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Weierstrass division theorem in definable
C> germs in a polynomially bounded o-minimal structure

by ABDELHAFED ELKHADIRI and HASSAN SFOULI (Kénitra)

Abstract. We give some examples of polynomially bounded o-minimal expansions
of the ordered field of real numbers where the Weierstrass division theorem does not hold
in the ring of germs, at the origin of R", of definable C*° functions.

Introduction. In this paper we consider the problem of extending the
Weierstrass division theorem to some quasianalytic local rings of germs of
C* functions of n real variables, n > 2. C. L. Childress [4] proved that,
in the ring of germs of C*° functions in some fixed quasianalytic Denjoy—
Carleman class, the Weierstrass division theorem does not hold unless the
class is analytic. Another way to yield quasianalytic C'°° functions is to
consider the germs of C°° functions definable in a polynomially bounded
o-minimal expansion of the ordered field of real numbers. The ring of germs of
these functions shares some good properties with the analytic germs ring, for
instance, it is Henselian and closed under differentiations [9]. It is unknown
whether it is Noetherian.

We give an example of a polynomially bounded o-minimal structure, R,
where the Weierstrass division theorem does not hold in the ring of germs, at
the origin, of C'*° functions definable in R. In this connection the following
question asked by Lou van den Dries in [6] arises. Does the Weierstrass di-
vision theorem hold for the ring of germs of real analytic functions definable
in an o-minimal structure (not necessarily polynomially bounded), extend-
ing the structure of real numbers? We also give a negative answer to this
question.
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Finally, we give a condition under which an element in the ring of germs,
at the origin, of C* functions, definable in a polynomially bounded o-
minimal structure, has the Weierstrass division property. As an application,
we give examples of closed ideals in these rings.

1. Definitions and recalls. Throughout this paper, R denotes a fixed
(but arbitrary) expansion of the structure R = (R, <,0,1,4, —, ) in a first-
order language extending {<,0,1,+, —, -}. Definable means first-order defin-
able in R with parameters from R. A function f: X — R, X C R, is said to
be definable if its graph is definable. We say that R is polynomially bounded
if for every definable function f : R — R there exists N € N such that
|f(t)| < tN for all sufficiently large positive ¢. We say that R is o-minimal
if the definable subsets of R are just finite unions of intervals of all kinds,
including singletons.

(A) The structure R = (R, <,0,1,+, —,-) is polynomially bounded and
o-minimal (by Tarski-Seidenberg); the sets definable in this structure are
precisely the semialgebraic sets (see [3] for a thorough treatment of semial-
gebraic sets).

(B) A polynomially bounded o-minimal structure in which non-semi-
algebraic sets are definable, due to Denef and van den Dries [5], is the ordered
field of real numbers with restricted analytic functions:

Ran = (R7 <,0,1,-,+,—, (f)feR{X,m},meN)
where R{X, m} denotes the ring of all power series in Xy, ..., X,, over R that
converge in a neighborhood of [0, 1], and where for each f € R{X,m}, we
define f : R™ — R by

— [ r@. Telm
@) = { 0, ZFeRM\[0,1]™.

The sets definable in R, are the finitely subanalytic sets (see [2] for general
facts about subanalytic sets).

(C) The structure RE := (Ruy, (x +— z").cr), where we set 2" = 0 for
x <0, is a polynomially bounded o-minimal expansion of (R,+,-) [10]. The
class of sets definable in this structure properly contains the class of finitely
subanalytic sets. By [10], the function z" : (0,00) — R is definable in R, if
and only if r is rational.

(D) The structure Rg is an expansion of Ry, by adding functions given
by multisummable real series. Among the basic operations of Rg are the C'*°
functions f : [0,1] — R, whose restrictions to (0, 1] extend to holomorphic
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functions on a sector
S(R,¢):={z€C:0<|z| <R, |arg z| < ¢}

for some R > 1 and ¢ > 7/2, such that there exist positive constants A, B
with | £(")(2)| < AB™(n!)? for all z € S(R, ¢), and

I () () — £ (Q).
S(Ry(;gzﬁof (z) = f"(0)

An example of such a function is

oo ¢
(1.1) f(z)zslixtdt for0 <z <1
0

Its Taylor expansion at 0 is the divergent series » - (—1)"nlz™. The struc-
ture Rg is polynomially bounded and o-minimal (see [7]).

