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The Cauchy problem for the coupled

Klein–Gordon–Schrödinger system

by Changxing Miao and Youbin Zhu (Beijing)

Abstract. We consider the Cauchy problem for a generalized Klein–Gordon–Schrö-
dinger system with Yukawa coupling. We prove the existence of global weak solutions by
the compactness method and, through a special choice of the admissible pairs to match
two types of equations, we prove the uniqueness of those solutions by an approach similar
to the method presented by J. Ginibre and G. Velo for the pure Klein–Gordon equation or
pure Schrödinger equation. Though it is very simple in form, the method has an unnatural
restriction on the power of interactions. In the last part of this paper, we use special
admissible pairs and Strichartz estimates to remove the restriction, thereby generalizing
previous results and obtaining the well-posedness of the system.

1. Introduction and the main results. In this paper, we consider
the Cauchy problem for a coupled Klein–Gordon–Schrödinger system with
Yukawa coupling:

(1.1)





iu̇+∆u = f1(|u|
2, v)u,

v̈ −∆v + µ2v = −12f2(|u|
2, v),

u(0) = ϕ, v(0) = ψ1, v̇(0) = ψ2,

which is a generalization of the system

(1.2)





iu̇+∆u = −uv,

v̈ −∆v + µ2v = |u|2,

u(0) = ϕ, v(0) = ψ1, v̇(0) = ψ2,

considered in [18] by using a generalized bilinear estimate of Strichartz type
and Bourgain’s idea [3, 4] to split the data into low and high frequency parts.
Systems (1.1) and (1.2) describe a classical model of Yukawa’s interaction
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of a conversed complex nucleon field with a neutral real meson field. Here u
is a complex scalar nucleon field and v is a real scalar meson field.

A large amount of work has been devoted to the study of Klein–Gordon–
Schrödinger system [2, 8, 9, 12, 14, 17, 18, 22], starting from I. Fukuda
and M. Tsutsumi [9]. They considered the initial boundary value problem
for the K-G-S system under the initial conditions u(0) = ϕ ∈ H10 (Ω) ∩
H3(Ω), v(0) = ψ1 ∈ H

1
0 (Ω)∩H

2(Ω), v̇(0) = ψ2 ∈ H
1
0 (Ω) and the boundary

conditions u(x, t) = v(x, t) = 0 for x ∈ ∂Ω and t ∈ R. Here Ω is a bounded
smooth domain in R

3. By using Galerkin’s method, they proved the existence
of global strong solutions under the above conditions. The initial condition
on ϕ is unnatural and should be changed into a natural condition such as
ϕ ∈ H10 (Ω) ∩H

2(Ω).

A second study was done by J.-B. Baillon and J. M. Chadam [2]. They
proved the existence of global strong solutions of the initial value problem
for the K-G-S system under the initial conditions ϕ ∈ H2(R3), ψ1 ∈ H

2(R3)
and ψ2 ∈ H

1(R3) by using Lp-Lq estimates for the elementary solutions of
the linear Schrödinger equation and linear Klein–Gordon equation. Lp-Lq

estimates are very useful for the initial value problem for the K-G-S sys-
tem (see, e.g., A. Bachelot [1]). But they are not available in the case of
the initial boundary value problem. Therefore it does not seem that their
method is directly applicable to the initial boundary value problems (1.1)
and (1.2).

In [14], N. Hayashi and W. Wahl proved the existence of global strong
solutions to systems including the K-G-S system under initial conditions as
in [2] and boundary conditions as in [9]. They obtained the result by using
estimates of the nonlinearity in fractional order Besov spaces developed by
P. Brenner and W. Wahl [5], the nonlinear interpolation theorem obtained
by W. Wahl [19–21], and the inequality of H. Brezis and T. Gallouët [6] (see
also H. Brezis and S. Wainger [7]).

The main purpose of the present paper is to study the well-posedness
of the system. We prove the existence of a global weak solution by the
compactness method. It is well known that the Schrödinger equation and
Klein–Gordon equation have different kinds of admissible pairs; the method
used in the proof of uniqueness for a single equation cannot be applied
straightforwardly to the coupled case, but through a special choice of the
pairs, we prove the uniqueness of solutions by an approach similar to the
method presented for the pure nonlinear Schrödinger equation or pure non-
linear Klein–Gordon equation [10, 11]. Like the result in [11], we need an
unnatural restriction on the power of the interactions. In the last part of this
paper, by using special admissible pairs and Strichartz estimates, we remove
the restriction on the power, thereby generalizing the result and obtaining
the well-posedness of the system.
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First of all, let us recall some of the main notations that will be used
in this paper. We denote by ‖ · ‖r the norm in L

r. Pairs r, r′ of conjugate
indices, where 2 ≤ r ≤ ∞, satisfy 1/r + 1/r′ = 1. For any integer k, we
denote by Hk ≡ Hk(Rn) the usual Sobolev spaces. For any interval I ⊂ R,
Ī denotes the closure of I. For any Banach space B, we denote by C(I,B) the
space of strongly continuous functions from I to B, by Cw(I,B) the space
of weakly continuous functions from I to B, and by Cα(I,B), 0 < α < 1,
(resp. CL(I,B)) the space of functions from I to B that are strongly Hölder
continuous with exponent α (resp. strongly Lipschitz continuous), uniformly
on any compact subinterval of I. For any q, 1 ≤ q ≤ ∞, we denote by
Lq(I,B) (resp. Lqloc(I,B)) the space of measurable functions ϕ from I to B
such that ‖ϕ(·)‖B ∈ L

q(I) (resp. ‖ϕ(·)‖B ∈ L
q
loc(I)).

To obtain the existence of a global weak solution of system (1.1), we
shall need the following assumptions on the interactions f1 and f2:

(H1) f1(χ, λ), f2(χ, λ) ∈ C(R
+ × R,R) and for some p, 1 ≤ p <∞, and

all χ ∈ R
+, λ ∈ R,

{
|f1(χ, λ)χ

1/2| ≤ C(χp/2 + |λ|p),

|f2(χ, λ)| ≤ C(χ
p/2 + |λ|p).

(H1′) f1(χ, λ), f2(χ, λ) ∈ C(R
+ × R,R) and for some p, 1 ≤ p <∞, and

all χ ∈ R
+, λ ∈ R,
{
|f1(χ, λ)χ

1/2| ≤ C(χp/2 + χ1/2 + |λ|p + |λ|),

|f2(χ, λ)| ≤ C(χ
p/2 + χ1/2 + |λ|p + |λ|).

(H2) There exists a function F (χ, λ) ∈ C1(R+ × R,R) such that

∂F (χ, λ)

∂χ
= f1(χ, λ),

∂F (χ, λ)

∂λ
= f2(χ, λ);

what is more, F (χ, λ) satisfies the estimate

(1.3) F (χ, λ) ≥ −µ21|λ|
2 − C0χ

(p1+1)/2

for some C0 > 0, µ > µ1 and 1 ≤ p1 < 1 + 4/n.

In particular, (H1), (H1′) and (H2) hold for χ = |u|2 and λ = v, and it
is easy to see that (H1′) is more general than (H1).

