Normality and value sharing
with a linear differential polynomial

by INDRAJIT LAHIRI (Kalyani) and SHYAMALI DEWAN (Kolkata)

Abstract. We prove some normality criteria for a family of meromorphic functions and as an application we prove a value distribution theorem for a differential polynomial.

1. Introduction, definitions and results. Let \(\mathbb{C} \) be the open complex plane and \(\mathcal{D} \subset \mathbb{C} \) be a domain. A family \(\mathcal{F} \) of meromorphic functions defined in \(\mathcal{D} \) is said to be normal, in the sense of Montel, if for every sequence \(\{ f_n \} \subset \mathcal{F} \) there exists a subsequence \(\{ f_{n_j} \} \) such that \(\{ f_{n_j} \} \) converges spherically and uniformly on compact subsets of \(\mathcal{D} \) to a meromorphic function or \(\infty \).

\(\mathcal{F} \) is said to be normal at a point \(z_0 \in \mathcal{D} \) if there exists a neighbourhood of \(z_0 \) in which \(\mathcal{F} \) is normal. It is well known that \(\mathcal{F} \) is normal in \(\mathcal{D} \) if and only if it is normal at every point of \(\mathcal{D} \).

Let \(f \) and \(g \) be two meromorphic functions defined in \(\mathcal{D} \). For \(a \in \mathbb{C} \cup \{ \infty \} \) we say that \(f \) and \(g \) share the value \(a \) IM (ignoring multiplicity) if the \(a \)-points of \(f \) and \(g \) coincide in locations only, not necessarily in multiplicities.

For a meromorphic function \(f \) we denote by \(f^\# \) the spherical derivative of \(f \), given by

\[
 f^\#(z) = \frac{|f'(z)|}{1 + |f(z)|^2}.
\]

Also, by \(\Delta \) we denote the unit disc \(|z| < 1\).

In 1992 W. Schwick [15] first established a connection between the normality and value sharing. He proved the following theorem.

Theorem A ([15]). Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(\mathcal{D} \subset \mathbb{C} \) and \(a_1, a_2, a_3 \) be distinct complex numbers. If for every \(f \in \mathcal{F} \), \(f \) and \(f' \) share \(a_1, a_2, a_3 \) IM in \(\mathcal{D} \) then \(\mathcal{F} \) is normal in \(\mathcal{D} \).

2000 Mathematics Subject Classification: 30D45, 30D35.

Key words and phrases: meromorphic function, differential polynomial, normality.
After the work of Schwick [15] it has become a popular problem to investigate the relation between normality and sharing values.

In 1999 Y. Xu [16] proved the following result.

Theorem B ([16]). Let \mathcal{F} be a family of holomorphic functions in a domain $\mathcal{D} \subset \mathbb{C}$ and b be a nonzero complex number. If f and f' share $0, b$ IM in \mathcal{D} for every $f \in \mathcal{F}$ then \mathcal{F} is normal in \mathcal{D}.

In 2000 X. Pang and L. Zalcman [12] proved the following result, which improves Theorems A and B.

Theorem C ([12]). Let \mathcal{F} be a family of meromorphic functions in a domain $\mathcal{D} \subset \mathbb{C}$ and a_1, a_2 be distinct complex numbers. If for every $f \in \mathcal{F}$, f and f' share a_1, a_2 IM in \mathcal{D} then \mathcal{F} is normal in \mathcal{D}.

At this stage two natural questions may be asked:

1. What would be if f and f' share a single value?
2. What would be if f' is replaced by $f^{(k)}$?

For Question 1 the following result of W. C. Lin and H. X. Yi [11] may be noted.

Theorem D ([11]). Let \mathcal{F} be a family of meromorphic functions in Δ. If there exist complex numbers a and b ($b \neq 0$ and a/b not a positive integer) such that for every $f \in \mathcal{F}$, f and f' share a IM in Δ and $|f(z) - a| \geq \varepsilon$ whenever $f'(z) = b$, where ε is a positive number, then \mathcal{F} is normal in Δ.

For Question 2, H. Chen and M. Fang [3] proved the following result.

Theorem E ([3]). Let \mathcal{F} be a family of meromorphic functions in a domain $\mathcal{D} \subset \mathbb{C}$, $k \geq 2$ be an integer and a, b, c be complex numbers such that $b \neq a$. If for each $f \in \mathcal{F}$, f and $f^{(k)}$ share a, b IM in \mathcal{D} and zeros of $f - c$ have multiplicity at least $1 + k$ then \mathcal{F} is normal in \mathcal{D}.

The following result of M. Fang and L. Zalcman [5] improved Theorem E.