Let U be an open subset of R™ (n > 1), and let f : U — R be given.
We say that f is CN, N € NU{oc}, at a € U if f is C"V on some open
neighborhood of a, and that f is analytic at a if f is real analytic on some
open neighborhood of a.

Given a € R" we define an equivalence relation ~ on the set of real-valued
functions whose domain contains a neighborhood of a by f ~ g if there is
a neighborhood V of a, V' C dom(f) Ndom(g), such that f[V = g[V. The
equivalence classes are called germs at a. The equivalence classes of definable
functions that are C*° at a are called definable C*° germs at a. These germs
can be added and multiplied in the usual way and are easily seen to form
a ring, denoted by D;°. We also let DY denote the ring of definable real
analytic germs at a. For a = 0 € R", we write D;° and D}’ as appropriate.
Clearly, DY C D for all @ € R™. By [9, Prop. 2|, D¥ and DS° are local rings,
and the maximal ideals of D;° and DY are each generated by the germs at
0 of the coordinate functions x — z; : R" - R, i =1,...,n.

If R is polynomially bounded and o-minimal, then the function

T:D° — R[[Xy,...,Xn]]

sending the germ at 0 of a definable function f : R" — R, C"° at 0, to
its formal Taylor expansion at 0, is an injective ring homomorphism [9];
thus, if R is polynomially bounded and o-minimal, we have D° ~ T [D:°].
In the following, when R is polynomially bounded and o-minimal, we will
not distinguish notationally between a germ and its image under T, i.e., its
Taylor expansion at the origin.

From [10], if R is a polynomially bounded o-minimal expansion of Ry,
such that D = DY, then Dy° = DY for all n > 1. In [9], it is shown that
D = DY for RE. For R = Rg we can see that DY is strictly contained
in DY°.



130 A. Elkhadiri and H. Sfouli

A local ring R with maximal ideal m is called Henselian if given P € R[T]
and a € R with P(a) € m and P’(a) invertible, there exists b € R with
P(b) = 0 and a = bmod m. It is easy to see that the implicit function
theorems (C* and analytic versions) yield definable functions when the data
are definable; thus D;° and D}’ are Henselian rings.

2. Weierstrass systems. Let K be a field of characteristic 0 and
K[[X1,...,X,]] the formal power series ring in X = (Xy,...,X,) over K.
(In this paper we need only the cases K =R and K = C.)

DEFINITION 2.1 ([6]). We define a Weierstrass system over K to be a
family (Aj,) of rings such that for all n the following conditions hold:

(w1) K[X1,...,X,] € A, C K[[X1,...,X,]], and if o is a permutation
of {1, e, n} and f(Xi,...,X,) € A,, then f(XU(l), e ,Xg(n)) €
A,,. Moreover, for each m > 0, A, NK[[X1,..., X,]] = A,.

(wo) If f € A, is a unit in K[[X7,...,X,]], then f is a unit in A,.

(w3) (Weierstrass division) If f € A,41 and f(0, X41) € K[[Xp41]] is
non-zero of order d, then for every g € A, 11 there are Q € A, 11
and R; € A,,1=1,...,d— 1, such that

9=Qf + (Rg1 X% + -+ Ro).

We deduce that, for each n € N, A, is a Noetherian local ring with
maximal ideal X A,, and completion K[[X1,..., X,]].

EXAMPLES 2.2.

(1) If R = R, the system (D¥),en is a Weierstrass system (K = R)
(algebraic germs, see [3]).

(2) The system (R(X7,...,Xy))nen is a Weierstrass system. Here the
ring R(X7y,...,X,,) consists of all power series in R[[X7,..., X,]]
that converge in some neighborhood of the origin.

3. Some counterexamples. Recall that the structure Rg is model com-
plete, polynomially bounded and o-minimal [7].

We first give an example which shows that the Weierstrass division the-
orem does not generalize to the germs of C'° functions definable in the
structure Rg.

We suppose R = Rg and we put @ := > o ((—1)"n!Y?". We can see
that @ is the Taylor expansion at 0 of the function

o e_t
0

Note that g(x) = f(2?), where f is the function given by the equation (1.1)
of Section 1.
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Let P := Y2 + X2 If the Weierstrass division holds in the system
(D) nen, then there are Ry, R1 € DI° and @ € D° such that

n
(3.1) b= (X?*+Y*Q+ RY + Ry.
By substitution ¥ =¢X and Y = —:¢X in the last equation, we find that

o0
Ry=) nlX*", Ry =0.
n=0

Since Ry is definable in Rg and its Taylor series, at the origin, has all it co-
efficients non-negative, by [7, Corollary 8.6] this series must converge, which
is a contradiction.

