ANNALES
POLONICI MATHEMATICI
89.2 (2006)

Normality and value sharing
with a linear differential polynomial

by INDRAJIT LAHIRI (Kalyani) and SHYAMALI DEwWAN (Kolkata)

Abstract. We prove some normality criteria for a family of meromorphic functions
and as an application we prove a value distribution theorem for a differential polynomial.

1. Introduction, definitions and results. Let C be the open complex
plane and ® C C be a domain. A family § of meromorphic functions de-
fined in ® is said to be normal, in the sense of Montel, if for every sequence
{fn} C T there exists a subsequence {f,,} such that {f,;} converges spher-
ically and uniformly on compact subsets of ® to a meromorphic function
or 00.

§ is said to be normal at a point zy € ® if there exists a neighbourhood
of zp in which § is normal. It is well known that § is normal in ® if and only
if it is normal at every point of ©.

Let f and g be two meromorphic functions defined in ®. For a € CU{o0}
we say that f and g share the value a IM (ignoring multiplicity) if the a-
points of f and g coincide in locations only, not necessarily in multiplicities.

For a meromorphic function f we denote by f# the spherical derivative
of f, given by

f#(Z): |f/(2)’ )
1+ |f(2)?
Also, by A we denote the unit disc |z| < 1.

In 1992 W. Schwick [15] first established a connection between the nor-

mality and value sharing. He proved the following theorem.

THEOREM A ([15]). Let § be a family of meromorphic functions in a
domain ® C C and aq, as, ag be distinct complex numbers. If for every f € §,
f and f" share ay,as,a3 IM in © then § is normal in D.
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After the work of Schwick [15] it has become a popular problem to in-
vestigate the relation between normality and sharing values.
In 1999 Y. Xu [16] proved the following result.

THEOREM B (|16]). Let § be a family of holomorphic functions in a
domain ® C C and b be a nonzero complex number. If f and f' share 0,b
IM in ® for every f € § then § is normal in .

In 2000 X. Pang and L. Zalcman [12]| proved the following result, which
improves Theorems A and B.

THEOREM C ([12]). Let § be a family of meromorphic functions in a

domain © C C and a1, as be distinct complexr numbers. If for every f € §,
f and [’ share ay,as IM in ® then § is normal in D.

At this stage two natural questions may be asked:

1. What would be if f and f’ share a single value?
2. What would be if f’ is replaced by f*)?

For Question 1 the following result of W. C. Lin and H. X. Yi [11] may
be noted.

THEOREM D ([11]). Let § be a family of meromorphic functions in A.
If there exist complex numbers a and b (b # 0 and a/b not a positive integer)
such that for every f € §, f and f' share a IM in A and |f(z) —a| > €
whenever f'(z) = b, where € is a positive number, then § is normal in A.

For Question 2, H. Chen and M. Fang [3| proved the following result.

THEOREM E ([3]). Let § be a family of meromorphic functions in a
domain ® C C, k > 2 be an integer and a, b, c be complex numbers such that

b# a. If for each f € §, f and f%) share a,b IM in © and zeros of f — ¢
have multiplicity ot least 1 + k then § is normal in .

The following result of M. Fang and L. Zalcman [5] improved Theorem E.

THEOREM F ([5]). Let § be a family of meromorphic functions in a
domain ® C C, k > 2 be an integer and a, b, c be complex numbers such that
b# a. If for each f € §, f and f* share a,b IM in ® and zeros of f — ¢
have multiplicity at least k then § is normal in ©.

Theorem F is a consequence of the following theorem, also due to Fang
and Zalcman [5].

THEOREM G ([5]). Let § be a family of meromorphic functions in a
domain ® C C, k be a positive integer and a, b, ¢, d be complex numbers such
that b # a,0 and ¢ # 0. If, for each f € §, all zeros of f —d have multiplicity
at least k, f and f*) —a share 0 IM and f(z) = ¢ whenever f*)(z) = b,
then § is normal in ® for k > 2, and for k = 1 so long as a # (1 4+ m)b,
m=1,2,....
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In this paper we investigate the situation when the derivative is replaced
by a linear differential polynomial with constant coefficients generated by f.
Throughout the paper we denote by Hy(f) = Hi(f;a1,...,ax) a linear dif-
ferential polynomial generated by a meromorphic function f of the following
form:

Hy,(f) = H(f;a1, ..., a) = apf™ + ap fED 4 4 ag fO
where k is a positive integer and a4, ..., ar # 0 are constants.