Theorem F ([5]). Let \mathcal{F} be a family of meromorphic functions in a domain $\mathcal{D} \subset \mathbb{C}$, $k \geq 2$ be an integer and a, b, c, d be complex numbers such that $b \neq a$. If for each $f \in \mathcal{F}$, f and $f^{(k)}$ share a, b IM in \mathcal{D} and zeros of $f - c$ have multiplicity at least k then \mathcal{F} is normal in \mathcal{D}.

Theorem F is a consequence of the following theorem, also due to Fang and Zalcman [5].

Theorem G ([5]). Let \mathcal{F} be a family of meromorphic functions in a domain $\mathcal{D} \subset \mathbb{C}$, k be a positive integer and a, b, c, d be complex numbers such that $b \neq a, 0$ and $c \neq 0$. If, for each $f \in \mathcal{F}$, all zeros of $f - d$ have multiplicity at least k, f and $f^{(k)} - a$ share 0 IM and $f(z) = c$ whenever $f^{(k)}(z) = b$, then \mathcal{F} is normal in \mathcal{D} for $k \geq 2$, and for $k = 1$ so long as $a \neq (1 + m)b$, $m = 1, 2, \ldots$.
In this paper we investigate the situation when the derivative is replaced by a linear differential polynomial with constant coefficients generated by \(f \). Throughout the paper we denote by \(H_k(f) = H_k(f; a_1, \ldots, a_k) \) a linear differential polynomial generated by a meromorphic function \(f \) of the following form:

\[
H_k(f) = H_k(f; a_1, \ldots, a_k) = a_k f^{(k)} + a_{k-1} f^{(k-1)} + \cdots + a_1 f^{(1)}
\]

where \(k \) is a positive integer and \(a_1, \ldots, a_k \neq 0 \) are constants.

We now state the main result of the paper.

Theorem 1.1. Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(\mathfrak{D} \subset \mathbb{C} \) and \(a, b, c, d \) be finite complex numbers such that \(c \neq 0 \). If there exists a differential polynomial \(H_k(f) = H_k(f; a_1, \ldots, a_k) \) such that for each \(f \in \mathcal{F} \),

(i) \(f - d \) does not have any zero with multiplicity less than \(k \),

(ii) \(f - a \) and \(H_k(f) - b \) share the value \(0 \) IM,

(iii) \(|f(z) - a| \geq \varepsilon \) whenever \(H_k(f) = c \), where \(\varepsilon \) is a positive number,

then \(\mathcal{F} \) is normal in \(\mathfrak{D} \) for \(k \geq 2 \), and for \(k = 1 \) so long as \(b/c \neq 1 + m \) for any positive integer \(m \).

The following example shows that condition (i) of Theorem 1.1 is essential.

Example 1.1. Let \(f_n(z) = ne^z - ne^{-z} + 1 \) for \(n = 1, 2, \ldots \) and \(\mathfrak{D} = \mathbb{C} \). We choose \(k = 2 \), \(a = 1 \), \(b = 0 \), \(c = 1 \) and \(\varepsilon = 1 \). Then for any given finite complex number \(d \),

\[
f_n(z) - d = \frac{ne^{2z} + (1 - d)e^z - n}{e^z}
\]

has only simple zeros in \(\mathfrak{D} \) (except possibly for only one value of \(n \) for which \(d = 1 \pm 2ni \)). Also \(f_n(z) - a \) and \(f_n^{(2)}(z) - b \) share 0 IM and \(|f_n(z) - a| = 2 > \varepsilon \) whenever \(f_n^{(2)}(z) = c \). Since \(f_n^{(\#)}(0) = n \to \infty \) as \(n \to \infty \), by Marty’s criterion the family \(\{f_n\} \) is not normal in \(\mathfrak{D} \).

The following example shows that condition (ii) of Theorem 1.1 is essential.

Example 1.2. Let \(f_n(z) = nz^2 \) for \(n = 1, 2, \ldots \) and \(\mathfrak{D} = \Delta \). We choose \(k = 2 \), \(a = 0 \), \(b = 0 \), \(d = 0 \) and \(c = 1 \). Then \(f_n(z) - d \) has no zero of multiplicity less than \(k \), \(f_n^{(2)}(z) = 2n \) does not assume the value \(c \), so that condition (iii) of Theorem 1.1 is satisfied but \(f_n(z) \) and \(f_n^{(2)}(z) \) do not share the value \(a = b = 0 \). Since \(f_n(0) = 0 \) for \(n = 1, 2, \ldots \) and for \(z \neq 0 \), \(f_n(z) \to \infty \) as \(n \to \infty \), it follows that the family \(\{f_n\} \) is not normal in \(\mathfrak{D} \).