As indicated in the introduction, this leads us to ask if the Weierstrass
division theorem holds for the ring of germs of real analytic functions defin-
able in an o-minimal structure, a question asked by Lou van den Dries in [6].
We give here a negative answer.

Recall that the structure R, = (R, eXP|[0,1]) is model complete, polyno-
mially bounded and o-minimal [12].

ExXAMPLE 3.1. If R = R, then the Weierstrass division theorem does
not hold in the system (D} ),en; in particular, (DY),cn is not a Weierstrass
system.

Indeed, let P := X2+ Y? and put exp(Y) := Yo", Y"/n! € R[[X,Y]].
If the Weierstrass division theorem holds in the system (DY),en, then there
are Ry, Ry € DY and Q € Dy such that

(3.2) exp(Y) = PQ + R1Y + Rp.
By substitution ¥ =¢X and Y = —:¢X in the last equation, we have
Ry+iXR = exp(iX), Ry—iXR = exp(—iX),
hence
Ry =cos(X), R;=sin(X)/X.
But we know, by a result of R. Bianconi [1], that the restriction of the sine
function to any interval is not definable in R, hence the contradiction.

REMARK 3.2. By using the result of R. Bianconi, we can also see that if
R = (R,sin[[0, x]), then the Weierstrass division theorem does not hold in
the system of germs, at the origin, of C*° functions definable in R.

4. Weierstrass division property. We fix a polynomially bounded
o-minimal structure R extending R = (R, <,0,1, +, —, -). Let U be an open
set in R™. We denote by &,(U) the ring of C* functions on U C R™ and by
Dee(U) the subring of £, (U) of definable functions on U. We recall that Dy°
is the ring of germs of C'°° functions, in a neighborhood of the origin in R",
definable in R.
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Let f € D;°. We say that f is reqular of order p with respect to z,, if the
Taylor series of f at the origin, T'f, is regular of order p with respect to .

DEFINITION 4.1. Let f € D:° be regular of order p with respect to x,.
Then f is said to have the Weierstrass division property if given g € D;° there
[oe]

exist unique elements ¢ € Dy° and 7j(x1,...,2n—1) € D31, 0<j <p—1,
such that

p—1
9="Ffa+> v}
5=0

We remark that the uniqueness assumption is superfluous, since the rings
(D), are quasianalytic.

As in the analytic case, any f € D;° having the Weierstrass division
property can be factorized uniquely as QP, where Q € Do° is unit and
P € Dy° | [xy] is a monic polynomial of degree p.

Let U be a subset of R" and let aq,...,a, be real functions on U. We
consider the polynomial P(z,t) = t? + aj(x)tP"! + - -- + a,(z) as a function
on U x C.

DEFINITION 4.2. We say that the polynomial P(z,t) is hyperbolic if, for
each x € U, all the roots of t — P(x,t) are real.

We suppose that U is a definable bounded connected open subset of R"
and the functions ay,...,a, are C° on the closure of U. Then there exists
n > 0 such that, for each « € U, all the roots of t — P(z,t) arein I =]—n,n|.

THEOREM 4.3. Suppose that the polynomial P(x,t) is hyperbolic and
ai,...,ap are in DY°(U). Then for each g € E,11(U x R) whose restriction
to U x I is in DyS (U x I), there exist Q € Dy5 (U x I) and r; € D2 (U),
0<j<p-—1, such that

p—1
g(x,t) = P(a,)Q(x,t) + > _rj(@)t/, V(z,t) €U xI.
7=0

Furthermore, @ and ry,...,rp—1 are uniquely determined.

Proof. Let g € £,41(U x R). By the differentiable preparation theorem
[11, IX.2.7|, there exist Q@ € £,11(U xR) and r; € £,(U), j=1,...,p— 1,
such that

p—1
(41)  g(a,t) = Q(z, t)P(x,t) + Y _rj(x)t!, V(x,t) €U xR,

7=0
Let us first prove that r; € Dy°(U) for each 0 < j < p — 1. For each
[=1,...,p, we put

BZZ{IL’EU:Ehfl,...,tl, ti#tj ifi;déj, andP(m,ti):0,Vi:1,...,l}.
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With By = 0, we have the sequence of inclusions
@ZBIH_lCBpCBp_lC'”CBl:U.