We now state the main result of the paper.

THEOREM 1.1. Let § be a family of meromorphic functions in a domain
® C C and a,b, c,d be finite complex numbers such that ¢ # 0. If there exists
a differential polynomial Hi(f) = Hi(f;a1,...,ax) such that for each f € §,

(i) f —d does not have any zero with multiplicity less than k,
(ii) f —a and Hy(f) — b share the value 0 IM,
(ii) |f(z) — a| > € whenever Hi(f) = ¢, where € is a positive number,

then § is normal in © for k > 2, and for k =1 so long as b/c # 1 +m for
any positive integer m.

The following example shows that condition (i) of Theorem 1.1 is essen-
tial.

EXAMPLE 1.1. Let fp(
We choose k =2,a=1,b
complex number d,

ne* —ne *+1forn=1,2,...and ® = C.

z) =
=0, c=1and € = 1. Then for any given finite

ne? + (1 —d)e* —n
eZ

fu(z) —d =

has only simple zeros in ® (except possibly for only one value of n for which

d = 1+2n1). Also f,(z) —a and fT(ZQ)(z)—b share 0 IM and |f(2)—a| =2 > ¢
whenever fT(L2)(z) = ¢. Since f(0) =n — oo as n — oo, by Marty’s criterion

the family {f,} is not normal in ©.

The following example shows that condition (ii) of Theorem 1.1 is essen-
tial.

EXAMPLE 1.2. Let f,(2) = nz? forn =1,2,... and ® = A. We choose
k=2 a=0,b=0,d=0and ¢ = 1. Then f,(z) — d has no zero of
multiplicity less than k, fT(LQ)(z) = 2n does not assume the value ¢, so that

condition (iii) of Theorem 1.1 is satisfied but f,(z) and f,(ZZ)(z) do not share
the value a = b = 0. Since f,(0) = 0 for n = 1,2,... and for z # 0,
fn(z) — o0 as n — oo, it follows that the family {f,} is not normal in ©.

The following example shows that condition (iii) of Theorem 1.1 is es-
sential.
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EXAMPLE 1.3. Let f(z) = " for n = 1,2,... and ©® = A. We choose
k=2 a=0b=0¢=1and d = 0. Then conditions (i) and (ii) of
Theorem 1.1 are satisfied. Also we see that f7§2)(z) = c implies | f,(2) —a| =
1/n? — 0 as n — oo so that we cannot find any € > 0 for which condition
(iii) is satisfied. Since f(0) = n/2 — oo as n — oo, by Marty’s criterion
the family {f,} is not normal in ©.

The following example shows that the condition ¢ # 0 cannot be removed
from Theorem 1.1.

EXAMPLE 1.4. Let f,(2) = €™ —a/n+aforn=1,2,... and ® = A.

Then f, and fT(LI) share the value a IM. Also ff(bl)(z) % 0 in ® so that
condition (iii) of Theorem 1.1 is satisfied for ¢ = 0. Since

#(0) = n_
by Marty’s criterion the family {f,} is not normal in .
The following example shows that for £ = 1 the condition “b/c # 1+ m
for any positive integer m” of Theorem 1.1 is essential.

00 asn — 00,

EXAMPLE 1.5. Let b and ¢ be two nonzero numbers such that b =
(1 + m)c, where m is a positive integer. Also let {a,} be a sequence of
numbers converging to 0 and |ay,| < 1 for n = 1,2,.... We suppose that
D =Aand, forn=1,2,...,
Alan)™
ul2) = el =) +
where A is a nonzero constant. Then
A m
() = e A0

(z — ap)mtl

so that fél)(z) does not assume the value ¢ and so condition (iii) of Theo-
rem 1.1 is satisfied. Also

me(z — ag)™ ! an)™
fa(z) = ( m(nz) _+anJ)rmA( )
me(z — an)™ T + Ala,)™

m(z — ap )™t

)

so that f, and fr(Ll) share 0 IM. Again
f#(()) _ e+ (=1 /|
" 1+ |—com + (—1)mA/m|?
o lowl e
— 1+ {lef |an| + [A]/m}?
Hence by Marty’s criterion the family {f,} is not normal in D.

