Collapse of warped submersions

by Szymon M. Walczak (Łódź)

Abstract. We generalize the concept of warped manifold to Riemannian submersions $\pi:M\to B$ between two compact Riemannian manifolds (M,g_M) and (B,g_B) in the following way. If $f:B\to (0,\infty)$ is a smooth function on B which is extended to a function $\widetilde{f}=f\circ\pi$ constant along the fibres of π then we define a new metric g_f on M by

$$g_f|_{\mathcal{H}\times\mathcal{H}} \equiv g_M|_{\mathcal{H}\times\mathcal{H}}, \quad g_f|_{\mathcal{V}\times T\widetilde{M}} \equiv \widetilde{f}^2 g_M|_{\mathcal{V}\times T\widetilde{M}},$$

where \mathcal{H} and \mathcal{V} denote the bundles of horizontal and vertical vectors. The manifold (M, g_f) obtained that way is called a warped submersion. The function f is called a warping function.

We show a necessary and sufficient condition for convergence of a sequence of warped submersions to the base B in the Gromov–Hausdorff topology. Finally, we consider an example of a sequence of warped submersions which does not converge to its base.

1. Introduction

1.1. Riemannian submersion. Recall that a mapping $\pi: M \to B$ between two Riemannian manifolds (M, g_M) and (B, g_B) , $\dim B \leq \dim M$, is called a Riemannian submersion if it has maximal rank, and $g_M(u, w) = g_B(\pi_* u, \pi_* w)$ for any vectors $u, w \in (\operatorname{Ker} \pi_*)^{\perp}$. We denote by $\mathcal{V}(x) = \operatorname{Ker} \pi_{*x} (\mathcal{H}(x) = (\operatorname{Ker} \pi_{*x})^{\perp} \text{ resp.})$ the subspace of vertical (horizontal) vectors.

Lemma 1. Let $\pi: M \to B$ be a Riemannian submersion, where M, B are compact Riemannian manifolds. The function $\widetilde{d}: B \ni x \mapsto \operatorname{diam}^M(\pi^{-1}(x))$ is continuous.

Proof. Let $\varepsilon > 0$ and $x_0 \in B$. Since π is continuous, there exist points $y_1, y_2 \in \pi^{-1}(x_0)$ such that $d_M(y_1, y_2) = \text{diam}^M(\pi^{-1}(x_0))$.

Let $x \in B(x_0, \varepsilon/2) \subset B$ and let $\gamma : [0, \delta] \to B$, $\delta > 0$, be a geodesic curve such that $\gamma(0) = x$, $\gamma(\delta) = x_0$, $l(\gamma) = d_B(x, x_0)$. Denote by γ_i , i = 1, 2, the horizontal lifts of γ such that $\gamma_i(\delta) = y_i$. It is clear that $l(\gamma_i) = l(\gamma) < \varepsilon/2$.

²⁰⁰⁰ Mathematics Subject Classification: 53B21, 70G45.

 $[\]label{thm:condition} \textit{Key words and phrases} : \mbox{Riemannian submersion, Gromov-Hausdorff topology, warped submersion}.$

Hence

(1)
$$\operatorname{diam}^{M}(\pi^{-1}(x_{0})) = d_{M}(y_{1}, y_{2})$$

$$\leq l(\gamma_{1}) + d_{M}(\gamma_{1}(0), \gamma_{2}(0)) + l(\gamma_{2})$$

$$\leq \varepsilon + \operatorname{diam}^{M}(\pi^{-1}(x)).$$

In the same way we show that

(2)
$$\operatorname{diam}^{M}(\pi^{-1}(x)) \leq \varepsilon + \operatorname{diam}^{M}(\pi^{-1}(x_0)).$$

Formulae (1) and (2) imply the continuity.

As a result, in further considerations we can assume that

$$\operatorname{diam}^{M}(\pi^{-1}(z)) \leq 1$$

for any $z \in B$.