As is well known, there is a so-called critical growth condition on p to
prove the uniqueness. Even if it holds, the above assumptions are still not
enough to obtain the uniqueness of the global weak solutions obtained. So
we shall introduce the following stronger assumptions on the interactions f1
and f2 for 1 ≤ p < 1 + 4/(n− 2):
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(H3) f1(|u|
2, v), f2(|u|

2, v) satisfy




|f1(|u1|
2, v1)u1 − f1(|u2|

2, v2)u2|

≤ C(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)(|u1 − u2|+ |v1 − v2|),

|f2(|u1|
2, v1)− f2(|u2|

2, v2)|

≤ C(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)(|u1 − u2|+ |v1 − v2|).

(H3′) f1(|u|
2, v), f2(|u|

2, v) satisfy




|f1(|u1|
2, v1)u1 − f1(|u2|

2, v2)u2|

≤ C(1 + |u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)(|u1 − u2|+ |v1 − v2|),

|f2(|u1|
2, v1)− f2(|u2|

2, v2)|

≤ C(1 + |u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)(|u1 − u2|+ |v1 − v2|).

After all these preparations, our main results are the following:

Theorem 1. Let f1(|u|
2, v), f2(|u|

2, v) satisfy (H1) or (H1′) and (H2).
If p+ 1 > 2∗, assume in addition that

(1.4) F (|u|2, v) ≥ −µ21|v|
2 + C(|u|p+1 + |v|p+1)

for some C > 0. Let X = H1 ∩ Lp+1, 2∗ = 2n/(n− 2) and

(1.5) β(r) = 2α(r) = 1− δ(r)min

(
1,

1

δ(p+ 1)

)
, δ(r) =

n

2
−
n

r
.

Let (ϕ, ψ1, ψ2) ∈ X ×X×L
2. Then (1.1) has a global weak solution (u, v) ∈

Cw(R, X)× Cw(R, X) such that

u ∈ L∞(R, X) ∩
⋂

2≤r<max(p+1,2∗)

Cα(r)(R, Lr),

v ∈ L∞loc(R, X) ∩ C
L(R, L2) ∩

⋂

2<r<max(p+1,2∗)

Cβ(r)(R, Lr),

v̇ ∈ L∞loc(R, L
2) ∩ Cw(R, L

2) ∩ CL(R, X ′).

If p+1 ≥ 2∗, assume in addition that F can be decomposed as F = F1+F2
where F1 satisfies (H1) or (H1

′) and (H2) for some p̄, 1 ≤ p̄ < p, and F2 is
weakly lower semicontinuous. Then

‖u(t)‖2 = ‖ϕ‖2 for all t ∈ R,(1.6)

E(u, v, v̇) ≤ E(ϕ, ψ1, ψ2).(1.7)

Theorem 2. Let f1(|u|
2, v), f2(|u|

2, v) satisfy (H3), and

1 +
2

n− 1
≤ p < 1 +

4

n− 2
−

2

(n+ 1)(n− 2)
.
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Then there exists at most one pair (u, v) ∈ L∞(I,H1) × L∞(I,H1) which
satisfies (1.1) in D′(I,H1)×D′(I,H1).

Theorem 3. Let f1(|u|
2, v), f2(|u|

2, v) satisfy (H3′). Then there exists
at most one pair (u, v) ∈ L∞(I,H1) × L∞(I,H1) which satisfies (1.1) in
D′(I,H1)×D′(I,H1).

This paper is organized as follows. In Section 2, we prove the existence
of a global weak solution by the compactness method. Under the stronger
assumption (H3), by using the same strategy for the two equations of the
system, we prove in Section 3 the uniqueness of the solutions obtained in
Section 2 for p as in Theorem 2. Though the method is very simple, the
restriction on p is unnatural. By choosing two sets of special admissible pairs
(r, q), we use a Strichartz estimate to remove the restriction on p under the
more general assumption (H3′) instead of (H3) in Section 4.

2. Existence of global weak solutions. Now, we are ready to prove
the existence of a global weak solution to (1.1) by the compactness method,
which can be found in [11]. For the convenience of the reader, we prove it and
a related lemma in detail. For (u, v) ∈ H1 ×H1 such that F (|u|2, v) ∈ L1,
the energy is defined by

(2.1) E(u, v, v̇) = ‖∇u‖22 + ‖∇v‖
2
2 + ‖v̇‖

2
2 + µ

2‖v‖22 +
\

Rn

F (|u|2, v) dx.

The assumption (H2) formally implies the conservation of the L2-norm for
u and of the energy.
The dual of X = H1 ∩ Lp+1 is denoted by X ′ = H−1 + L(p+1)/p, the

duality being realized through the L2 scalar product (f, g), linear in g and
anti-linear in f .

Lemma 2.1. Let f1, f2 satisfy (H1) or (H1
′), I be a bounded open interval

of R and (u, v) ∈ L∞(I,X)× L∞(I,X). Then

(1) f1(|u|
2, v)u, f2(|u|

2, v) ∈ L∞(I, L2 + L(p+1)/p).
(2) Let in addition (u, v) satisfy (1.1) in D′(I,X ′)×D′(I,X ′). Then

(a) We have

u̇ ∈ L∞(I,X ′), u ∈ Cw(Ī, X) ∩
⋂

2≤r<max(p+1,2∗)

Cα(r)(Ī , Lr)

with α(r) defined by (1.5).
(b) v̈ ∈ L∞(I,X ′), v̇ ∈ CL(I,X ′). If in addition v̇ ∈ L∞(I, L2), then

v̇ ∈ Cw(I, L
2), v ∈ Cw(Ī , X)∩C

L(Ī , L2)∩
⋂

2<r<max(p+1,2∗)

Cβ(r)(I, Lr)

with β(r) defined by (1.5).
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(3) For any t, s ∈ Ī, (u, v) satisfies the integral system

(2.2)





u(t) = U(t− s)u(s)− i

t\
s

U(t− τ)f1(|u|
2, v)u(τ) dτ,

v(t) = K̇(t− s)v(s) +K(t− s)v̇(s)−
1

2

t\
s

K(t− τ)f2(|u|
2, v) dτ

where the integral is a Bochner integral in H−k, k ≥ max(1, δ(p+1)).

(4) We have

(2.3) ‖u‖2 = const, ∀t ∈ Ī .

Proof. For simplicity, we only consider the general case (H1′) in the
proofs of this lemma and the following theorem. For (H1), the proofs are
similar but a little simpler.

(1) We decompose uf1 as

uf1 = f11 + f12 , (uf1 − uf1χ|u|,|v|≤1) + uf1χ|u|,|v|≤1.

Then

(2.4)

{
|f11(|u|

2, v)| ≤ C(|u|p + |v|p),

|f12(|u|
2, v)| ≤ C(|u|+ |v|),

thus

(2.5)

{
|f11(|u|

2, v)|(p+1)/p ≤ C(|u|p+1 + |v|p+1),

|f12(|u|
2, v)|2 ≤ C(|u|2 + |v|2).

Similarly, for f2 = f21 + f22 we have

(2.6)

{
|f21(|u|

2, v)|(p+1)/p ≤ C(|u|p+1 + |v|p+1),

|f22(|u|
2, v)|2 ≤ C(|u|2 + |v|2).

Now (1) follows from (2.5), (2.6) and standard measurability arguments.