We put A; = By — Bg41, 1 < ¢ <p;then U = UZ:I Agy. We remark that A,
is definable for each ¢ = 1,...,p.

We will show that the restriction of r;, 0 < j < p — 1, to each A, is
definable. Suppose first that ¢ = p, hence A, = B,,. For each z € A, the
function ¢ — P(z,t) has p distinct roots. By the proof of Lemma 2 in [8,
§20], there exist o : A, — R continuous, 1 < ¢ < p, such that, for each
x €Ay, aq(r) < - < ap(x) and aq(x),...,ap(z) are the roots of P(z,t).
We remark that the functions «;,1 < ¢ < p, are definable and «;(A,) C I
for all # = 1,...,p. For each x € A, the functions r{(z),...,rp—1(z) are
determined, from (4.1), by the relation

ar(x) ... ap(z)Pt
1 CM:E:L‘; .. a;§$;Z—1 To() g(z, a1(x))
1 oap(z) ... ap(z)P! rp-1(2) g(x; ()

Since the determinant, say A(z), of the matrix is not null, A(z) =
[Tic;(ci(z) — a;(z))?, and the functions z — g(z,;(z)), 1 < i < p, are
definable on A, we see that ro|4,,...,7,_1]4, are definable.

Consider now A, 1 = B,_1 — By. As for A,, for each x € A,_1, the
function t — P(z,t) has p — 1 distinct roots, one of them double. Again by
the proof of Lemma 2 in [8, §20], there exist a; : A,—1 — R continuous and
definable, 1 <1i < p—1, such that, foreach z € 4,1, a1(x) < -+ < ap_1(x)
and oy (z),...,0p—1(z) are the roots of P(x,t). Fori=1,...,p— 1, we put

Ai = {IE S Ap—l : 7@P(ZL‘,@?¢(ZL‘)) = 0},

then Ap—l = Uf:_ll Az
We want to show that, for each j = 1,...,p — 1, the restriction of r; to

each A;, 1 <14 < p —1, is definable. We prove it for Ay, for the others the
proof is the same.

For each z € Ay, the roots of P(z,t) are ai(z) < -+ < ap—1(x) and
a1 (z) is a double root. We have the following identity, obtained from (4.1):

p—1
(12) 28D gy PP 0D by 3y,

=1
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hence the following relation:

1 ai(z) aq(x)® ... ay(z)P1
0 1 201(x) ... (p—1)ay(z)P? ro(x)
1 az(z) as(x)? as(z)P~1 :
Lo : rp-1(2)
1 oap(z) apa)? ap(z)P!
g(x, a1 (x))

G (x, a1 ()

9(z, ap())
where the second line in the matrix is obtained from (4.2) and the other lines
from (4.1). Now the matrix

1 ai(z) aq(x)?® ... oy (x)P~ 1

0 1 2m() . (- Do)
M:=| 1 az(z) az(z)® ... ag(z)P~!

1 oap(z) ap(x)?® ... ap(x)Pt

is again non-singular for each x € A;. We can see this by taking the homo-
geneous system with this matrix, i.e.,

X1
(4.3) M : =0.

Xp
Indeed, if A = (A1,...,p) € RP is a solution of (4.3), then the polynomial
A+ Aot + -0+ )\ptp_l has p roots, hence \; = ... = X\, = 0. We deduce

that the restriction of each r;, 1 < j <p—1, to A; is definable.

Suppose now that p > 1 and ¢ < p — 1, and consider A; = B; — By41.
There exist definable continuous functions o; : A, — R, 1 < i < g, such
that, for each x € Ay, aq(z) < -+ < () and «aq(x),...,aq(x) are the
roots of P(z,t). For each finite sequence of positive integers ni,...,n, with
ny+---+ng=p,let

Apyng ={x € Ay : aj(x) is a root of order nj, 1 < j < ¢}.

Then A; = JAn,,..,n,, Where the union is over all ny,...,n, such that
ni+---+ng = p. We have to show that the restriction of each r; to Anh,_,nq
is definable. By taking the partial derivatives of (4.1) with respect to ¢ of
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orders n1,...,nq, we get p equations and a non-singular matrix as above. We
deduce that the restrictions of rq,...,r,—1 to Ay, ., are definable. Hence
the restriction of each r;, 1 < j <p—1, to A, is definable.

