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Collapse of warped submersions

by SzyMON M. WaLczak (Lodz)

Abstract. We generalize the concept of warped manifold to Riemannian submersions
m : M — B between two compact Riemannian manifolds (M, gn) and (B, gg) in the
following way. If f : B — (0,00) is a smooth function on B which is extended to a
function f: f om constant along the fibres of 7 then we define a new metric gy on M by

95l HxH = gm|Hxn, gf|v><T1\71 e f29M|VXT1Tm

where H and V denote the bundles of horizontal and vertical vectors. The manifold (M, g5)
obtained that way is called a warped submersion. The function f is called a warping
function.

We show a necessary and sufficient condition for convergence of a sequence of warped
submersions to the base B in the Gromov-Hausdorff topology. Finally, we consider an
example of a sequence of warped submersions which does not converge to its base.

1. Introduction

1.1. Riemannian submersion. Recall that a mapping m : M — B be-
tween two Riemannian manifolds (M, gy) and (B, gp), dim B < dim M,
is called a Riemannian submersion if it has maximal rank, and gps(u,w) =
9B (msu, mow) for any vectors u, w € (Ker 7.)~. We denote by V(z) = Ker myy
(H(z) = (Ker T4;)" resp.) the subspace of vertical (horizontal) vectors.

LEMMA 1. Letm: M — B be a Riemannian submersion, where M, B are
compact Riemannian manifolds. The function d : B 3 z — diam™ (7= 1(z))
18 continuous.

Proof. Let ¢ > 0 and xy € B. Since 7 is continuous, there exist points
Y1, 2 € 7 (20) such that dps(y1,y2) = diam™ (771 (x0)).

Let € B(xg,¢/2) C B and let v : [0,0] — B, 6 > 0, be a geodesic curve
such that v(0) = z, v(0) = xo, I(y) = dg(x,zo). Denote by v;, i = 1,2, the
horizontal lifts of 4 such that 7;(0) = y;. It is clear that I(v;) = () < /2.
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Hence

(1) diam™ (77" (20)) = das(y1,y2)
< 1) + dar(11(0),72(0)) + 1(72)
< e+ diam™ (77 1(z)

In the same way we show that

(2) diam™ (77 Y(z)) < e + diam™ (7~ (x0)).

Formulae (1) and (2) imply the continuity. =

As a result, in further considerations we can assume that
diam™ (771(2)) < 1
for any z € B.

1.2. Gromov-Hausdorff topology. The Gromov-Hausdorff distance be-
tween two compact metric spaces (X, dx) and (Y, dy) is defined as
(3) deu(X,Y) :=inf{dy(X,Y) : d is an admissible metric on X 1 Y}.
An admissible metric on X I1' Y is a metric that is an extension of dx and

dy. Such a metric always exists, e.g.

glv’XxX = dx, CﬂYxY = dy,

d(z,y) = max{diam(X),diam(Y)}, z€ X,yeY.

In [1] it is shown that (3) defines a metric on the set of isometry classes of
compact metric spaces. In further considerations we will need the following
two facts.

LEMMA 2 (Gromov). If (X,dx) and (Y,dy) are compact metric spaces
and

A={xy,...,z1;} C X, B={y1,...,yx CY
are e-nets on X and Y, respectively, and if
ldx (zi, ) — dy (yi,y5)| <&, 1<1,j <k,
then dgu(X,Y) < 3e.
A proof can be found in [3].

THEOREM 1. Let ((X;,dx;))ien, (Y,dy) be compact metric spaces. If
X; — Y in the Gromov—Hausdorff topology then for any n > 0 and for
any n-net A = {y1,...,y1} on X there exists a sequence of 2n-nets Al =
{xi, ... ,J;f} on X; such that A is a quasi-isometric limit of A®, i.e. for any
Jke{l,...,1},

|dy (5, yk) — dXi(x;,xZ)\ —0 asi— oc.

A proof can be found in [1].
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1.3. Warped submersion. Let (M, gur), (B, gp) be compact Riemannian
manifolds, 7 : M — B a Riemannian submersion, and f : B — (0,00) a
C*°-function on B. Then f = f om is a smooth function on M constant
along the fibres of 7. Denote by gy the metric on M given by

— _ 72
9flHsn = gmlmsrs  9elyrn = oMy orir

The manifold M with metric gy will be called a warped submersion and
denoted by My. The function f will be called a warping function.

2. Main results. Let (f, : B — (0,00))nen be a sequence of smooth
warping functions uniformly bounded on B by a constant C. We ask what
should be assumed about (f,) to ensure that the manifold B is the limit of
My, in the Gromov—Hausdorff topology.

THEOREM 2. My, — (B,gB) in the Gromov—Hausdorff topology if and
only if for any € > 0 there exists N € N such that for all n > N there exists
an e-net A" C B such that

fn’An <E.