(2) (a) Since u ∈ L∞(I,X), it follows from (1) that

(2.7) −∆u+ f1(|u|
2, v)u ∈ L∞(I,H−1 + L(p+1)/p) →֒ D′(I,X ′).

Note that for all ψ ∈ C∞c (I,X
′),

〈u̇, ψ〉 = −〈u, ψ̇〉 ≤ sup
t∈I
‖u‖X‖ψ̇‖X′ <∞,

we have

(2.8) u̇ ∈ D′(I,X) →֒ D′(I,X ′).

Since (u, v) satisfies (1.1) in D′(I,X ′) × D′(I,X ′), this together with (2.7)
and (2.8) implies

(2.9) u̇ = −i(−∆u+ f1(|u|
2, v)u) ∈ L∞(I,X ′).
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From u ∈ L∞(I,X) →֒ L∞(I,X ′) and (2.9) we obtain

‖u(t)− u(s)‖X′ =
∥∥∥
1\
0

u̇(θt+ (1− θ)s)(t− s) dθ
∥∥∥
X′
≤ |t− s| ‖u̇‖L∞(I,X′),

so u ∈ CL(Ī , X ′) →֒ Cw(Ī , X
′). Together with the fact that u ∈ L∞(I,X)

and Lions’ lemma [15], it follows that u ∈ Cw(Ī , X).
We can approximate u, v by sequences {uj} and {vj} in C

∞
c (R, X) such

that, after restriction to I, uj converges to u in L
2(I,X) and u̇j converges to

u̇ in L2(I,X ′), and similarly for v and vj . This implies that u ∈ C(Ī , L
2), v ∈

C(Ī, L2), and uj and vj tend to u and v respectively in C(Ī, L
2). In fact, since

u ∈ L2(Ī , X) →֒ L2(Ī , X ′) and u̇ ∈ L2(Ī , X ′), we can easily get u ∈ C(Ī, X ′),
and then

‖u(t)− u(s)‖2 ≤ ‖u(t)− u(s)‖
θ
X‖u(t)− u(s)‖

1−θ
X′

≤ 2θ‖u‖θL∞(I,X)‖u(t)− u(s)‖
1−θ
X′

→ 0 (t→ s)

i.e., u ∈ C(Ī, L2).
Letting j →∞ on both sides of the identity

‖uj(t)− uj(s)‖
2
2 = 2

t\
s

Re(u̇j(τ), uj(τ)− uj(s)) dτ,

we obtain

‖u(t)− u(s)‖22 ≤ 4|t− s| ‖u̇‖L∞(I,X′)‖u‖L∞(I,X).

Thus u(t) ∈ C1/2(Ī , L2). By interpolation, we have
{
(C1/2(Ī , L2), L∞(Ī , H1))θ1 ∼ Cα1(r)(Ī , Lr),

(C1/2(Ī , L2), L∞(Ī , Lp+1))θ2 ∼ Cα2(r)(Ī , Lr),

where
θ1
2
+
1− θ1
2∗
=
1

r
,

θ2
2
+
1− θ2
p+ 1

=
1

r
.

So

α1 =
θ1
2
=
1

2
(1− δ(r)), α2 =

θ2
2
=
1

2

(
1−

δ(r)

δ(p+ 1)

)
,

i.e.,

u ∈
⋂

2≤r<max(p+1,2∗)

Cα(r)(Ī , Lr)

with α(r) defined by (1.5).
(b) In view of the fact that v ∈ L∞(I,X), it follows from (1) that

(∆v − µ2v)− 12f2(|u|
2, v) ∈ L∞(I,H−1 + L(p+1)/p) →֒ D′(I,X ′).
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By similar arguments to (a), we also have

v̈ ∈ L∞(I,X ′), v̇ ∈ CL(I,X ′), v̇ ∈ Cw(I, L
2), v ∈ Cw(Ī , X).

On the other hand,

‖v(t)− v(s)‖2 =
∥∥∥
1\
0

v̇(θt+ (1− θ)s)(t− s) dθ
∥∥∥
2
≤ |t− s| ‖v̇‖L∞(I,L2)

implies that v(t) ∈ CL(Ī , L2), and we also have by interpolation

v(t) ∈
⋂

2<r<max(p+1,2∗)

Cβ(r)(Ī , Lr)

with β(r) defined by (1.5).

(3) We again approximate u, v by regularized sequences {uj} and {vj}
as in (2)(a). The functions uj and vj satisfy





uj(t)− U(t− s)uj(s) =

t\
s

U(t− τ)(u̇j(τ)− i∆uj(τ)) dτ,

vj(t)− K̇(t− s)vj(s)−K(t− s)v̇j(s)

=

t\
s

K(t− τ)((µ2 −∆)vj(τ) + v̈j(τ)) dτ.

Letting j →∞, for fixed t and s we obtain



uj(t)− U(t− s)uj(s)→ u(t)− U(t− s)u(s),

vj(t)− K̇(t− s)vj(s)−K(t− s)v̇j(s)

→ v(t)− K̇(t− s)v(s)−K(t− s)v̇(s)

in L2, and



t\
s

U(t− τ)(u̇j(τ)− i∆uj(τ)) dτ →

t\
s

U(t− τ)(u̇(τ)− i∆u(τ)) dτ,

t\
s

K(t− τ)((µ2 −∆)vj(τ) + v̈j(τ)) dτ

→

t\
s

K(t− τ)((µ2 −∆)v(τ) + v̈(τ)) dτ

in H−k. Then (2.2) follows from (1.1).

(4) Letting j →∞ in the identity

‖uj(t)‖
2
2 − ‖uj(s)‖

2
2 =

t\
s

2Re(u̇j(τ), uj(τ)) dτ,

and using the fact that Re(u̇j , uj) = 0 as a consequence of (1.1), yields the
result.
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Proof of Theorem 1. Without loss of generality, we consider any compact
interval J containing 0.

Step 1: Finite-dimensional approximation. Let {wj}, j ∈ Z
+, be an

orthonormal basis of X. For any m ∈ Z+, we look for an approximate
solution of (1.1) of the form

um(t) =
∑

1≤k≤m

gmk(t)wk(x), vm(t) =
∑

1≤k≤m

hmk(t)wk(x)

with

(2.10)

{
(wj , iu̇m +∆um − f1(|um|

2, vm)um) = 0,

(wj , v̈m −∆vm + µ
2vm +

1
2f2(|um|

2, vm)) = 0,

and the initial conditions




um(0) = ϕm(x) =
∑
1≤k≤m Cmkwk(x),

vm(0) = ψ1m(x) =
∑
1≤k≤mD1mkwk(x),

v̇m(0) = ψ2m(x) =
∑
1≤k≤mD2mkwk(x),

where Cmk, D1mk, D2mk are chosen in such a way that

(2.11) lim
m→∞

‖ϕm − ϕ‖X = lim
m→∞

‖ψ1m − ψ1‖X = lim
m→∞

‖ψ2m − ψ2‖2 = 0.