- **1.2.** Gromov-Hausdorff topology. The Gromov-Hausdorff distance between two compact metric spaces (X, d_X) and (Y, d_Y) is defined as
- (3) $d_{GH}(X,Y) := \inf\{\widetilde{d}_H(X,Y) : \widetilde{d} \text{ is an admissible metric on } X \coprod Y\}.$

An admissible metric on $X \coprod Y$ is a metric that is an extension of d_X and d_Y . Such a metric always exists, e.g.

$$\widetilde{d}|_{X\times X} \equiv d_X, \quad \widetilde{d}|_{Y\times Y} \equiv d_Y,$$

$$\widetilde{d}(x,y) = \max\{\operatorname{diam}(X), \operatorname{diam}(Y)\}, \quad x \in X, y \in Y.$$

In [1] it is shown that (3) defines a metric on the set of isometry classes of compact metric spaces. In further considerations we will need the following two facts.

Lemma 2 (Gromov). If (X, d_X) and (Y, d_Y) are compact metric spaces and

$$A = \{x_1, \dots, x_k\} \subset X, \quad B = \{y_1, \dots, y_k\} \subset Y$$

are ε -nets on X and Y, respectively, and if

$$|d_X(x_i, x_j) - d_Y(y_i, y_j)| \le \varepsilon, \quad 1 \le i, j \le k,$$

then $d_{\mathrm{GH}}(X,Y) \leq 3\varepsilon$.

A proof can be found in [3].

THEOREM 1. Let $((X_i, d_{X_i}))_{i \in \mathbb{N}}$, (Y, d_Y) be compact metric spaces. If $X_i \to Y$ in the Gromov-Hausdorff topology then for any $\eta > 0$ and for any η -net $A = \{y_1, \ldots, y_l\}$ on X there exists a sequence of 2η -nets $A^i = \{x_1^i, \ldots, x_l^i\}$ on X_i such that A is a quasi-isometric limit of A^i , i.e. for any $j, k \in \{1, \ldots, l\}$,

$$|d_Y(y_j, y_k) - d_{X_i}(x_j^i, x_k^i)| \to 0$$
 as $i \to \infty$.

A proof can be found in [1].

1.3. Warped submersion. Let (M, g_M) , (B, g_B) be compact Riemannian manifolds, $\pi: M \to B$ a Riemannian submersion, and $f: B \to (0, \infty)$ a C^{∞} -function on B. Then $\widetilde{f} = f \circ \pi$ is a smooth function on M constant along the fibres of π . Denote by g_f the metric on M given by

$$g_f|_{\mathcal{H}\times\mathcal{H}} \equiv g_M|_{\mathcal{H}\times\mathcal{H}}, \quad g_f|_{\mathcal{V}\times T\widetilde{M}} \equiv \widetilde{f}^2 g_M|_{\mathcal{V}\times T\widetilde{M}}.$$

The manifold M with metric g_f will be called a warped submersion and denoted by M_f . The function f will be called a warping function.

2. Main results. Let $(f_n : B \to (0, \infty))_{n \in \mathbb{N}}$ be a sequence of smooth warping functions uniformly bounded on B by a constant C. We ask what should be assumed about (f_n) to ensure that the manifold B is the limit of M_{f_n} in the Gromov-Hausdorff topology.

THEOREM 2. $M_{f_n} \to (B, g_B)$ in the Gromov-Hausdorff topology if and only if for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N there exists an ε -net $A^n \subset B$ such that

$$|f_n|_{A^n} < \varepsilon$$
.

Proof. \Leftarrow Let $\eta > 0$ and n > N. Let $A^n = \{y_1, \ldots, y_k\}$ be an η -net on B such that $f_n|_{A^n} < \eta$. Select points $x_i \in M_{f_n}$, $i \in \{1, \ldots, k\}$, in such a way that $\pi(x_i) = y_i$. Note that the set $\{x_i\}_{i \in \{1, \ldots, k\}}$ is a 2η -net on M_{f_n} . Indeed, let $y \in M_{f_n}$. There exists $j \in \{1, \ldots, k\}$ such that $d_B(\pi(y), y_j) < \eta$. Let $\gamma : [0, \delta] \to B$ be a minimal geodesic curve joining $\pi(y)$ and y_j and $\widetilde{\gamma}$ its horizontal lift such that $\widetilde{\gamma}(0) = y$. We have

$$d_{M_{f_n}}(y, x_j) \le l(\widetilde{\gamma}) + \operatorname{diam}^{M_{f_n}}(\pi^{-1}(y_j)) \le l(\gamma) + \eta < 2\eta.$$