— 00 as n — oQ.
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The following corollary not only extends Theorem G to a linear differen-
tial polynomial but also removes the hypothesis a # b.

COROLLARY 1.1. Let § be a family of meromorphic functions in a do-
main ® C C and a,b,c,d,« be finite complex numbers such that b # 0 and
¢ # «. If there exists a differential polynomial Hy(f) = Hy(f;a1,...,ax)
such that for each f € §,

(i) f —d does not have any zero of multiplicity less than k,
(ii) f — « and Hi(f) — a share the value 0 IM,
(i) f(z) = ¢ whenever Hi(f) = b,
then § is normal in © for k > 2, and for k =1 so long as a/b # 1+ m for

any positive integer m.

REMARK 1.1. If we choose a = b then from conditions (ii) and (iii) of
Corollary 1.1 it is obvious that « and a are lacunary values of f € § and
Hy(f) respectively.

The following example shows that in Corollary 1.1 the condition b # 0 is
essential.
EXAMPLE 1.6. Let f,(z) = €™ forn =1,2,... and ® = A. We choose
a =a =b=d = 0. Then f,(z) — d does not have any zero and for
any positive integer k, f,(z) and fék)(z) — a share the value 0 IM. Since
ék)(z) # b, it follows that condition (iii) of Corollary 1.1 is satisfied for any
complex number c¢. Since fi (0) = n/2 — 0o as n — oo, by Marty’s criterion
the family {f,} is not normal in ©.

The following corollary improves Theorems C and F.

COROLLARY 1.2. Let § be a family of meromorphic functions in a do-
main ® C C and a,b,c be finite numbers such that a # b. If there exists a
differential polynomial Hy(f) = Hy(f;a1,...,ar) such that for each f € §F,

(i) f — ¢ does not have any zero of multiplicity less than k,

(ii) f and Hy(f) share the values a and b IM,
then § is normal in ©.

For standard definitions and notations we refer to [7] and [14].

2. Lemmas. In this section we present some necessary lemmas.

LEMMA 2.1 ([13]). Let § be a family of meromorphic functions in A
having no zero of multiplicity less than k. Suppose there exists a number
A > 1 such that |f*¥)(2)] < A whenever f(z) = 0. If § is not normal in A
then there exist, for each o (0 < a < k),

(i) a number r, 0 <r <1,
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(i) points zn, |zn| <,
(iii) functions f, € § and
(iv) positive numbers oy, 0n — 0,

such that gn(§) = 0, " fn(2n + 0n§) — 9(§) spherically and locally uniformly
to a nonconstant meromorphic function g in C, all of whose zeros have mul-
tiplicity at least k and g7 (&) < g7 (0) = kA + 1. Moreover the order of g is
at most 2.

LEMMA 2.2 ([5]). Let f be a meromorphic function of finite order and
a,b # 0 be distinct complex numbers and k > 2 be an integer. If f has no
zero of multiplicity less than k, f and f*) —a share the value 0 IM and f*)
does not assume the value b, then f is a constant.

LeEmMMA 2.3 ([5, 8, 11]). Let f be a nonconstant meromorphic function
of finite order and let a,b # 0 be distinct complex numbers. If f and f1) —a
share the value 0 IM and fV) does not assume the value b in C then

f(Z):b(Z—d)+m

for some d € C and some positive integer m.

and a=(1+m)b

LEMMA 2.4 ([9]). Let f be a nonconstant rational function, and k and
A > 2 be positive integers such that

(i) f has no zero of multiplicity less than A and the number of zeros of f

(counted with multiplicities), if there are any, is not less than 1+ k,

(i1) if f has any pole then the number of poles of f (counted with multi-
plicities) is greater than k/(A —1).

Then for every complex number a # 0,00, the function f*) + a has at least

one zero.

LEMMA 2.5. Let f be a nonconstant rational function having no zero
and k be a positive integer. Then for every complex number a # 0,00, the
function f*) + a has at least one zero.