The following example shows that condition (iii) of Theorem 1.1 is essential.
Example 1.3. Let \(f(z) = e^{nz} \) for \(n = 1, 2, \ldots \) and \(\mathcal{D} = \Delta \). We choose \(k = 2, a = 0, b = 0, c = 1 \) and \(d = 0 \). Then conditions (i) and (ii) of Theorem 1.1 are satisfied. Also we see that \(f_n^{(2)}(z) = c \) implies \(|f_n(z) - a| = 1/n^2 \to 0 \) as \(n \to \infty \) so that we cannot find any \(\varepsilon > 0 \) for which condition (iii) is satisfied. Since \(f_n^\#(0) = n/2 \to \infty \) as \(n \to \infty \), by Marty’s criterion the family \(\{f_n\} \) is not normal in \(\mathcal{D} \).

The following example shows that the condition \(c \neq 0 \) cannot be removed from Theorem 1.1.

Example 1.4. Let \(f_n(z) = e^{nz} - a/n + a \) for \(n = 1, 2, \ldots \) and \(\mathcal{D} = \Delta \). Then \(f_n \) and \(f_n^{(1)} \) share the value \(a \) IM. Also \(f_n^{(1)}(z) \neq 0 \) in \(\mathcal{D} \) so that condition (iii) of Theorem 1.1 is satisfied for \(c = 0 \). Since

\[
 f_n^\#(0) = \frac{n}{1 + |a/n + a|} \to \infty \quad \text{as} \quad n \to \infty,
\]

by Marty’s criterion the family \(\{f_n\} \) is not normal in \(\mathcal{D} \).

The following example shows that for \(k = 1 \) the condition “\(b/c \neq 1 + m \) for any positive integer \(m \)” of Theorem 1.1 is essential.

Example 1.5. Let \(b \) and \(c \) be two nonzero numbers such that \(b = (1 + m)c \), where \(m \) is a positive integer. Also let \(\{\alpha_n\} \) be a sequence of numbers converging to 0 and \(|\alpha_n| < 1 \) for \(n = 1, 2, \ldots \). We suppose that \(\mathcal{D} = \Delta \) and, for \(n = 1, 2, \ldots \),

\[
f_n(z) = c(z - \alpha_n) + \frac{A(\alpha_n)^m}{m(z - \alpha_n)^m},
\]

where \(A \) is a nonzero constant. Then

\[
f_n^{(1)}(z) = c - \frac{A(\alpha_n)^m}{(z - \alpha_n)^{m+1}}
\]

so that \(f_n^{(1)}(z) \) does not assume the value \(c \) and so condition (iii) of Theorem 1.1 is satisfied. Also

\[
f_n(z) = \frac{mc(z - \alpha_n)^{m+1} + A(\alpha_n)^m}{m(z - \alpha_n)^m},
\]

\[
f_n^{(1)}(z) - b = -\frac{mc(z - \alpha_n)^{m+1} + A(\alpha_n)^m}{m(z - \alpha_n)^{m+1}}
\]

so that \(f_n \) and \(f_n^{(1)} \) share 0 IM. Again

\[
f_n^\#(0) = \frac{|c + (-1)^{m+2}/\alpha_n|}{1 + |c\alpha_n + (-1)^m A/m|^2}
\]

\[
\geq \frac{1/|\alpha_n| - |c|}{1 + \{|c|/\alpha_n + |A|/m|^2}} \to \infty \quad \text{as} \quad n \to \infty.
\]

Hence by Marty’s criterion the family \(\{f_n\} \) is not normal in \(\mathcal{D} \).
The following corollary not only extends Theorem G to a linear differential polynomial but also removes the hypothesis \(a \neq b \).

Corollary 1.1. Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(\mathcal{D} \subset \mathbb{C} \) and \(a, b, c, d, \alpha \) be finite complex numbers such that \(b \neq 0 \) and \(c \neq \alpha \). If there exists a differential polynomial \(H_k(f) = H_k(f; a_1, \ldots, a_k) \) such that for each \(f \in \mathcal{F} \),

(i) \(f - d \) does not have any zero of multiplicity less than \(k \),
(ii) \(f - \alpha \) and \(H_k(f) - a \) share the value 0 IM,
(iii) \(f(z) = c \) whenever \(H_k(f) = b \),

then \(\mathcal{F} \) is normal in \(\mathcal{D} \) for \(k \geq 2 \), and for \(k = 1 \) so long as \(a/b \neq 1 + m \) for any positive integer \(m \).