Moreover, for all $i, j \in \{1, \dots, k\}$,

$$(4) d_B(y_i, y_j) \le d_{M_{f_n}}(x_i, x_j).$$

Furthermore, if $\gamma:[0,\delta]\to B$ is a minimal geodesic curve joining x_i to x_j and $\widetilde{\gamma}$ its horizontal lift such that $\widetilde{\gamma}(0)=x_i$ then

(5)
$$d_{M_{f_n}}(x_i, x_j) \le l(\widetilde{\gamma}) + d_{M_{f_n}}(\widetilde{\gamma}(\delta), x_j) \le d_B(y_i, y_j) + \eta.$$

Hence, from (4) and (5), $|d_B(y_i, y_j) - d_{M_{f_n}}(x_i, x_j)| < 2\eta$ for all $i, j \in \{1, \ldots, k\}$. Lemma 2 gives us the statement.

 \Rightarrow Suppose that there exists $\varepsilon_0 > 0$ and a sequence $n_k \to \infty$ such that for any $k \in \mathbb{N}$ and any ε_0 -net $A \subset B$ there exists $x \in A$ such that $f_{n_k}(x) \ge \varepsilon_0$. It is obvious that there exist $E_0 > 0$ and $y_0 \in B$ such that $f_{n_k}|_{B(y_0, E_0)} \ge \varepsilon_0$ for all $k \in \mathbb{N}$.

Now, suppose that $M_{f_{n_k}} \to B$ in the Gromov–Hausdorff topology. By Theorem 1, for any η -net $A = \{y_1, \ldots, y_l\} \subset B$ there exists a sequence of 2η -nets $A^{n_k} = \{x_1^{n_k}, \ldots, x_l^{n_k}\} \subset M_{f_{n_k}}$ such that A is a quasi-isometric limit

of A^{n_k} . Moreover, if A is minimal and η is small enough,

(6)
$$l \min \operatorname{vol}^{B} B(x, \eta/4) \leq \operatorname{vol} B,$$
$$l \max \operatorname{vol}^{M_{f_{n_k}}} B(x, 2\eta) \geq \operatorname{vol} M_{f_{n_k}}.$$

Recall that for any compact manifold \widetilde{M} there exists $\widetilde{\eta} > 0$ and a constant $\widetilde{C} \geq 1$ such that for all $\eta < \widetilde{\eta}$ and $x \in \widetilde{M}$,

(7)
$$\frac{1}{\widetilde{C}} \eta^{\dim \widetilde{M}} \leq \operatorname{vol} B(x, \eta) \leq \widetilde{C} \eta^{\dim \widetilde{M}}.$$

Hence, by (6) and (7),

$$0 < \varepsilon_0^{\dim M - \dim B} \cdot \operatorname{vol}^M \pi^{-1}(B(y_0, E_0)) \le \operatorname{vol} M_{f_n}$$

$$\le \operatorname{vol} B \frac{\max \operatorname{vol}^{M_{f_{n_k}}} B(x, 2\eta)}{\min \operatorname{vol}^B B(x, \eta/4)} \le \operatorname{vol} B \frac{C_M C_B C^{\dim M - \dim B} \cdot (2\eta)^{\dim M}}{(\eta/4)^{\dim B}}.$$

Hence $M_{f_{n_k}}$ cannot converge to M. This yields our statement.

3. Examples. Let $U \subset B$ be an open set and let $f: B \to [0, \infty)$ be a function such that $f|_U \equiv 1$ and $f|_{B\setminus U} \equiv 0$. Let $(f_n: B \to (0, \infty))_{n\in\mathbb{N}}$ be a sequence of smooth functions on B such that

(8)
$$f_n|_{U\setminus B(\partial U,1/n)} \equiv 1, \quad f_n|_{B\setminus U} \equiv 1/n, \quad f_n \leq 1.$$

It is obvious that $f_n \to f$. Moreover, the condition of Theorem 2 does not hold, so the limit of the sequence M_{f_n} cannot be B. We then ask what the limit of M_{f_n} is (if it exists).