By linear independence of {wj}, (2.10) can be put in normal form and by
Peano’s theorem [13], it has a solution in some interval [−Tm, Tm] with
Tm > 0. In order to prove that Tm = ∞, we ought to derive some a pri-

ori estimates on the solution of (2.10). Multiplying by ḡmj , ¯̇gmj ,
¯̇
hmj and

summing over j from 1 to m, we obtain




(um(t), iu̇m +∆um − f1(|um|
2, vm)um) = 0,

(u̇m(t), iu̇m +∆um − f1(|um|
2, vm)um) = 0,

(v̇m(t), v̈m −∆vm + µ
2vm +

1
2f2(|um|

2, vm)) = 0,

therefore

(2.12) ‖um(t)‖
2
2 = ‖ϕm‖

2
2,

and

(2.13) ‖∇um‖
2
2 + ‖∇vm‖

2
2 + ‖v̇m‖

2
2 + µ

2‖vm‖
2
2 +

\
Rn

F (|um|
2, vm) dx

= ‖∇ϕm‖
2
2 + ‖∇ψ1m‖

2
2 + ‖ψ2m‖

2
2 + µ

2‖ψ1m‖
2
2 +

\
Rn

F (|ϕm|
2, ψ1m) dx

≤ ‖∇ϕ‖22 + ‖∇ψ1‖
2
2 + ‖ψ2‖

2
2 + µ

2‖ψ1‖
2
2 +

\
Rn

F (|ϕ|2, ψ1) dx.
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Since

(2.14)
∑

1≤k≤m

|gmk|
2 ≤ C‖um‖

2
2 <∞,

∑

1≤k≤m

|hmk|
2 ≤ C‖vm‖

2
2 <∞,

by Picard’s theorem, (2.12)–(2.14) imply the existence of a global solution
of (2.10), that is, Tm =∞.

Step 2: Uniform estimates on um, vm. In order to take the limit as
m→∞, we need stronger uniform estimates on um and vm.

Case 1: p+ 1 ≤ 2∗. We have proved in Step 1 that

‖um‖
2
2 = ‖ϕm‖

2
2, E(um, vm, v̇m) = E(ϕm, ψ1m, ψ2m),

hence from (H2),

‖ϕm‖
2
2 + E(ϕm, ψ1m, ψ2m)

= ‖um‖
2
2 + ‖∇um‖

2
2 + ‖∇vm‖

2
2 + ‖v̇m‖

2
2 + µ

2‖vm‖
2
2 +

\
Rn

F (|um|
2, vm) dx

≥ ‖um‖
2
2 + ‖∇um‖

2
2 + ‖∇vm‖

2
2 + ‖v̇m‖

2
2

+ (µ2 − µ21)‖vm‖
2
2 − C0

\
Rn

|um|
p1+1 dx.

By direct computation, we have

−C0
\

Rn

|u|p1+1 dx ≥ −12‖∇u‖
2
2 −A‖u‖

B
2 ,

where

A = C0
2− (p1 + 1)δ(p1 + 1)

2ε
2

2−(p1+1)δ(p1+1)

0

> 0, B =
2(p1 + 1)(1− δ(p1 + 1))

2− (p1 + 1)δ(p1 + 1)
,

with ε0 small enough that

εa0
a
≤
1

2C0
for a =

2

(p1 + 1)δ(p1 + 1)
,

thus

‖ϕm‖
2
2 +E(ϕm, ψ1m, ψ2m) ≥

1
2‖um‖

2
2 + ‖∇um‖

2
2 + ‖∇vm‖

2
2 + ‖v̇m‖

2
2

+ (µ2 − µ21)‖vm‖
2
2 −A‖um‖

B
2 .

It is easy to see that

‖um‖p+1, ‖vm‖p+1, ‖um‖H1 , ‖vm‖H1

≤ C(‖ϕm‖
2
2 + E(ϕm, ψ1m, ψ2m) +A‖ϕm‖

B
2 )
1/2,

and

‖v̇m‖
2
2 ≤ ‖ϕm‖

2
2 + E(ϕm, ψ1m, ψ2m) +A‖ϕm‖

B
2 .
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So

sup
t
‖um‖X , sup

t
‖vm‖X , sup

t
‖v̇m‖2 ≤M(‖ϕm‖2, E(ϕm, ψ1m, ψ2m)).

Case 2: p+ 1 > 2∗. From (1.4), we have

‖ϕm‖
2
2 +E(ϕm, ψ1m, ψ2m)

≥ ‖um‖
2
2 + ‖∇um‖

2
2 + ‖∇vm‖

2
2 + ‖v̇m‖

2
2

+ (µ2 − µ21)‖vm‖
2
2 + C1‖um‖

p+1
p+1 + C1‖vm‖

p+1
p+1,

so

‖um‖p+1, ‖vm‖p+1 ≤ C(‖ϕm‖
2
2 +E(ϕm, ψ1m, ψ2m))

1/(p+1).

Arguing as in Case 1, we also have

‖um‖H1 , ‖vm‖H1 , ‖v̇m‖2 ≤ C(‖ϕm‖
2
2 +E(ϕm, ψ1m, ψ2m))

1/2.

Combining the above two cases, we always have

sup
t
‖um‖X , sup

t
‖vm‖X , sup

t
‖v̇m‖2 ≤M(‖ϕm‖2, E(ϕm, ψ1m, ψ2m)).

Since ‖ϕ‖2 and E(ϕ, ψ1, ψ2) are continuous functions of ϕ, ψ1 and ψ2, by
(2.11), we obtain

(2.15) sup
m
sup
t
‖um‖X , sup

m
sup
t
‖vm‖X , sup

m
sup
t
‖v̇m‖2 <∞,

i.e.,

(2.16) sup
m
‖um‖L∞(J,X), sup

m
‖vm‖L∞(J,X), sup

m
‖v̇m‖L∞(J,L2) <∞.

Note that f1(|um|
2, vm)um and f2(|um|

2, vm) are bounded from X × X to
L2 + L(p+1)/p, and (2.16) implies that they are uniformly bounded in L∞(J,
L2 + L(p+1)/p) and therefore ξm, ηm defined by

{
ξm = −∆um + f1(|um|

2, vm)um,

ηm = ∆vm − µ
2vm −

1
2f2(|um|

2, vm),

are uniformly bounded in L∞(J,X ′). It follows from the relation

‖um(t)− um(s)‖
2
2 = −2

t\
s

Im(um(s), ξm(τ)) dτ

≤ 2|s− t| ‖um‖L∞(J,X)‖ξm‖L∞(J,X′)

that the sequence {um} is uniformly (in m and t) Hölder continuous in L
2

with exponent 1/2, i.e., um(t) ∈ C
1/2(J, L2). From this together with the

fact that um ∈ L
∞(J,X), we obtain by interpolation

(2.17) um(t) ∈
⋂

2≤r<max(p+1,2∗)

Cα(r)(J, Lr).
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Note that vm(t)∈L
∞(J,X) and (∆vm−µ

2vm)−
1
2f2(|um|

2, vm)∈L
∞(J,X ′)

→֒ D′(J,X ′). By a similar argument to Lemma 2.1(2), we obtain

v̇m ∈ C
L(J,X ′) ∩ Cw(J, L

2) ∩ L∞(J, L2),

and

(2.18) vm ∈ Cw(J,X) ∩ C
L(J, L2) ∩

⋂

2<r<max(p+1,2∗)

Cβ(r)(J, Lr).