Proof. < Let n > 0 and n > N. Let A" = {y1,...,yx} be an n-net
on B such that f,|a» < n. Select points x; € My,, i € {1,...,k}, in such
a way that m(z;) = y;. Note that the set {x;}icq1,. k) is a 2n-net on My, .
Indeed, let y € My, . There exists j € {1,...,k} such that dp(7(y),y;) <.
Let 7 : [0, 8] — B be a minimal geodesic curve joining 7(y) and y; and 7 its
horizontal lift such that 5(0) = y. We have

duty, (ys25) < UF) + diam™ (771 (y;)) < U(v) +n < 21.

Moreover, for all 7,5 € {1,...,k},

(4) dp(Yi,y5) < duy, (T3, ;).
Furthermore, if v : [0,] — B is a minimal geodesic curve joining z; to x;
and 7 its horizontal lift such that 7(0) = z; then

(5) den ($i,$j) < l(?) + den (A’YJ(&)’xJ) < dB(yi, yj) + 1.
Hence, from (4) and (5), |dp(vi,y;) — dm,, (zi,75)] < 27 for all i,j €
{1,...,k}. Lemma 2 gives us the statement.

= Suppose that there exists g > 0 and a sequence ny — oo such that for
any k € N and any eg-net A C B there exists z € A such that f,, (z) > .
It is obvious that there exist Ey > 0 and yo € B such that f,, ’B( ) = €0
for all £ € N.

Now, suppose that ank — B in the Gromov-Hausdorff topology. By
Theorem 1, for any n-net A = {y1,...,y;} C B there exists a sequence of
2n-nets A™ = {z*, ... 2*} C My, such that A is a quasi-isometric limit

yo,E0
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of A™:. Moreover, if A is minimal and 7 is small enough,
©) I minvol? B(z,n/4) < vol B,
6

Imax vol"x B(x,2n) > vol My, .

_ Recall that for any compact manifold / M there exists 7 > 0 and a constant
C > 1 such that for all n < and x € M,

1 gimar =~ dim M
(7> EndlmM SVOIB(%J]) < CndlmM.

Hence, by (6) and (7),
0 < ggmM=dim B y6IM 7=1(B(yg, Ey)) < vol My,

max vol B(x,2n) < volB CpCpCimM=dimB . (9y))dim M
minvol?® B(z,n/4) ~ (n/4)dim B

Hence My, ~cannot converge to M. This yields our statement.

<volB

3. Examples. Let U C B be an open set and let f : B — [0,00) be a
function such that f|y =1 and f|g\y = 0. Let (f, : B — (0,00))nen be a
sequence of smooth functions on B such that
(8) falnBovam =1 falpo =1/n,  fu <1
It is obvious that f,, — f. Moreover, the condition of Theorem 2 does not
hold, so the limit of the sequence M/, cannot be B. We then ask what the
limit of My, is (if it exists).

Let ~ be the equivalence relation on M given by

x~y < (r(z)=mn(y) and n(z) € B\U) or (x =y and n(x) € U)

Let 7% : [0,0%] — B be a minimal geodesic curve joining x,y € B. Let us
set X = M/~ and define o : X x X — [0,00) as follows. If all 7:((5)) are
contained in U then

ol y) = min{ min {dp(x(2), 2) + dp(z w(y) }, dur(w.y)

if not,
o(z,y) = dp(n(z),n(y)).

It is easy to show that p is a metric on X. This follows immediately from
the fact that
du(z,y) > dp(n(z), 7(y))
and dp and djs are metrics on B and M respectively.
Now we can prove the following theorem.
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THEOREM 3. My, — (X, 0) asn — oo in the Gromov-Hausdorff topology.

Proof. Let n > 0 and let E = {x1,...,2k, Tk11,...,2;} be an n-net on
X such that

{z1,..., 5} C 7 YU/~ Apy1,..., ;) Ca Y (B\U)/~
By (8) there exists N € N such that for all n > N,
diam™in ([z].) <n  for x € M\ 7 Y(U),
diam™sn (77 (7 (2;)) =1 forj=1,... k.
Let n > N and let E" = {yj,...,y;} be such that
9) [Yil~ =a; fori=1,...,L

The set E™ is a 2n-net on My, . Indeed, let y € My, . There exists j €
{1,...,1} such that o([y]~, ;) < n. We consider the following cases:

yen YU)and j€{l,...,k},

yen 1(U)and j € {k+1,...,1},
yen Y (B\U)and je{l,...,k},
yen ' (B\U)and j€{k+1,...,k}.