Let \sim be the equivalence relation on M given by

$$x \sim y \iff (\pi(x) = \pi(y) \text{ and } \pi(x) \in B \setminus U) \text{ or } (x = y \text{ and } \pi(x) \in U)$$

Let $\gamma_x^y:[0,\delta_x^y]\to B$ be a minimal geodesic curve joining $x,y\in B$. Let us set $X=M/\sim$ and define $\varrho:X\times X\to [0,\infty)$ as follows. If all $\gamma_{\pi(y)}^{\pi(x)}$ are contained in U then

$$\varrho(x,y) = \min\{\min_{z \in \partial U} \{d_B(\pi(x), z) + d_B(z, \pi(y))\}, d_M(x,y)\};$$

if not,

$$\varrho(x,y) = d_B(\pi(x),\pi(y)).$$

It is easy to show that ϱ is a metric on X. This follows immediately from the fact that

$$d_M(x,y) \ge d_B(\pi(x), \pi(y))$$

and d_B and d_M are metrics on B and M respectively.

Now we can prove the following theorem.

Theorem 3. $M_{f_n} \to (X, \varrho)$ as $n \to \infty$ in the Gromov-Hausdorff topology.

Proof. Let $\eta>0$ and let $E=\{x_1,\ldots,x_k,x_{k+1},\ldots,x_l\}$ be an η -net on X such that

$$\{x_1, \dots, x_k\} \subset \pi^{-1}(U)/\sim, \quad \{x_{k+1}, \dots, x_l\} \subset \pi^{-1}(B \setminus U)/\sim.$$

By (8) there exists $N \in \mathbb{N}$ such that for all n > N,

$$\operatorname{diam}^{M_{f_n}}([x]_{\sim}) < \eta \quad \text{for } x \in M \setminus \pi^{-1}(U),$$

$$\operatorname{diam}^{M_{f_n}}(\pi^{-1}(\pi(x_j))) = 1 \quad \text{for } j = 1, \dots, k.$$

Let n > N and let $E^n = \{y_1, \dots, y_l\}$ be such that

$$[y_i]_{\sim} = x_i \quad \text{ for } i = 1, \dots, l.$$

The set E^n is a 2η -net on M_{f_n} . Indeed, let $y \in M_{f_n}$. There exists $j \in \{1, \ldots, l\}$ such that $\varrho([y]_{\sim}, x_j) < \eta$. We consider the following cases:

- 1. $y \in \pi^{-1}(U)$ and $j \in \{1, ..., k\},\$
- 2. $y \in \pi^{-1}(U)$ and $j \in \{k+1, \dots, l\}$,
- 3. $y \in \pi^{-1}(B \setminus U)$ and $j \in \{1, ..., k\},$
- 4. $y \in \pi^{-1}(B \setminus U)$ and $j \in \{k+1, ..., k\}$.

We only handle the first case. The others are similar. Let $y \in \pi^{-1}(U)$, $j \in \{1, \ldots, k\}$. If any minimal geodesic curve $\gamma_{\pi(x_j)}^{\pi(y)} \subset U$ then, since $[y]_{\sim} = \{y\}$ and (9),

$$\varrho([y]_{\sim}, x_j) = \min\{\min_{z \in \partial U} \{d_B(\pi(y), z) + d_B(z, \pi(x_j))\}, d_M(y, x_j)\}.$$

If $\varrho([y]_{\sim}, x_i) = d_M(y, x_i)$ then

$$d_{M_{f_{-}}}(y, y_{j}) \le d_{M}(y, y_{j}) = \varrho([y]_{\sim}, x_{j}) < 2\eta.$$

Else if $\varrho([y]_{\sim}, x_i) = \min_{z \in \partial U} \{d_B(\pi(y), z) + d_B(z, \pi(x_i))\}$ then

$$\varrho([y]_{\sim}, x_j) = \min\{\min_{z \in \partial U} \{d_B(\pi([y]_{\sim}), z) + d_B(z, \pi(x_j))\}$$

and for some $z_0 \in \partial U$,

$$d_{M_{f_n}}(y, y_j) \le d_B(\pi(y), z_0) + d_B(z_0, \pi(y_j)) + \operatorname{diam}(\pi^{-1}(z_0))$$

= $d_B(\pi([y]_{\sim}), z_0) + d_B(z_0, \pi(x_j)) + \eta$
= $\varrho([y]_{\sim}, x_j) + \eta < 2\eta$.