Step 3: Convergence of subsequences. Noting that (L∞(J,X))′ =
L1(J,X ′), (2.15) means one can extract subsequences that weak∗ converge
to u, v and v̇ respectively, still called {um}, {vm} and {v̇m} for simplicity,
i.e., as m→∞,

(2.19)





um
w∗
→ u in L∞(J,X),

vm
w∗
→ v in L∞(J,X),

v̇m
w∗
→ v̇ in L∞(J, L2).

To prove that (u, v) satisfies (1.1), we need some preparations. Let

ũ = iu̇+∆u, ṽ = v̈ −∆v + µ2v.

It is easy to see ũ, ṽ ∈ D′(J,X) + L∞(J,H−1). We first prove that

f1(|um|
2, vm)um

w∗
→ ũ in L∞(J, L2 + L(p+1)/p),(2.20)

−12f2(|um|
2, vm)

w∗
→ ṽ in L∞(J, L2 + L(p+1)/p).(2.21)

By (2.15), (H1′) and Lemma 2.1, {f1(|um|
2, vm)um}, {f2(|um|

2, vm)} are
bounded and therefore weak∗ relatively compact in L∞(J, L2 + L(p+1)/p).
On the other hand, from (2.10) and (2.19), for all θ(t) ∈ C∞c (J,C) and
j ≤ m,

(2.22)
\
J

(wj , f1(|um|
2, vm)um)θ(τ) dτ =

\
J

(wj , iu̇m +∆um)θ(τ) dτ

= −
\
J

((wj , ium)θ̇(τ)− (wj , ∆um)θ(τ)) dτ

m→∞
−→ −

\
J

((wj , iu)θ̇(τ)− (wj , ∆u)θ(τ)) dτ

=
\
J

(wj , iu̇+∆u)θ(τ)dτ =
\
J

(wj , ũ)θ(τ) dτ.

Since {wj} is a basis of X, and θ̄(τ)wj ∈ C
∞
c (J,X), (2.22) means that any

weak∗ convergent subsequence of {f1(|um|
2, vm)um} in L

∞(J, L2+L(p+1)/p)
converges to ũ in D′(J,X ′), therefore (2.20) holds.



Klein–Gordon–Schrödinger system 175

As to vm, by (2.19), for all θ(t) ∈ C
∞
c (J,C) and j ≤ m,\

J

(wj ,−
1
2f2(|um|

2, vm))θ(τ) dτ =
\
J

(wj , v̈m −∆vm + µ
2vm)θ(τ) dτ

=
\
J

((wj , vm)θ̈(τ) + (wj , (µ
2 −∆)vm)θ(τ)) dτ

m→∞
−→

\
J

((wj , v)θ̈(τ) + (wj , (µ
2 −∆)v)θ(τ)) dτ

=
\
J

(wj , v̈ −∆v + µ
2v)θ(τ) dτ =

\
J

(wj , ṽ)θ(τ) dτ,

therefore (2.21) holds.

By definition of ũ and ṽ,

{
u̇(t) = −iũ+ i∆u ∈ L∞(J, L(p+1)/p +H−1) = L∞(J,X ′),

v̈(t) = ṽ +∆v − µ2v ∈ L∞(J, L(p+1)/p +H−1) = L∞(J,X ′).

From this together with u(t), v(t) ∈ L∞(J,X), by a similar argument to
that in Lemma 2.1(2), we have

(2.23)





u(t) ∈ Cw(J,X) ∩
⋂

2≤r<max(p+1,2∗)

Cα(r)(J, Lr),

v(t) ∈ Cw(J,X) ∩ C
L(J, L2) ∩

⋂

2<r<max(p+1,2∗)

Cβ(r)(J, Lr),

v̇(t) ∈ Cw(J, L
2) ∩ CL(J,X ′).

We next prove that for all t ∈ J ,

um(t)
w
→ u(t), vm(t)

w
→ v(t).

Firstly, for fixed t, (2.15) implies that {um(t)} is bounded on X uniformly
in m, and is therefore weakly relatively compact since X is reflexive. By
(2.19), we only need to prove that it has the unique weak limit point u.
Suppose that it has another limit point χ in X. For τ in a neighborhood
of t, (2.17) and (2.23) imply

‖u(τ)− u(t)‖2, ‖um(τ)− um(t)‖2 ≤ C|t− τ |
1/2,

so for γ > 0 we can estimate

‖u(t)− χ(t)‖22 = (u(t)− χ(t), um(t)− χ(t))

+
1

2γ

t+γ\
t−γ

(u(t)− χ(t), u(t)− u(τ) + um(τ)− um(t) + u(τ)− um(τ)) dτ
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≤ (u(t)− χ(t), um(t)− χ(t)) + 2Cγ
1/2‖u(t)− χ(t)‖2

+
1

2γ

t+γ\
t−γ

(u(t)− χ(t), u(τ)− um(τ)) dτ

= I + II + III.

Now um(t)
w
→ χ in X implies I = 0, um(t)

w∗
→ u(t) in L∞(J,X) implies

III = 0 for fixed γ, II tends to zero with γ, so χ(t) = u(t) in this interval.
Iterating this process, we obtain χ(t) = u(t) in the whole interval J .
The same result for {vm} can be deduced from (2.18) and (2.23).

Step 4: Initial conditions. For all θ(t) ∈ C∞c (J,C) with θ(0) = 1. Inte-
grating by parts, we have for J0 = (0,∞) ∩ J ,\

J0

(wj , ium(τ)θ̇(τ) + ξm(τ)θ(τ)) dτ = −(wj , iϕm).

Letting m→∞ and using (2.11), we get\
J0

(iu(τ)θ̇(τ) + iu̇(τ)θ(τ)) dτ = −iϕ,

i.e.,
iu(τ)θ(τ)|J0 = −iϕθ(0),

so u(0) = ϕ.
For vm, we can prove similarly that v(0) = ψ1 and v̇(0) = ψ2.

Step 5: (u, v) satisfies (1.1). By definition of ũ, ṽ, we only need to prove
that

(2.24) ũ = f1(|u|
2, v)u, ṽ = −12f2(|u|

2, v).

(2.20) and (2.21) imply, for J and any bounded open set Ω ⊂ R
n,

‖f1(|um|
2, vm)um‖(p+1)/p,J×Ω, ‖f2(|um|

2, vm)‖(p+1)/p,J×Ω <∞,

so

(2.25) f1(|um|
2, vm)um

w
→ ũ, f2(|um|

2, vm)
w
→ ṽ

in L(p+1)/p(J ×Ω).
On the other hand, um(t) ∈ C

1/2(J, L2) implies um is equicontinuous in
J × Ω, and (2.15) implies um is uniformly bounded in H

1(Ω), so that, by
H1(Ω) →֒→֒ L2(Ω) and Ascoli’s theorem, the sequence {um} is relatively

compact in C(J, L2(Ω)). Since (2.19) means um
w∗
→ u in L∞(J, L2(Ω)), we

have
um → u in C(J, L2(Ω)),

thus
um → u in L2(J ×Ω).
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Moreover, vm ∈ C
L(J, L2) (see (2.18)) implies vm is equicontinuous in

J ×Ω, and by a similar argument, we also have

vm → v in C(J, L2(Ω)),

thus

vm → v in L2(J ×Ω).