Proof. Since f has no zero, choosing A = k + 2 in Lemma 2.4 we obtain
the result. m

LEMMA 2.6 ([7, p. 60]). Suppose that f is meromorphic and transcen-
dental in C. Then for any positive integer k,
T(r,f) < (24 1/k)N(r,0; f) + 2 +2/k)N(r, a; f¥) + S(r, f),
where a # 0,00 is a complex number.
LEMMA 2.7 (|2]). Let f be a meromorphic function of finite order. If f

has only finitely many critical values then it has only finitely many asymptotic
values.
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LEMMA 2.8 ([1]). Let f be a transcendental meromorphic function such
that f(0) # oo and let the set of finite critical and asymptotic values of f be
bounded. Then there exists R > 0 such that

f 1)
>
76 2 o
for all z € C\ {0} which are not poles of f.

LEMMA 2.9 ([6, 10]). Let f be a nonconstant meromorphic function in
C and k > 2 be an integer. If f and f*) do not assume the value 0 in C
then either f(z) = eA**B or f(2) = (Az + B)™™, where A # 0 and B are

constants and m is a positive integer.

LEMMA 2.10 ([4]). Let f be a meromorphic function in C. If there exists
a constant M > 0 such that f#(z) < M in C then the order of f is at
most 2.

LEMMA 2.11 ([7, p. 57]). Let f be a nonconstant meromorphic function
in C and Hy(f) be nonconstant. Then for any complex number a # 0, oo,

T(r, f) < N(r,00; f) + N(r,0; f) + N(r,a; Hg(f)) + S(r, f).

3. Proof of the theorem and corollaries

Proof of Theorem 1.1. Since normality is a local property, without loss
of generality we may assume that © = A. Also since Hi(f — a) = Hi(f),
we may additionally suppose that a = 0. First we suppose that ap = 1. We
now consider the following cases.

CAsSE I. Let k£ > 2 and d = 0. Suppose that § is not normal in A. Then
by Lemma 2.1 for & = k we can find a sequence {z,} of points with |z,| <r
(0 < r < 1), a sequence of positive numbers g, — 0 and a sequence {f,} C §
of functions such that

9n(§) = Q;kfn(zn + 0n§) — g(&)

spherically and locally uniformly, where ¢ is a nonconstant meromorphic
function in C and g has no zero of multiplicity less than k. Also g7 (&) <
g7 (0) = k(A +1) 41 and g is of order at most 2, where A = max{|b|, |c|}.

We now verify that (I) g and g(¥) — b share the value 0 IM, and that
(I1) ¢'®) does not assume the value ¢ in C.

Let g(&y) = 0. Then by Hurwitz’s theorem there exists a sequence &, — &
such that g, (&,) = 0 for all sufficiently large values of n. So for all sufficiently
large values of n we get f, (2, + 0n6n) = 0, and so for all sufficiently large
values of n, Hk(fn(zn + 0nén)) = b. Hence

(gn) + ap— 1Qng (k- U(&n) C+ ale ! (1)(571) =b
Letting n — co we obtain ¢(¥) (&) = b.
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Next let g(¥)(n9) = b. First we verify that g(*)(¢) 2 b. If ¢*)(€) = bthen g
becomes a polynomial of degree at most k. Since g has no zero of multiplicity
less than k£ and ¢ is nonconstant, it follows that g is a polynomial of degree
k and so it has a single zero of multiplicity k. Hence we can write

b —&)F
(3.1) o) = 280
By a simple calculation we deduce from (3.1) that g7 (0) < k/2 if |&] > 1
and ¢g#(0) < |b| if |&1] < 1. Therefore g#(0) < k(|b| + 1) + 1, which is a
contradiction.

Since g®(m) = b and g (1) + ax-10agi () + - + aroh g ()

converges uniformly to g )(17) in some neighbourhood of 79, by Hurwitz’s
theorem there exists a sequence 7, — ng such that for all large values of n,

9 (1) + ag—100g% V() + -+ a108 g () = b

and so Hy(fn(2n + 0nnn)) = b. Therefore for all sufficiently large values of n
we get fn(zn + onnn) = 0 and so gn(n,) = 0. Letting n — oo we obtain
g(mo) = 0 Therefore (I) is verified.