Remark 1.1. If we choose \(a = b \) then from conditions (ii) and (iii) of Corollary 1.1 it is obvious that \(\alpha \) and \(a \) are lacunary values of \(f \in \mathcal{F} \) and \(H_k(f) \) respectively.

The following example shows that in Corollary 1.1 the condition \(b \neq 0 \) is essential.

Example 1.6. Let \(f_n(z) = e^{nz} \) for \(n = 1, 2, \ldots \) and \(\mathcal{D} = \Delta \). We choose \(\alpha = a = b = d = 0 \). Then \(f_n(z) - d \) does not have any zero and for any positive integer \(k \), \(f_n(z) \) and \(f_n^{(k)}(z) - a \) share the value 0 IM. Since \(f_n^{(k)}(z) \neq b \), it follows that condition (iii) of Corollary 1.1 is satisfied for any complex number \(c \). Since \(f_n^\#(0) = n/2 \to \infty \) as \(n \to \infty \), by Marty’s criterion the family \(\{f_n\} \) is not normal in \(\mathcal{D} \).

The following corollary improves Theorems C and F.

Corollary 1.2. Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(\mathcal{D} \subset \mathbb{C} \) and \(a, b, c \) be finite numbers such that \(a \neq b \). If there exists a differential polynomial \(H_k(f) = H_k(f; a_1, \ldots, a_k) \) such that for each \(f \in \mathcal{F} \),

(i) \(f - c \) does not have any zero of multiplicity less than \(k \),
(ii) \(f \) and \(H_k(f) \) share the values \(a \) and \(b \) IM,

then \(\mathcal{F} \) is normal in \(\mathcal{D} \).

For standard definitions and notations we refer to [7] and [14].

2. **Lemmas.** In this section we present some necessary lemmas.

Lemma 2.1 ([13]). Let \(\mathcal{F} \) be a family of meromorphic functions in \(\Delta \) having no zero of multiplicity less than \(k \). Suppose there exists a number \(A \geq 1 \) such that \(|f^{(k)}(z)| \leq A \) whenever \(f(z) = 0 \). If \(\mathcal{F} \) is not normal in \(\Delta \) then there exist, for each \(\alpha \) \((0 \leq \alpha \leq k) \),

(i) a number \(r \), \(0 < r < 1 \),
(ii) points z_n, $|z_n| < r$,
(iii) functions $f_n \in \mathfrak{F}$ and
(iv) positive numbers ρ_n, $\rho_n \to 0$,
such that $g_n(\xi) = \rho_n^{-\alpha} f_n(z_n + \rho_n \xi) \to g(\xi)$ spherically and locally uniformly
to a nonconstant meromorphic function g in \mathbb{C}, all of whose zeros have mul-
tiplicity at least k and $g^\#(\xi) \leq g^\#(0) = kA + 1$. Moreover the order of g is
at most 2.

Lemma 2.2 ([5]). Let f be a meromorphic function of finite order and
$a, b \neq 0$ be distinct complex numbers and $k \geq 2$ be an integer. If f has no zero
of multiplicity less than k, f and $f^{(k)} - a$ share the value 0 IM and $f^{(k)}$
does not assume the value b, then f is a constant.

Lemma 2.3 ([5, 8, 11]). Let f be a nonconstant meromorphic function
of finite order and let $a, b \neq 0$ be distinct complex numbers. If f and $f^{(1)} - a$
share the value 0 IM and $f^{(1)}$ does not assume the value b in \mathbb{C} then
\[
f(z) = b(z - d) + \frac{A}{m(z - d)^m} \quad \text{and} \quad a = (1 + m)b
\]
for some $d \in \mathbb{C}$ and some positive integer m.

Lemma 2.4 ([9]). Let f be a nonconstant rational function, and k and
$\lambda \geq 2$ be positive integers such that

(i) f has no zero of multiplicity less than λ and the number of zeros of f
(counted with multiplicities), if there are any, is not less than $1 + k$,
(ii) if f has any pole then the number of poles of f (counted with multi-
plicities) is greater than $k/(\lambda - 1)$.

Then for every complex number $a \neq 0, \infty$, the function $f^{(k)} + a$ has at least
one zero.

Lemma 2.5. Let f be a nonconstant rational function having no zero
and k be a positive integer. Then for every complex number $a \neq 0, \infty$, the
function $f^{(k)} + a$ has at least one zero.

Proof. Since f has no zero, choosing $\lambda = k + 2$ in Lemma 2.4 we obtain
the result. ■

Lemma 2.6 ([7, p. 60]). Suppose that f is meromorphic and transcendental in \mathbb{C}. Then for any positive integer k,
\[
T(r, f) \leq (2 + 1/k)N(r, 0; f) + (2 + 2/k)\bar{N}(r, a; f^{(k)}) + S(r, f),
\]
where $a \neq 0, \infty$ is a complex number.