We can then extract subsequences of {um} and {vm} such that

umk
a.e.
→ u, vmk

a.e.
→ v,

and {
f1(|umk |

2, vmk)umk
a.e.
→ f1(|u|

2, v)u,

f2(|umk |
2, vmk)

a.e.
→ f2(|u|

2, v)

in J ×Ω. Moreover, f1(|um|
2, vm)um, f2(|um|

2, vm) ∈ L
∞(J, L2 +L(p+1)/p)

implies f1(|umk |
2, vmk)umk , f2(|umk |

2, vmk) ∈ L
(p+1)/p(J ×Ω), and then

(2.26)

{
f1(|umk |

2, vmk)umk
w
→ f1(|u|

2, v)u,

−12f2(|umk |
2, vmk)

w
→ −12f2(|u|

2, v)

in L(p+1)/p(J × Ω). From (2.25) and (2.26), (2.24) holds in J × Ω because
the weak limit points of {um} and {vm} are both unique.
Since Ω is arbitrary, we obtain, for all (t, x) ∈ J × R

n,

f1(|u|
2, v)u = ũ, −12f2(|u|

2, v) = ṽ.

Step 6: Conservation laws. Since (u, v) satisfies (1.1), ‖u(t)‖2 = ‖ϕ‖2
follows from Lemma 2.1(4). In order to prove the energy inequality, we need
some properties.
For fixed t ∈ J , since X is reflexive, the convergences




um
w∗
→ u in X,

vm
w∗
→ v in X,

v̇m
w∗
→ v̇ in L2,

as m→∞, imply 



um
w
→ u in L2,

vm
w
→ v in L2,

v̇m
w
→ v̇ in L2.

On the other hand, by the conservation of L2-norm,

lim
m→∞

‖um(t)‖2 = lim
m→∞

‖ϕm‖2 = ‖ϕ‖2 = ‖u(t)‖2,

thus

lim
m→∞

‖um(t)− u(t)‖2 = 0.

Moreover, um(t) ∈ C
1/2(J, L2) means um is equicontinuous in L

2, so um(t)
is uniformly strongly convergent in L2 for all t ∈ J .
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By the interpolation inequality

‖um(t)− u(t)‖r ≤ C(‖um‖
1−θ
X + ‖u‖1−θX )‖um − u‖

θ
2,

we get

lim
m→∞

‖um − u‖C(J,Lr) = 0

for all 2 ≤ r < max(p+ 1, 2∗).

Further, (2.18) means vm is equicontinuous in J , and supm supt ‖vm‖X <
∞ means supm supt ‖vm‖L2 <∞. By Ascoli’s theorem, {vm(t)} is relatively

compact in C(J, L2). Note that vm
w∗
→ v in L∞(J,X) implies vm

w∗
→ v in

L∞(J, L2), so we obtain

vm → v in C(J, L2).

By interpolation, we also have

lim
m→∞

‖vm − v‖C(J,Lr) = 0.

We have proved in Step 1 that E(um, vm, v̇m) = E(ϕm, ψ1m, ψ2m). Letting
m→∞, we have from (2.11)

‖∇ϕm‖
2
2 + ‖∇ψ1m‖

2
2 + ‖ψ2m‖

2
2 + µ

2‖ψ1m‖
2
2

m→∞
−→ ‖∇ϕ‖22 + ‖∇ψ1‖

2
2 + ‖ψ2‖

2
2 + µ

2‖ψ1‖
2
2,

and

(2.27)
∣∣∣
\

Rn

F (|ϕm|
2, ψ1m) dx−

\
Rn

F (|ϕ|2, ψ1) dx
∣∣∣

≤
\

Rn

(|F (|ϕm|
2, ψ1m)− F (|ϕ|

2, ψ1m)|+ |F (|ϕ|
2, ψ1m)− F (|ϕ|

2, ψ1)|) dx

≤
\

Rn

1\
0

|f1(α|ϕm|
2 + (1− α)|ϕ|2, ψ1m))(|ϕm|+ |ϕ|)| | |ϕm| − |ϕ| | dαdx

+
\

Rn

1\
0

|f2(|ϕ|
2, βψ1m + (1− β)ψ1)| |ψ1m − ψ1| dβ dx

= I + II
m→∞
−→ 0.

In fact, we again decompose f1 and f2 as in (2.4)–(2.6), to get

I ≤ C
\

Rn

(|ϕm|
p + |ϕ|p + |ψ1m|

p)|ϕm − ϕ| dx

+ C
\

Rn

(|ϕm|+ |ϕ|)|ϕm − ϕ| dx

≤ C(‖ |ϕm|
p‖(p+1)/p + ‖ |ϕ|

p‖(p+1)/p + ‖ |ψ1m|
p‖(p+1)/p)‖ϕm − ϕ‖X

+ C(‖ϕm‖2 + ‖ϕ‖2)‖ϕm − ϕ‖2

≤ C‖ϕm − ϕ‖X
m→∞
−→ 0,
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and similarly

II ≤ C
\

Rn

(|ϕ|p + |ψ1m|
p + |ψ1|

p)|ψ1m − ψ1| dx

+ C
\

Rn

(|ϕ|+ |ψ1m|+ |ψ1|)|ψ1m − ψ1| dx

≤ C‖ψ1m − ψ1‖X
m→∞
−→ 0.

Thus
E(ϕm, ψ1m, ψ2m)

m→∞
−→ E(ϕ, ψ1, ψ2).

On the other hand,

E(um, vm, v̇m) = ‖∇um‖
2
2 + ‖∇vm‖

2
2 + ‖v̇m‖

2
2 + µ

2‖vm‖
2
2

+
\

Rn

F (|um|
2, vm) dx.

Case 1: p + 1 < 2∗. By the same process as in the proof of (2.27), we
obtain \

Rn

F (|um|
2, vm) dx

m→∞
−→

\
Rn

F (|u|2, v) dx,

and since ‖∇um‖
2
2, ‖∇vm‖

2
2,‖v̇m‖

2
2,‖vm‖

2
2 are all weakly lower semicontinu-

ous, we get
lim inf
m→∞

E(um, vm, v̇m) ≥ E(u, v, v̇),

so (1.7) holds.

Case 2: p+ 1 ≥ 2∗. Using F1 instead of F , and p̄ instead of p in (H1
′),

we can still prove that\
Rn

F1(|um|
2, vm) dx

m→∞
−→

\
Rn

F1(|u|
2, v) dx,

and since ‖∇um‖
2
2, ‖∇vm‖

2
2,‖v̇m‖

2
2,‖vm‖

2
2,
T
Rn
F2(|um|

2, vm) dx are all weak-
ly lower semicontinuous, we also have (1.7).

3. Uniqueness of solutions. In this section, we will prove that under
stronger assumptions on the interactions, the solutions obtained in §2 are
unique. Clearly (H3) implies (H1), and p < 1+4/(n− 2) implies that H1 →֒
Lp+1, so that X = H1. Firstly, let us introduce some preliminary lemmas.

