restri
tion of ea
h rj to Λn1,...,nqis de�nable. By taking the partial derivatives of (4.1) with respe
t to t of



Weierstrass division theorem 135orders n1, . . . , nq, we get p equations and a non-singular matrix as above. Wededu
e that the restri
tions of r0, . . . , rp−1 to Λn1,...,nq
are de�nable. Hen
ethe restri
tion of ea
h rj , 1 ≤ j ≤ p− 1, to Aq is de�nable.By (4.1), the fun
tion (x, t) 7→ Q(x, t)P (x, t) is in D∞
n+1(U × I), and theassertion about the restri
tion of Q to U × I follows from Lemma 4.4.To prove uniqueness in (4.1), suppose that

g(x, t) = P (x, t)Q(x, t) +

p−1∑

j=0

rj(x)t
j = P (x, t)Q′(x, t) +

p−1∑

j=0

r′j(x)t
j.Then

(Q−Q′)(x, t)P (x, t) =

p−1∑

j=0

(rj − r′j)(x)t
j.

This implies that, for ea
h x ∈ U , the polynomial ∑p−1
j=0(rj − r′j)(x)t

jhas p roots, hen
e rj(x) = r′j(x) for all j = 1, . . . , p − 1. We then have
(Q − Q′)(x, t)P (x, t) = 0 for all (x, t) ∈ U × I. Sin
e D∞

n+1(U × I) is adomain, it follows that Q(x, t) = Q′(x, t) for all (x, t) ∈ U × I.Lemma 4.4. Let f, g ∈ D∞
n (U) − {0} and suppose that g = hf , where

h ∈ En(U). Then h ∈ D∞
n (U).Proof. We have to prove that the graph of h, Γh, is de�nable. Let Y =

{x ∈ U : f(x) = 0}. Sin
e U is 
onne
ted, the interior of Y is empty,hen
e U − Y ∩ U = U . The set Γh ∩ (U − Y ) × R is de�nable. Hen
eso is Γh ∩ (U − Y ) × R ∩ U × R. Sin
e h is 
ontinuous, we have Γh =

Γh ∩ (U − Y ) × R ∩ U × R, hen
e the result.Definition 4.5. Let P ∈ D∞
n [t]. We say that P is a hyperboli
 polyno-mial if P is moni
 and there exists a neighborhood U of 0 ∈ R

n su
h thatall the 
oe�
ients of P are C∞, de�nable on U , and P (x, t) is hyperboli
 on
U × C.As a 
onsequen
e of the theorem, we haveCorollary 4.6. Let P ∈ D∞

n [t] be a hyperboli
 polynomial. Suppose that
P is regular of order p with respe
t t. Then P has the Weierstrass divisionproperty.Proof. Let g ∈ D∞

n+1. There exists a de�nable 
onne
ted open boundedneighborhood U of 0 in R
n and a nonempty interval I = ]−η, η[ ⊂ R su
hthat:

• all the 
oe�
ients of P are in D∞
n (U) and they are C∞ on the 
losureof U ;

• for ea
h x ∈ U , all the roots of t 7→ P (x, t) are in I and g ∈ D∞
n+1(U×I)

∩ En+1(U × I).



136 A. Elkhadiri and H. SfouliBy Whitney's extension theorem, there exists g̃ ∈ En+1(R
n × R) su
h that

g̃|U×I = g. We put G̃ = g̃|U×R, and apply Theorem 4.3 to G̃ and P .5. Closed ideals. Let U ⊂ Rn be an open set and E(U) the ring of C∞fun
tions on U . For ea
h non-negative integer k and ea
h 
ompa
t subset
K ⊂ U , we de�ne the seminorm

pk,K(ϕ) = sup{|Dαϕ(x)| : |α| ≤ k, x ∈ K},where ϕ ∈ E(U), α = (α1, . . . , αn) ∈ N
n, |α| = α1 + · · · + αn and Dα =

∂|α|/∂xα1

1 . . . ∂xα1

n . The family of all seminorms pk,K indu
es a lo
ally 
onvexHausdor� topology on E(U).If ϕ ∈ E(U) and a ∈ U , let Taϕ denote the Taylor series of ϕ at a. Let
J ⊂ E(U) be an ideal. By Malgrange's theorem [11, V.1.5℄, the 
losure of J ,
J , is the set of all ϕ ∈ E(U) su
h that Taϕ ∈ TaJ for ea
h a ∈ U , where

TaJ = {Taψ : ψ ∈ J}.We �x a polynomially bounded o-minimal stru
ture R extending R =
(R, <, 0, 1,+,−, ·). Let U be as in Theorem 4.3 and P ∈ D∞

n (U)[t] be ahyperboli
 polynomial of degree p. We also suppose that P satis�es thehypothesis of Theorem 4.3. We have:Proposition 5.1. Let P be as above. Then
PD∞

n+1(U × R) ∩ D∞
n+1(U × R) = PD∞

n+1(U × R).Proof. Let g ∈ D∞
n+1(U × R). Sin
e the polynomial P is hyperboli
, wehave, by Theorem 4.3,
g(x, t) = q(x, t)P (x, t) +

p−1∑

j=0

rj(x)t
j,(5.1)where q ∈ D∞

n+1(U × R), and rj ∈ D∞
n (U) for all j = 0, . . . , p − 1. If g ∈

PD∞
n+1(U × R), then R :=

∑p−1
j=0 rj(x)t

j ∈ PD∞
n+1(U × R). Hen
e for ea
h

x ∈ U , the polynomial ∑p−1
j=0 rj(x)t

j has p roots, so we have rj = 0 for all
j = 0, . . . , p− 1, whi
h proves the proposition.A
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