Lemma 2.7 ([2]). Let f be a meromorphic function of finite order. If f
has only finitely many critical values then it has only finitely many asymptotic
values.
Lemma 2.8 ([11]). Let f be a transcendental meromorphic function such that $f(0) \neq \infty$ and let the set of finite critical and asymptotic values of f be bounded. Then there exists $R > 0$ such that

$$|f'(z)| \geq \frac{|f(z)|}{2\pi |z|} \log \frac{|f(z)|}{R}$$

for all $z \in \mathbb{C} \setminus \{0\}$ which are not poles of f.

Lemma 2.9 ([6, 10]). Let f be a nonconstant meromorphic function in \mathbb{C} and $k \geq 2$ be an integer. If f and $f^{(k)}$ do not assume the value 0 in \mathbb{C} then either $f(z) = e^{Az+B}$ or $f(z) = (Az+B)^{-m}$, where $A \neq 0$ and B are constants and m is a positive integer.

Lemma 2.10 ([4]). Let f be a meromorphic function in \mathbb{C}. If there exists a constant $M > 0$ such that $f^{\#}(z) \leq M$ in \mathbb{C} then the order of f is at most 2.

Lemma 2.11 ([7, p. 57]). Let f be a nonconstant meromorphic function in \mathbb{C} and $H_k(f)$ be nonconstant. Then for any complex number $a \neq 0, \infty$,

$$T(r, f) \leq N(r, \infty; f) + N(r, 0; f) + \widetilde{N}(r, a; H_k(f)) + S(r, f).$$

3. Proof of the theorem and corollaries

Proof of Theorem 1.1. Since normality is a local property, without loss of generality we may assume that $f = \Delta$. Also since $H_k(f - a) = H_k(f)$, we may additionally suppose that $a = 0$. First we suppose that $a_k = 1$. We now consider the following cases.

Case I. Let $k \geq 2$ and $d = 0$. Suppose that \mathfrak{F} is not normal in Δ. Then by Lemma 2.1 for $\alpha = k$ we can find a sequence $\{z_n\}$ of points with $|z_n| < r$ $(0 < r < 1)$, a sequence of positive numbers $\varrho_n \rightarrow 0$ and a sequence $\{f_n\} \subset \mathfrak{F}$ of functions such that

$$g_n(\xi) = \varrho_n^{-k} f_n(z_n + \varrho_n \xi) \rightarrow g(\xi)$$

spherically and locally uniformly, where g is a nonconstant meromorphic function in \mathbb{C} and g has no zero of multiplicity less than k. Also $g^\#(\xi) \leq g^\#(0) = k(A + 1) + 1$ and g is of order at most 2, where $A = \max\{|b|, |c|\}$.

We now verify that (I) g and $g^{(k)} - b$ share the value 0 IM, and that (II) $g^{(k)}$ does not assume the value c in \mathbb{C}.

Let $g(\xi_0) = 0$. Then by Hurwitz's theorem there exists a sequence $\xi_n \rightarrow \xi_0$ such that $g_n(\xi_n) = 0$ for all sufficiently large values of n. So for all sufficiently large values of n we get $f_n(z_n + \varrho_n \xi_n) = 0$, and so for all sufficiently large values of n, $H_k(f_n(z_n + \varrho_n \xi_n)) = b$. Hence

$$g_n^{(k)}(\xi_n) + a_{k-1} \varrho_n g_n^{(k-1)}(\xi_n) + \cdots + a_1 \varrho_n^{k-1} g_n^{(1)}(\xi_n) = b.$$

Letting $n \rightarrow \infty$ we obtain $g^{(k)}(\xi_0) = b$.

Next let \(g^{(k)}(\eta_0) = b \). First we verify that \(g^{(k)}(\xi) \neq b \). If \(g^{(k)}(\xi) \equiv b \) then \(g \) becomes a polynomial of degree at most \(k \). Since \(g \) has no zero of multiplicity less than \(k \) and \(g \) is nonconstant, it follows that \(g \) is a polynomial of degree \(k \) and so it has a single zero of multiplicity \(k \). Hence we can write

\[
(3.1) \quad g(\xi) = \frac{b(\xi - \xi_1)^k}{k!}.
\]

By a simple calculation we deduce from (3.1) that \(g^#(0) \leq k/2 \) if \(|\xi_1| \geq 1 \) and \(g^#(0) \leq |b| \) if \(|\xi_1| < 1 \). Therefore \(g^#(0) < k(|b| + 1) + 1 \), which is a contradiction.