Lemma 3.1. Let n ≥ 3, ̺ and r satisfy

(3.1) ̺ ≤ 1− β(r), 0 ≤ δ(r) ≤ n/2, 0 ≤ δ(r) + ̺− 1 < 1/2,

and let q satisfy

δ(r) + ̺− 1 = 1/q,(3.2)

δ(r) + ̺− 1 ≤ 2/q ≤ δ(r), q > 2.(3.3)
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Then for any (ϕ, ψ1, ψ2) ∈ H
1 ×H1 × L2,

(3.4)

{
‖U(t)ϕ‖Lq(R,B̺r,2) ≤ C‖ϕ‖H1 ,

‖K(t)ψ2 + K̇(t)ψ1‖Lq(R,B̺r,2) ≤ C(‖ψ2‖2 + ‖ψ1‖H1).

The proof is given in [10, 11].

Lemma 3.2. Let f1(|u|
2, v), f2(|u|

2, v) satisfy (H3) for 1 ≤ p < ∞, and
let 0 < λ < 1, 1 ≤ l′ ≤ k ≤ ∞, 1 ≤ m ≤ ∞ and 1/s = 1/l′ − 1/k. Then

(3.5)
‖f1(|u|

2, v)u‖Bλ
l′,m
≤ C(‖u‖Bλk,m + ‖v‖Bλk,m)(‖u‖

p−1
(p−1)s + ‖v‖

p−1
(p−1)s),

‖f2(|u|
2, v)‖Bλ

l′,m
≤ C(‖u‖Bλk,m + ‖v‖Bλk,m)(‖u‖

p−1
(p−1)s + ‖v‖

p−1
(p−1)s).

Proof. Use the equivalent norm of the Besov space Bλl′,m,

(3.6) ‖v‖Bλ
l′,m
= ‖v‖l′ +

{∞\
0

( sup
|y|≤t

t−λ‖τyv − v‖l′)
m dt

t

}1/m
,

where τy denotes the space translation by y ∈ R
n.

We only need to prove the result for Ḃσp,q instead of B
σ
p,q. From (H3) and

the Hölder inequality, we have

(3.7)




‖f1(|u(x+ y)|
2, v(x+ y))u(x+ y)− f1(|u(x)|

2, v(x))u(x)‖l′

≤ C(‖u‖p−1(p−1)s + ‖v‖
p−1
(p−1)s)(‖u(x+ y)− u(x)‖k + ‖v(x+ y)− v(x)‖k),

‖f2(|u(x+ y)|
2, v(x+ y))− f2(|u(x)|

2, v(x))‖l′

≤ C(‖u‖p−1(p−1)s + ‖v‖
p−1
(p−1)s)(‖u(x+ y)− u(x)‖k + ‖v(x+ y)− v(x)‖k),

from which (3.5) follows immediately.

Lemma 3.3. Let n ≥ 3, 0 ∈ I be an open interval , and (ϕ, ψ1, ψ2) ∈
H1 ×H1 × L2. If ̺, r satisfy (3.2) of Lemma 3.1, and 1/q ≥ ̺ + δ(r) − 1,
then u(t), v(t) ∈ Lqloc(I,B

̺
r,2) and for any compact J ⊂ I containing 0,

(3.8) ‖u‖Lq(J,B̺r,2), ‖v‖Lq(J,B
̺
r,2)

≤ C(‖u‖H1 , ‖v‖H1 , ‖ϕ‖H1 , ‖ψ1‖H1 , ‖ψ2‖L2).

Proof. Consider

(3.9)





u(t) = U(t)ϕ− i

t\
0

U(t− τ)f1(|u|
2, v)u(τ) dτ,

v(t) = K̇(t)ψ1 +K(t)ψ2 −
1

2

t\
0

K(t− τ)f2(|u|
2, v) dτ.

Let σ = ̺+ δ(r)− 1, and choose r, σ′ and σ′′ such that
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(3.10) 1 ≤ δ(r) ≤ n/2, 0 ≤ σ′ < σ′′ ≤ σ′ + ε < 1/2,

with ε to be chosen later.

Claim.

‖U(t)f1(|u|
2, v)u‖

B̺
′′

r,2
≤ C|t|−δ(l)(1 + ‖u‖ν

B̺
′

r,2

+ ‖v‖ν
B̺
′

r,2

),(3.11)

‖K(t)f2(|u|
2, v)‖

B̺
′′

r,2
≤ C|t|−γ(l)(1 + ‖u‖ν

B̺
′

r,2

+ ‖v‖ν
B̺
′

r,2

)(3.12)

for 0 ≤ γ < 1, 0 ≤ δ < 1, 0 ≤ ν ≤ 1 and C depending only on γ, ν and ε,
but not on ̺′ and ̺′′.

By an Lr-Lr
′

estimate and Sobolev embedding, we have

‖U(t)f1(|u|
2, v)u‖

B̺
′′

r,2
≤ C‖U(t)f1(|u|

2, v)u‖
B
λ+1−2β(l)
l,2

(3.13)

≤ C|t|−δ(l)‖f1(|u|
2, v)u‖

B
λ+1−2β(l)

l′,2

≤ C|t|−δ(l)‖f1(|u|
2, v)u‖Bλ

l′,2
,

and

‖K(t)f2(|u|
2, v)‖

B̺
′′

r,2
≤ C‖K(t)f2(|u|

2, v)‖
B
λ+1−2β(l)
l,2

(3.14)

≤ C|t|−γ(l)‖f2(|u|
2, v)‖Bλ

l′,2

where B
λ+1−2β(l)
l,2 →֒ B̺

′′

r,2 is ensured by the condition

(3.15)
1

l
−
1

r
≤
λ+ 1− 2β(l)− ̺′′

n
for r ≥ l,

therefore by

(3.16) λ ≥ σ′′ +
δ(l)

n
,

in particular by

(3.17) λ = σ′′ +
δ(l)

n
.

And Bλl′,2 →֒ B
λ+1−2β(l)
l′,2 is ensured by the condition

(3.18) λ ≥ λ+ 1− 2β(l),

hence by

(3.19) β(l) ≥ 1/2.

Noting that 0 < σ′′ < 1/2, we have 0 < λ < 1 for 2 ≤ l ≤ ∞, and using
Lemma 3.2 for m = 2, we obtain

(3.20)

{
‖f1(|u|

2, v)u‖Bλ
l′,2
≤ C(‖u‖Bλk,2 + ‖v‖Bλk,2)(‖u‖

p−1
(p−1)s + ‖v‖

p−1
(p−1)s),

‖f2(|u|
2, v)‖Bλ

l′,2
≤ C(‖u‖Bλk,2 + ‖v‖Bλk,2)(‖u‖

p−1
(p−1)s + ‖v‖

p−1
(p−1)s).
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Firstly, we consider ‖ · ‖Bλk,2 . Since λ = σ
′′+ δ(l)/n, 2 ≤ l ≤ ∞, δ(r) ≥ 1,

σ′ = ̺′+δ(r)−1 and 0 ≤ σ′ < σ′′ ≤ σ′+ε < 1/2, we have λ ≥ σ′′ > σ′ ≥ ̺′.

We can use interpolation between B̺
′

r,2 and H
a to estimate norms in Bλk,2,

where Ha ∼ (H1, L2)a for 0 < a ≤ 1, hence

(3.21) λ = θ̺′ + (1− θ)a ≤ θ̺′ + (1− θ),
1

k
=
θ

r
+
1− θ

2
,

i.e.,

(3.22) 0 ≤ δ(k) ≤
1− λ

1− ̺′
δ(r).

Secondly, we consider ‖ · ‖(p−1)s.