By (4.1), the function (z,t) — Q(z,t)P(x,t) is in Dy (U x I), and the
assertion about the restriction of @ to U x I follows from Lemma 4.4.

To prove uniqueness in (4.1), suppose that

p—1 p—1
gla,t) = P(x,t)Q(z,t) + Y _rj(@)t! = P(z,6)Q'(x,t) + Y _r)(a)t.
Jj=0 =0
Then
p—1 ‘
(Q— Q)& )Pz, t) =Y (rj —r))(x)t/.
7=0

This implies that, for each z € U, the polynomial Z?;l(rj - r;-)(x)tj
has p roots, hence r;j(x) = ri(x) for all j = 1,...,p — 1. We then have
(Q — Q')(x,t)P(x,t) = 0 for all (z,t) € U x I. Since DS (U x I) is a
domain, it follows that Q(z,t) = Q'(x,t) for all (z,t) € U x I.

LEMMA 4.4. Let f,g € D°(U) — {0} and suppose that g = hf, where
he &, (U). Then h € D(U).

Proof. We have to prove that the graph of h, I}, is definable. Let Y =
{z € U : f(x) = 0}. Since U is connected, the interior of Y is empty,
hence U —-Y NU = U. The set I}, N (U —Y) x R is definable. Hence
sois IhN(U—-Y)xRNU x R. Since h is continuous, we have I}, =
IN(U—-Y)xRNU x R, hence the result.

DEFINITION 4.5. Let P € D:°[t]. We say that P is a hyperbolic polyno-
mial if P is monic and there exists a neighborhood U of 0 € R" such that

all the coefficients of P are C'*°, definable on U, and P(z,t) is hyperbolic on
U x C.

As a consequence of the theorem, we have

COROLLARY 4.6. Let P € D°[t] be a hyperbolic polynomial. Suppose that
P is reqular of order p with respect t. Then P has the Weierstrass division

property.
Proof. Let g € D ;. There exists a definable connected open bounded

neighborhood U of 0 in R™ and a nonempty interval I = ]—n,n[ C R such
that:
o all the coefficients of P are in D°(U) and they are C* on the closure
of U;

o for each z € U, all the roots of t — P(z,t) arein I and g € Dy (U x 1)
N gn+1(U X I)
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By Whitney’s extension theorem, there exists g € &£,+1(R™ x R) such that
giuxr = g- We put G = gy «g, and apply Theorem 4.3 to GG and P.

5. Closed ideals. Let U C R™ be an open set and £(U) the ring of C*°
functions on U. For each non-negative integer k and each compact subset
K C U, we define the seminorm

Prk (¢) = sup{|D%(z)| : [o] <k, z € K},
where ¢ € E(U), a = (a1,...,a,) € N", |a| = a1 + -+ + o and D =
8'0“/8:6?1 ... 0zt The family of all seminorms pj, x induces a locally convex
Hausdorff topology on E(U).
If o € E(U) and a € U, let Ty denote the Taylor series of ¢ at a. Let
J C £(U) be an ideal. By Malgrange’s theorem [11, V.1.5], the closure of J,
J, is the set of all ¢ € £(U) such that T, € T,J for each a € U, where

T,J = {Toyp: v € J}.

We fix a polynomially bounded o-minimal structure R extending R =
(R,<,0,1,4,—,-). Let U be as in Theorem 4.3 and P € D°(U)[t] be a
hyperbolic polynomial of degree p. We also suppose that P satisfies the
hypothesis of Theorem 4.3. We have:

PROPOSITION 5.1. Let P be as above. Then

PDZ (U xR)NDE, (U x R) = PDX, (U x R).

Proof. Let g € DyS (U x R). Since the polynomial P is hyperbolic, we
have, by Theorem 4.3,

(5.1) g(z,t) = q(z, t)P(z,t) + er(x)tj ,

where ¢ € D;5 (U x R), and 7“] e DXU) forall j =0,...,p—1.1If g €
PDye (U x R), then R := Z] 07’]( z)t! € PDSS (U x R). Hence for each
x € U, the polynomial ijo r;(x)t) has p roots, so we have r; = 0 for all
7 =0,...,p—1, which proves the proposition.
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