Let g®)(¢y) = c. Then as above we can show that ¢(*)(¢) # ¢. Since

97(1 )(C)—l-ak_lgng,g 1)(C) +dag ot ( )(C) converges uniformly to g(* )(g“)

in some neighbourhood of (g, by Hurvvltz s theorem there exists a sequence
Cn — (o such that for all large values of n,

99 (G) + ar—100g8F V() + -+ a1 gV (G) = ¢

and so Hy(fn(zn+0n(n)) = c. Therefore | fr,(zn+0n(n)| > € and so |gn(Gn)| >
g/ 0" for all large values of n. This shows that g((y) = oo, which is a contra-
diction. So (II) is verified.

If b # ¢, by Lemma 2.2, g becomes a constant, which is impossible. Let
b = c. Then from (I) and (II) we see that g does not assume the value 0
and ¢®) does not assume the value ¢ = 0. If g is transcendental, by Lemma
2.6 we get T'(r,g) = S(r,g), which is a contradiction. If g is rational, by
Lemma 2.5, g becomes a constant, which is impossible. Therefore the family
¥ is normal.

Casg II. Let k > 2 and d # 0. Suppose that § = {f —d: f € §}. If
$1 is not normal in A, by Lemma 2.1 for « = 0 we can find a sequence {z,}
of points with |z,| < r (0 < r < 1), a sequence of positive numbers g, — 0
and a sequence {f, —d} C § of functions such that

9n(&) = fu(zn + 0nf) —d — g(§)

spherically and locally uniformly, where ¢ is a nonconstant meromorphic
function in C and g has no zero of multiplicity less then k. Further g is of
order at most 2.
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We now verify that (III) g%) does not assume the value 0 in C, and that
(IV) g + d does not assume the value 0 in C.

Let ¢g¥)(&) = 0 for some & € C. Also we see that g¥)(&) # 0, for
otherwise g becomes a polynomial of degree less than k, which is impossible
because ¢ is nonconstant and does not have any zero of multiplicity less
than k.

Since in a neighbourhood of &,
9 (€) + ar10ngV(€) + -+ ardl MgV (€) — ohd

converges uniformly to g(¥) (&), by Hurwitz’s theorem there exists a sequence
&, — &o such that for all large values of n,

F)(€n) + ap—100gF D (E) + - +a10F gV (€) — oFb =0,
and so for all large values of n we get Hy(fn(zn + 0n&n)) = b. Therefore for

all large values of n we obtain f,(z, + 0n&:) = 0 and so g,(&,) +d = 0.
Letting n — oo we get

(3.2) 9(&0) +d =0.

Again since in a neighbourhood of &,

9 (€) + ar10n9 V() + -+ arof gl (€) — e
converges uniformly to g(¥) (£), by Hurwitz’s theorem there exists a sequence

Xn — &o such that

9 (xn) + ar—1009F "V (xn) + - + a108 gl (xn) — ofe =0

for all large values of n. Hence for all large values of n we deduce that
Hi(fn(zn + 0nXn)) = c. So for all large values of n,

‘fn(zn + Qan)‘ >e, le, ’gn(Xn) + d’ > €.
Letting n — oo we obtain |g(&y) +d| > €, which contradicts (3.2). Therefore
(III) is verified.
Next let g(8y)+d = 0. Then by Hurwitz’s theorem there exists a sequence
Brn — [o such that for all large values of n, f,,(zn+ 0n0n) —d = gn(6n) = —d
and so fn(zn + 0n0n) = 0. Hence for all large values of n we deduce that
]%yc(fn(zn —|— onfBn)) = b and so

S (Bn) + ar—10n98" D (Ba) + - + arel " gl (Ba) = bl
Letting n — oo we get g™ (5y) = 0, which contradicts (III). Therefore (IV)
is verified.
Now by Lemma 2.9 we see that either g(¢) = —d + e4*+8 or g(¢) =
—d + 1/(Az+ B)™. Since d # 0, it follows that ¢ has only simple zeros,
which is impossible. Therefore §; and so § is normal.

CasE III. Let £ = 1. In this case condition (i) of the theorem is im-
material and so the proof does not depend on d. If § is not normal in A,
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proceeding as Case | we can show that there exists a nonconstant meromor-
phic function g of finite order such that ¢ and g®") — b share the value 0 IM
and g™ does not assume the value ¢ in C.