Since \(g^{(k)}(\eta_0) = b \) and \(g^{(k)}(\eta) + a_{k-1}e_\eta g^{(k-1)}(\eta) + \cdots + a_1g^{k-1}_\eta g^{(1)}(\eta) \) converges uniformly to \(g^{(k)}(\eta) \) in some neighbourhood of \(\eta_0 \), by Hurwitz’s theorem there exists a sequence \(\eta_n \to \eta_0 \) such that for all large values of \(n \),

\[
g^{(k)}(\eta_n) + a_{k-1}e_\eta g^{(k-1)}(\eta_n) + \cdots + a_1g^{k-1}_\eta g^{(1)}(\eta_n) = b
\]

and so \(H_k(f_n(z_n + \varrho_n\eta_n)) = b \). Therefore for all sufficiently large values of \(n \) we get \(f_n(z_n + \varrho_n\eta_n) = 0 \) and so \(g_n(\eta_n) = 0 \). Letting \(n \to \infty \) we obtain \(g(\eta_0) = 0 \). Therefore (I) is verified.

Let \(g^{(k)}(\zeta_0) = c \). Then as above we can show that \(g^{(k)}(\zeta) \neq c \). Since \(g^{(k)}(\zeta) + a_{k-1}e_\zeta g^{(k-1)}(\zeta) + \cdots + a_1g^{k-1}_\zeta g^{(1)}(\zeta) \) converges uniformly to \(g^{(k)}(\zeta) \) in some neighbourhood of \(\zeta_0 \), by Hurwitz’s theorem there exists a sequence \(\zeta_n \to \zeta_0 \) such that for all large values of \(n \),

\[
g^{(k)}(\zeta_n) + a_{k-1}e_\zeta g^{(k-1)}(\zeta_n) + \cdots + a_1g^{k-1}_\zeta g^{(1)}(\zeta_n) = c
\]

and so \(H_k(f_n(z_n + \varrho_n\zeta_n)) = c \). Therefore \(|f_n(z_n + \varrho_n\zeta_n)| \geq \varepsilon \) and so \(|g_n(\zeta_n)| \geq \varepsilon/g_n^{(1)} \) for all large values of \(n \). This shows that \(g(\zeta_0) = \infty \), which is a contradiction. So (II) is verified.

If \(b \neq c \), by Lemma 2.2, \(g \) becomes a constant, which is impossible. Let \(b = c \). Then from (I) and (II) we see that \(g \) does not assume the value 0 and \(g^{(k)} \) does not assume the value \(c \neq 0 \). If \(g \) is transcendental, by Lemma 2.6 we get \(T(r, g) = S(r, g) \), which is a contradiction. If \(g \) is rational, by Lemma 2.5, \(g \) becomes a constant, which is impossible. Therefore the family \(\mathfrak{F} \) is normal.

Case II. Let \(k \geq 2 \) and \(d \neq 0 \). Suppose that \(\mathfrak{F}_1 = \{f - d : f \in \mathfrak{F}\} \). If \(\mathfrak{F}_1 \) is not normal in \(\Delta \), by Lemma 2.1 for \(\alpha = 0 \) we can find a sequence \(\{z_n\} \) of points with \(|z_n| < r \) \((0 < r < 1)\), a sequence of positive numbers \(\varrho_n \to 0 \) and a sequence \(\{f_n - d\} \subset \mathfrak{F}_1 \) of functions such that

\[
g_n(\xi) = f_n(z_n + \varrho_n\xi) - d \to g(\xi)
\]

spherically and locally uniformly, where \(g \) is a nonconstant meromorphic function in \(\mathbb{C} \) and \(g \) has no zero of multiplicity less then \(k \). Further \(g \) is of order at most 2.
We now verify that (III) \(g^{(k)} \) does not assume the value 0 in \(\mathbb{C} \), and that (IV) \(g + d \) does not assume the value 0 in \(\mathbb{C} \).

Let \(g^{(k)}(\xi_0) = 0 \) for some \(\xi_0 \in \mathbb{C} \). Also we see that \(g^{(k)}(\xi) \neq 0 \), for otherwise \(g \) becomes a polynomial of degree less than \(k \), which is impossible because \(g \) is nonconstant and does not have any zero of multiplicity less than \(k \).