=W =

We only handle the first case. The others are similar. Let y € 7= 1(U), j €
(v)

{1,...,k}. If any minimal geodesic curve 7:(:5]_) C U then, since [y|~ = {y}
and (9),
ol ;) = min{ min {d(x(),2) + di(z, 7(2)} dae(y, ).
If o([y]~, %) = dr(y, x;) then
duy, (¥,95) < dm(y,y5) = o([yl~, 75) < 2.
Else if o([y]~, z;) = min,cop{dp(n(y), 2) + dp(2z,7(x;))} then
o([yl~, ) = min{ min {dp(7([y]~), 2) + dp(z, 7(z;))}

and for some zy € 9U,

duty, (4, y5) < dp(7(y), 20) + dp(20, 7(y;)) + diam(r ™" (20))
)

= dp(r([y]~), 20) + dB(20,7(25)) + 1
= o([yl~, z5) +n < 2.
Furthermore, for any i, € {1,...,l}, we have
(10) oz, x5) — dny, (yi yj)| < 2n.

Indeed, if k+1<i<1I, je{l,...,l} then
(11) o(wi, xj) = dp(m(zi), w(x;)) < dary, (yi,y5) + 1
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and as above
(12)  duy, (i y5) < dur(m(ys), m(y;) + diam™ s (x = (7 (y)))
< o(wi, ;) + 1.
Let 1 < 4,7 < k. Suppose that there exists a geodesic curve
,YTF(%‘) . [07577(%‘)] B

m(w;) (z;)
not contained in U. Then o(z;, ;) = dp(n(z;), 7(z;)) and there exists ¢y €

[0, 5:&;;] such that (to) ¢ U. Hence diam™# (771(v(t9))) < 1. Moreover,

(13) o(wi, vj) = dp(yi, v5) < dumy, (Yi,y5) < dury, (Vi yj) +1

and

(14)  dugy, (i, y5) < dB(m(ys), ¥(t0)) + dB(Y(to), y;) + diam™m 77 (v(to))
< o(xi, xj) + 1.

Now, suppose that all minimal geodesics joining m(y;) to 7(y;) are con-
tained in U. If

(15) dar(yin;) < min {dp(m(y:), 2) + dn(z,7(y)))

then all minimal geodesic curves joining y; to y; in My, are totally embedded
in 771(U). Indeed, suppose by contradiction that there exists a minimal
geodesic curve vy : [0,6] — My, joining y; with y; which is not totally
embedded in 7= }(U). So there exist zop € 7~ 1(0U) and t; € (0,4) such
~0(to) = xo. We then have

(16) duy, (Yisy5) = L(0) = S 170 ()| sy, dt
:?mwm%ﬁ+?mmmmw
zgmwmfmmﬁ+§mwwﬁm%ﬁ
ZSWA%@DWBﬁ+SHmWMﬂUhdt

> dp(m(yi), m(0)) + dp(m(20), 7(y5)

> min {dp(n(y:), 2) + dp (2, 7(y;)}-

But
dn(Yis Y5) = day, (Yi Yj)-
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So we get
dar(yi, yj) > zré%%{dB(W(yi% z) +dp(z,m(y;)},

which contradicts (15).
Let v : [0,0] — Mj, be a minimal geodesic curve joining y; to y;. Because
all geodesic curves joining y; to y; are totally embeded in *1(U),

5 5
duy, Wi y;) = V9@ gy, dt = V15 @) ar dt = das (i, y5) = o(xi, ).
0 0
Hence
(17) sy, (Yi, yj) — o(@i, x5)] <.

Now, suppose that das(ys, yi) > min.cau{dp(m(yi), 2) +dp(z, 7(y;)}. Let
zp € OU be a point at which min,co{dp(7(y;), 2)+dp(z, 7(y;)} is achieved,
and let

1. 71 : [0,81] — B be a minimal geodesic curve joining 7(y;) to 29 and 7

its horizontal lift such 7;(0) = y;,

2. 72 : [0,02) — B be a minimal geodesic curve joining m(y;) to 2o and 7

its horizontal lift such 72(0) = yj;,

3. 73 : [0,83) — 7 1(20) be a minimal geodesic curve joining 71 (d1) to

72(02).

Let v : [0,5] — My, 52514—524—53, be given by’}/_’)/?_l*’}/g * 1. Then

(18) de (yl7yj <l Zl% <Qmu$3)+7]

On the other hand, if v : [0,0] — M f, is a minimal geodesic curve from
y; to y; then
L. if 4([0,6]) € 71 (U) then
0

5
(19) 77+den(yz',yj)Zl(’Y):SHV( a1, dt SH’Y Mardt
0 0

> min{dp(7(ys), 2) + dp(z, 7(y;))} = olwi, 25);
if v([0,9]) ¢ #~Y(U) then as in (16),
(20)  n+duy, (Yiry5) > ;gg%{dB(ﬂ(y?), z) +dp(z,m(y;))} = o(wi, z;).
Hence by (11)-(14) and (17)-(20) we get (10).

Since E™ and E are 2n-nets on My, and X respectively and for any
i,7 €4{1,...,1}, we have

Lemma 2 implies that dgu(Mjy,, X) < 67. This yields our statement. m
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