If b # ¢ then by Lemma 2.3 we get b = (1 + m)c for some positive inte-
ger m, which is impossible. Let b = ¢. Then g does not assume the value 0
and g™ does not assume the value c. If ¢ is rational, by Lemma 2.5, g be-
comes a constant, which is impossible. If g is transcendental, by Lemma 2.6
we get T'(r,g) = S(r, g), which is a contradiction. Therefore the family § is
normal.

Finally, suppose that a; # 1. We now put Gi(f) = (1/ar)Hk(f), b1 =
b/ay and ¢; = c/ag. Then the leading coefficient of Gi(f) is 1 and b1/c;
= b/c. Also the following hold:

(i) f — d has no zero of multiplicity less than k,
(ii) f — a and Gi(f) — by share the value 0 IM,
(iii) |f(z) — a| > € whenever Gi(f) = c;1.

Therefore the family § is normal in this case as well by the result for a; = 1.
This proves the theorem. m

Proof of Corollary 1.1. Since ¢ # «, we choose an € such that 0 < ¢ <
|c — a|. Then from condition (iii) we see that if Hy(f) = b then |f(z) —a| =
|c — a| > ¢, which is condition (iii) of Theorem 1.1. Hence the corollary
follows from Theorem 1.1. m

Proof of Corollary 1.2. Interchanging a and b if necessary, we may choose
la| < |b]. Since a # b, it follows that b # 0 and a/b is not a positive integer.
We now choose an ¢ such that 0 < ¢ < |b — a|. So we see that if Hi(f) =0
then |f(z)—a| = |b—a| > e. Hence the corollary follows from Theorem 1.1. m

4. Application. In this section we prove a value distribution theorem
for a differential polynomial which follows from Theorem 1.1.

THEOREM 4.1. Let f be a transcendental meromorphic function and
ai,...,ar # 0 be constants such that Hy(fP) = Hi(fP;a1,...,ax) is also
transcendental, where p > 2 is an integer. Let a be a finite complexr number
such that

(i) f has no zero of multiplicity less than k/p,
(ii) f and Hi(fP) — a share the value 0 IM.

Then for every complex number b # 0,00, the function Hy(fP) — b has in-
finitely many zeros.

Proof. We consider the following cases.

CASE I. Let f be of infinite order. Then by Lemma 2.10 there exists a
sequence z, — oo such that f#(z,) — 0o as n — oco. Let f,(2) = f(z, + 2)
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for n = 1,2,.... Then f7(0) = f#(2,) — oo as n — oo. So by Marty’s
criterion no subfamily of {f,} is normal in A. Suppose that Hy(fP) — b
has a finite number of zeros. Since z, — 0o as n — oo, there exists a
positive integer N such that for n > N, Hy(f}) — b has no zero in A.
So by Theorem 1.1 the family {f, : n > N} is normal in A, which is a
contradiction. Therefore Hy(fP) — b has infinitely many zeros.

CASE II. Let f be of finite order. If f has only finitely many zeros, by
Lemma 2.11 we get

T(r, ff) < N(r,00; fP) + N(r,b; Hy(f7)) + S(r, f7)
and so
(p - 1)T(T7 f) < N(T’, b; Hk(fp)) + S(Ta f)?
which shows that Hy(fP) — b has infinitely many zeros.

Let f have infinitely many zeros, say wi,ws,.... We put g(z) =
aph®=D(2) + ap_1R*F=2(2) + - -« + a1h(z) — bz, where h(z) = {f(2)}?. Let
9’ (2) = Hg(fP) — b have only finitely many zeros. So g has only finitely
many critical values and so, by Lemma 2.7, g has only finitely many asymp-

totic values. We assume, without loss of generality, that g(0) # co. Then by
Lemma 2.8 there exists R > 0 such that for n=1,2,...,

n ! n 1 n 1 n
wng' ()| 1l _ Ly bl
g(wy,) 2 R 27 R

so that

‘wngl(wn)

————| - 00 asn — oo.

g(wy)
On the other hand, for n =1,2,... we get
wng'(wn)| _ |a— Dbl
9(wn) o]

which is a contradiction. Therefore Hy(fP) — b has infinitely many zeros.
This proves the theorem. m
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