Since in a neighbourhood of \(\xi_0 \),

\[
g_n^{(k)}(\xi) + a_{k-1}g_n^{(k-1)}(\xi) + \cdots + a_1g_n^{(1)}(\xi) - c_n^kb_n
\]

converges uniformly to \(g^{(k)}(\xi) \), by Hurwitz’s theorem there exists a sequence \(\xi_n \to \xi_0 \) such that for all large values of \(n \),

\[
g_n^{(k)}(\xi_n) + a_{k-1}g_n^{(k-1)}(\xi_n) + \cdots + a_1g_n^{(1)}(\xi_n) - c_n^kb_n = 0,
\]

and so for all large values of \(n \) we get \(H_k(f_n(z_n + \varrho_n\xi_n)) = b \). Therefore for all large values of \(n \) we obtain \(f_n(z_n + \varrho_n\xi_n) = 0 \) and so \(g_n(\xi_n) + d = 0 \). Letting \(n \to \infty \) we get

(3.2) \quad \quad g(\xi_0) + d = 0.

Again since in a neighbourhood of \(\xi_0 \),

\[
g_n^{(k)}(\xi) + a_{k-1}g_n^{(k-1)}(\xi) + \cdots + a_1g_n^{(1)}(\xi) - c_n^kc
\]

converges uniformly to \(g^{(k)}(\xi) \), by Hurwitz’s theorem there exists a sequence \(\chi_n \to \xi_0 \) such that

\[
g_n^{(k)}(\chi_n) + a_{k-1}g_n^{(k-1)}(\chi_n) + \cdots + a_1g_n^{(1)}(\chi_n) - c_n^kc = 0
\]

for all large values of \(n \). Hence for all large values of \(n \) we deduce that \(H_k(f_n(z_n + \varrho_n\chi_n)) = c \). So for all large values of \(n \),

\[
|f_n(z_n + \varrho_n\chi_n)| \geq \varepsilon, \quad \text{i.e.,} \quad |g_n(\chi_n) + d| \geq \varepsilon.
\]

Letting \(n \to \infty \) we obtain \(|g(\xi_0) + d| \geq \varepsilon \), which contradicts (3.2). Therefore (III) is verified.

Next let \(g(\beta_0) + d = 0 \). Then by Hurwitz’s theorem there exists a sequence \(\beta_n \to \beta_0 \) such that for all large values of \(n \), \(f_n(z_n + \varrho_n\beta_n) - d = g_n(\beta_n) = -d \) and so \(f_n(z_n + \varrho_n\beta_n) = 0 \). Hence for all large values of \(n \) we deduce that \(H_k(f_n(z_n + \varrho_n\beta_n)) = b \) and so

\[
g_n^{(k)}(\beta_n) + a_{k-1}g_n^{(k-1)}(\beta_n) + \cdots + a_1g_n^{(1)}(\beta_n) = b \varrho_n^k.
\]

Letting \(n \to \infty \) we get \(g^{(k)}(\beta_0) = 0 \), which contradicts (III). Therefore (IV) is verified.

Now by Lemma 2.9 we see that either \(g(\xi) = -d + e^{Az+B} \) or \(g(\xi) = -d + 1/(Az+B)^m \). Since \(d \neq 0 \), it follows that \(g \) has only simple zeros, which is impossible. Therefore \(\mathcal{F}_1 \) and so \(\mathcal{F} \) is normal.

Case III. Let \(k = 1 \). In this case condition (i) of the theorem is immaterial and so the proof does not depend on \(d \). If \(\mathcal{F} \) is not normal in \(\Delta \),
proceeding as Case I we can show that there exists a nonconstant meromorphic function g of finite order such that g and $g^{(1)} - b$ share the value 0 IM and $g^{(1)}$ does not assume the value c in \mathbb{C}.

If $b \neq c$ then by Lemma 2.3 we get $b = (1 + m)c$ for some positive integer m, which is impossible. Let $b = c$. Then g does not assume the value 0 and $g^{(1)}$ does not assume the value c. If g is rational, by Lemma 2.5, g becomes a constant, which is impossible. If g is transcendental, by Lemma 2.6 we get $T(r, g) = S(r, g)$, which is a contradiction. Therefore the family \mathfrak{F} is normal.

Finally, suppose that $a_k \neq 1$. We now put $G_k(f) = (1/a_k)H_k(f)$, $b_1 = b/a_k$ and $c_1 = c/a_k$. Then the leading coefficient of $G_k(f)$ is 1 and $b_1/c_1 = b/c$. Also the following hold:

(i) $f - d$ has no zero of multiplicity less than k,
(ii) $f - a$ and $G_k(f) - b_1$ share the value 0 IM,
(iii) $|f(z) - a| \geq \varepsilon$ whenever $G_k(f) = c_1$.

Therefore the family \mathfrak{F} is normal in this case as well by the result for $a_k = 1$. This proves the theorem.