Furthermore, for any $i, j \in \{1, ..., l\}$, we have

(10)
$$|\varrho(x_i, x_j) - d_{M_{f_n}}(y_i, y_j)| < 2\eta.$$

Indeed, if $k + 1 \le i \le l$, $j \in \{1, ..., l\}$ then

(11)
$$\varrho(x_i, x_j) = d_B(\pi(x_i), \pi(x_j)) \le d_{M_{f_n}}(y_i, y_j) + \eta$$

and as above

(12)
$$d_{M_{f_n}}(y_i, y_j) \le d_M(\pi(y_i), \pi(y_j)) + \operatorname{diam}^{M_{f_n}}(\pi^{-1}(\pi(y_j)))$$
$$\le \varrho(x_i, x_j) + \eta.$$

Let 1 < i, j < k. Suppose that there exists a geodesic curve

$$\gamma_{\pi(x_i)}^{\pi(x_i)} : [0, \delta_{\pi(x_i)}^{\pi(x_i)}] \to B$$

not contained in U. Then $\varrho(x_i, x_j) = d_B(\pi(x_i), \pi(x_j))$ and there exists $t_0 \in [0, \delta_{\pi(x_i)}^{\pi(x_i)}]$ such that $\gamma(t_0) \notin U$. Hence $\operatorname{diam}^{M_{f_n}}(\pi^{-1}(\gamma(t_0))) < \eta$. Moreover,

(13)
$$\varrho(x_i, x_j) = d_B(y_i, y_j) \le d_{M_{f_n}}(y_i, y_j) \le d_{M_{f_n}}(y_i, y_j) + \eta$$

and

(14)
$$d_{M_{f_n}}(y_i, y_j) \le d_B(\pi(y_i), \gamma(t_0)) + d_B(\gamma(t_0), y_j) + \operatorname{diam}^{M_{f_n}} \pi^{-1}(\gamma(t_0))$$
$$\le \varrho(x_i, x_j) + \eta.$$

Now, suppose that all minimal geodesics joining $\pi(y_i)$ to $\pi(y_j)$ are contained in U. If

(15)
$$d_M(y_i, y_j) < \min_{z \in \partial U} \{ d_B(\pi(y_i), z) + d_B(z, \pi(y_j)) \}$$

then all minimal geodesic curves joining y_i to y_j in M_{f_n} are totally embedded in $\pi^{-1}(U)$. Indeed, suppose by contradiction that there exists a minimal geodesic curve $\gamma_0: [0,\delta] \to M_{f_n}$ joining y_i with y_j which is not totally embedded in $\pi^{-1}(U)$. So there exist $x_0 \in \pi^{-1}(\partial U)$ and $t_0 \in (0,\delta)$ such $\gamma_0(t_0) = x_0$. We then have

(16)
$$d_{M_{f_n}}(y_i, y_j) = l(\gamma_0) = \int_0^\delta ||\dot{\gamma}_0(t)||_{M_{f_n}} dt$$

$$= \int_0^{t_0} ||\dot{\gamma}_0(t)||_{M_{f_n}} dt + \int_{t_0}^\delta ||\dot{\gamma}_0(t)||_{M_{f_n}} dt$$

$$\geq \int_0^t ||(\dot{\gamma}_0(t))^\perp||_{M_{f_n}} dt + \int_{t_0}^\delta ||(\dot{\gamma}_0(t))^\perp||_{M_{f_n}} dt$$

$$\geq \int_0^t ||\pi_*(\dot{\gamma}_0(t))^\perp||_B dt + \int_{t_0}^\delta ||\pi_*(\dot{\gamma}_0(t)^\perp)||_B dt$$

$$\geq d_B(\pi(y_i), \pi(x_0)) + d_B(\pi(x_0), \pi(y_j)$$

$$\geq \min_{z \in \partial U} \{d_B(\pi(y_i), z) + d_B(z, \pi(y_j))\}.$$

But

$$d_M(y_i, y_j) \ge d_{M_{f_n}}(y_i, y_j).$$

So we get

$$d_M(y_i, y_j) \ge \min_{z \in \partial U} \{ d_B(\pi(y_i), z) + d_B(z, \pi(y_j)) \},$$

which contradicts (15).