Proof of Corollary 1.1. Since $c \neq \alpha$, we choose an ε such that $0 < \varepsilon < |c - \alpha|$. Then from condition (iii) we see that if $H_k(f) = b$ then $|f(z) - \alpha| = |c - \alpha| > \varepsilon$, which is condition (iii) of Theorem 1.1. Hence the corollary follows from Theorem 1.1.

Proof of Corollary 1.2. Interchanging a and b if necessary, we may choose $|a| \leq |b|$. Since $a \neq b$, it follows that $b \neq 0$ and a/b is not a positive integer. We now choose an ε such that $0 < \varepsilon < |b - a|$. So we see that if $H_k(f) = b$ then $|f(z) - a| = |b - a| > \varepsilon$. Hence the corollary follows from Theorem 1.1.

4. Application. In this section we prove a value distribution theorem for a differential polynomial which follows from Theorem 1.1.

Theorem 4.1. Let f be a transcendental meromorphic function and $a_1, \ldots, a_k \neq 0$ be constants such that $H_k(f^p) = H_k(f^p; a_1, \ldots, a_k)$ is also transcendental, where $p \geq 2$ is an integer. Let a be a finite complex number such that

(i) f has no zero of multiplicity less than k/p,
(ii) f and $H_k(f^p) - a$ share the value 0 IM.

Then for every complex number $b \neq 0, \infty$, the function $H_k(f^p) - b$ has infinitely many zeros.

Proof. We consider the following cases.

Case I. Let f be of infinite order. Then by Lemma 2.10 there exists a sequence $z_n \to \infty$ such that $f^\#(z_n) \to \infty$ as $n \to \infty$. Let $f_n(z) = f(z_n + z)$
for \(n = 1, 2, \ldots \). Then \(f_n^\#(0) = f^\#(z_n) \to \infty \) as \(n \to \infty \). So by Marty’s criterion no subfamily of \(\{ f_n \} \) is normal in \(\Delta \). Suppose that \(H_k(f^p) - b \) has a finite number of zeros. Since \(z_n \to \infty \) as \(n \to \infty \), there exists a positive integer \(N \) such that for \(n \geq N \), \(H_k(f^p_n) - b \) has no zero in \(\Delta \). So by Theorem 1.1 the family \(\{ f_n : n \geq N \} \) is normal in \(\Delta \), which is a contradiction. Therefore \(H_k(f^p) - b \) has infinitely many zeros.

Case II. Let \(f \) be of finite order. If \(f \) has only finitely many zeros, by Lemma 2.11 we get

\[
T(r, f^p) \leq \mathcal{N}(r, \infty; f^p) + \mathcal{N}(r, b; H_k(f^p)) + S(r, f^p)
\]

and so

\[
(p - 1)T(r, f) \leq \mathcal{N}(r, b; H_k(f^p)) + S(r, f),
\]

which shows that \(H_k(f^p) - b \) has infinitely many zeros.

Let \(f \) have infinitely many zeros, say \(w_1, w_2, \ldots \). We put \(g(z) = a_k h^{(k-1)}(z) + a_{k-1} h^{(k-2)}(z) + \cdots + a_1 h(z) - bz \), where \(h(z) = \{ f(z) \}^p \). Let \(g'(z) = H_k(f^p) - b \) have only finitely many zeros. So \(g \) has only finitely many critical values and so, by Lemma 2.7, \(g \) has only finitely many asymptotic values. We assume, without loss of generality, that \(g(0) \neq \infty \). Then by Lemma 2.8 there exists \(R > 0 \) such that for \(n = 1, 2, \ldots \),

\[
\left| \frac{w_n g'(w_n)}{g(w_n)} \right| \geq \frac{1}{2\pi} \log \frac{|g(w_n)|}{R} = \frac{1}{2\pi} \log \frac{|bw_n|}{R},
\]

so that

\[
\left| \frac{w_n g'(w_n)}{g(w_n)} \right| \to \infty \quad \text{as} \quad n \to \infty.
\]

On the other hand, for \(n = 1, 2, \ldots \) we get

\[
\left| \frac{w_n g'(w_n)}{g(w_n)} \right| = \frac{|a - b|}{|b|},
\]

which is a contradiction. Therefore \(H_k(f^p) - b \) has infinitely many zeros. This proves the theorem. \(\blacksquare \)

Acknowledgements. The authors are thankful to the referee for her/his valuable suggestions.

References

Department of Mathematics
University of Kalyani
West Bengal 741235, India
E-mail: indr9431@dataone.in

Department of Mathematics
Bhairab Ganguly College
Kolkata 700056, India
E-mail: shyamalidewan@rediffmail.com

Received 23.2.2006
and in final form 31.5.2006 (1658)