Let $\gamma:[0,\delta]\to M_{f_n}$ be a minimal geodesic curve joining y_i to y_j . Because all geodesic curves joining y_i to y_j are totally embedde in $\pi^{-1}(U)$,

$$d_{M_{f_n}}(y_i,y_j) = \int\limits_0^\delta \|\dot{\gamma}(t)\|_{M_{f_n}} \, dt = \int\limits_0^\delta \|\dot{\gamma}(t)\|_M \, dt = d_M(y_i,y_j) = \varrho(x_i,x_j).$$

Hence

$$|d_{M_{f_n}}(y_i, y_j) - \varrho(x_i, x_j)| < \eta.$$

Now, suppose that $d_M(y_i, y_i) \ge \min_{z \in \partial U} \{d_B(\pi(y_i), z) + d_B(z, \pi(y_j))\}$. Let $z_0 \in \partial U$ be a point at which $\min_{z \in \partial U} \{d_B(\pi(y_i), z) + d_B(z, \pi(y_j))\}$ is achieved, and let

- 1. $\gamma_1 : [0, \delta_1] \to B$ be a minimal geodesic curve joining $\pi(y_i)$ to z_0 and $\widetilde{\gamma}_1$ its horizontal lift such $\widetilde{\gamma}_1(0) = y_i$,
- 2. $\gamma_2 : [0, \delta_2] \to B$ be a minimal geodesic curve joining $\pi(y_j)$ to z_0 and $\widetilde{\gamma}_2$ its horizontal lift such $\widetilde{\gamma}_2(0) = y_j$,
- 3. $\gamma_3: [0, \delta_3] \to \pi^{-1}(z_0)$ be a minimal geodesic curve joining $\widetilde{\gamma}_1(\delta_1)$ to $\widetilde{\gamma}_2(\delta_2)$.

Let $\gamma:[0,\widetilde{\delta}]\to M_{f_n},\ \widetilde{\delta}=\delta_1+\delta_2+\delta_3$, be given by $\gamma=\gamma_2^{-1}*\gamma_3*\gamma_1$. Then

(18)
$$d_{M_{f_n}}(y_i, y_j) \le l(\gamma) = \sum_{i=1}^{3} l(\gamma_i) \le \varrho(x_i, x_j) + \eta.$$

On the other hand, if $\gamma:[0,\delta]\to M_{f_n}$ is a minimal geodesic curve from y_i to y_j then

1. if
$$\gamma([0,\delta]) \subset \pi^{-1}(U)$$
 then

(19)
$$\eta + d_{M_{f_n}}(y_i, y_j) \ge l(\gamma) = \int_0^{\delta} ||\dot{\gamma}(t)||_{M_{f_n}} dt = \int_0^{\delta} ||\dot{\gamma}(t)||_M dt$$

 $\ge \min_{z \in \partial U} \{ d_B(\pi(y_i), z) + d_B(z, \pi(y_j)) \} \ge \varrho(x_i, x_j);$

2. if $\gamma([0,\delta]) \not\subset \pi^{-1}(U)$ then as in (16),

(20)
$$\eta + d_{M_{f_n}}(y_i, y_j) \ge \min_{z \in \partial U} \{ d_B(\pi(y_i^n), z) + d_B(z, \pi(y_j^n)) \} \ge \varrho(x_i, x_j).$$

Hence by (11)–(14) and (17)–(20) we get (10).

Since E^n and E are 2η -nets on M_{f_n} and X respectively and for any $i, j \in \{1, \ldots, l\}$, we have

$$|\varrho(x_i, x_j) - d_{M_{f_n}}(y_i, y_j)| < 2\eta,$$

Lemma 2 implies that $d_{GH}(M_{f_n}, X) < 6\eta$. This yields our statement.

References

- [1] D. P. Chi and G. Yun, Gromov-Hausdorff Topology and its Applications to Riemannian Manifolds, Seoul National Univ., Seoul, 1998.
- [2] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, 1999.
- [3] P. Petersen, Riemannian Geometry, Springer, 1997.

Faculty of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland

E-mail: sajmonw@math.uni.lodz.pl

Received 7.7.2005

(1594)