Case 1: (p− 1)s ≥ 2∗.

Subcase (i): ̺′ < 0. Note that

(3.23) L(p−1)s = F 0(p−1)s,2 ←֓ B0(p−1)s,2 ∼ (B̺
′

r,2, H
1)θ

where

(3.24) 0 = θ̺′ + (1− θ),
1

(p− 1)s
=
θ

r
+
1− θ

2
.

Hence

(3.25) δ((p− 1)s) =
1

1− ̺′
δ(r) = 1 +

σ′

1− ̺′
.

Subcase (ii): ̺′ ≥ 0. Noting that σ′ = ̺′ + δ(r) − 1, 0 ≤ σ′ < 1/2, we
have

(3.26) −
̺′

n
+
1

r
=
1

2
−
1

n
−
σ′

n
≥
1

2
−
1

n
−
1

2n
=
n− 3

2n
≥ 0.

Define

(3.27)
1

r̃
=
1

r
−
̺′

n
.

Then

(3.28) L(p−1)s ∼ (Lr̃, L2)θ

where

(3.29)
1

(p− 1)s
=
θ

r̃
+
1− θ

2
, 0 ≤ θ ≤ 1.

Hence

(3.30) δ((p− 1)s) = θδ(r̃) = θ(δ(r) + ̺′) = θ(1 + σ′) ≤ 1 + σ′.

Case 2: (p− 1)s < 2∗. Noting that H1 →֒ L(p−1)s, we have

(3.31) δ((p− 1)s) < δ(2∗) = 1 ≤ 1 + σ′.
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Combining the above two cases, we need the interpolation conditions

(3.32)





0 ≤ δ(k) ≤
1− λ

1− ̺′
δ(r),

0 ≤ δ((p− 1)s) ≤ 1 + min

(
σ′,

σ′

1− ̺′

)
= 1 +

σ′

1 + ̺′−
,

where ̺′± = max(0,±̺
′), or equivalently

(3.33)





0 ≤ δ(k) ≤
1− λ

1− ̺′
δ(r),

(p− 1)

(
n

2
− 1−

σ′

1 + ̺′−

)
≤
n

s
≤ (p− 1)

n

2
,

which are satisfied provided

(3.34)





(p− 1)
n

2
≥ δ(l),

(p− 1)

(
n

2
− 1−

σ′

1 + ̺′−

)
≤ δ(l) + δ(r)

1− λ

1− ̺′
.

In fact, (3.33) and n/s = δ(l) + δ(k) imply that

(p− 1)

(
n

2
− 1−

σ

1 + ̺′−

)
≤ δ(l) + δ(k) ≤

n

2
(p− 1),

and we can always choose k such that (3.33) holds under (3.34).

Since ̺ ≤ 1 − β(r), a sufficient condition for ̺ + δ(r) − 1 < 1/2 is
1− β(r) + δ(r)− 1 < 1/2, hence γ(r) < 1 or r < 2(n− 1)/(n− 3). So

δ(l) ≤ δ(r) ≤ δ

(
2(n− 1)

n− 3

)
=

n

n− 1
,

and the first interpolation condition is satisfied if (p− 1)n2 ≥
n
n−1 , or equiv-

alently

(3.35) p− 1 ≥
2

n− 1
.

As to the second condition, note that 1 + σ′ − ̺′ = δ(r), σ′′ ≤ σ′ + ε,
λ = σ′′ + δ(l)/n. A sufficient condition is

(3.36) (p−1)

(
n

2
−1−

σ′

1 + ̺′−

)
≤ 1+γ(l)−ε−

σ′

1− ̺′

(
δ(r)−1+ε+

δ(l)

n

)
.

In fact, we only need to prove that

(3.37) 1 + γ(l)− ε−
σ′

1− ̺′

(
δ(r)− 1 + ε+

δ(l)

n

)
≤ δ(l) + δ(r)

1− λ

1− ̺′
.

In view of the fact that
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(3.38) 1 + γ(l)− ε−
σ′

1− ̺′

(
δ(r)− 1 + ε+

δ(l)

n

)

= δ(r)
1− δ(l)/n− ε− σ′

1− ̺′
+ δ(l),

and

(3.39) δ(l) + δ(r)
1− λ

1− ̺′
= δ(l) + δ(r)

1− σ′′ − δ(l)/n

1− ̺′
.

(3.37) is equivalent to

(3.40) δ(r)
1− δ(l)/n− ε− σ′

1− ̺′
+ δ(l) ≤ δ(l) + δ(r)

1− σ′′ − δ(l)/n

1− ̺′
,

i.e., σ′′ ≤ σ′ + ε, which is obviously true.

Now we begin to reduce condition (3.36). When σ′ = 0, it reduces to

(3.41) p− 1 ≤
2(1 + γ(l)− ε)

n− 2
,

which is satisfied for γ(l) = 1− ε provided p− 1 ≤ 4(1− ε)/(n− 2).

We only need to consider the case of σ′ > 0. Under (3.41) we have

(3.42) (n− 2)

(
δ(r)− 1 + ε+

δ(l)

n

)
≤ 2(1 + γ(l)− ε)(1− ̺′+).

In fact, we only need to prove that

(3.43)
2(1 + γ(l)− ε)

n− 2

(
n

2
− 1−

σ′

1 + ̺′−

)

≤ 1 + γ(l)− ε−
σ′

1− ̺′

(
δ(r)− 1 + ε+

δ(l)

n

)
,

while from

(3.44)
2(1 + γ(l)− ε)

n− 2

(
n

2
− 1−

σ′

1 + ̺′−

)

= 1 + γ(l)− ε−
1 + γ(l)− ε

n− 2

2σ′

1 + ̺′−
,

we only need

(3.45) (1 + γ(l)− ε)
2σ′

1 + ̺′−
≥ (n− 2)

σ′

1− ̺′

(
δ(r)− 1 + ε+

δ(l)

n

)
,

or equivalently

(3.46) 2(1 + γ(l)− ε)(1− ̺′+) ≥ (n− 2)(δ(r)− 1 + ε+ δ(l)/n)

where we used 1− ̺′ = (1− ̺′+)(1 + ̺
′
−).
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Subcase (i): ̺′ ≤ 0. Then ̺′+ = 0 and (3.46) reduces to

(3.47) 2(1 + γ(l)− ε) ≥ (n− 2)(δ(r)− 1 + ε+ δ(l)/n).

Since δ(r) = n
n−1 γ(r), this is equivalent to

(3.48) (n− 2)

(
n

n− 1
γ(r)− (1− ε) +

γ(l)

n− 1

)
≤ 2(1 + γ(l)− ε).

By direct computation, we have

(3.49) (n− 2)γ(r) ≤ (n− 1)(1− ε) + γ(l),

which is satisfied by choosing γ(l) = 1 − ε and γ(r) ≤ n
n−2 (1 − ε), and in

particular for γ(l) = γ(r) = 1− ε.

Subcase (ii): ̺′ > 0. Then ̺′+ = ̺′, and σ′ = ̺′ + δ(r) − 1 implies
1− ̺′+ = 1− ̺

′ = δ(r)− σ′. Therefore (3.46) reduces to

(3.50) (n− 2)(δ(r)− 1 + ε+ δ(l)/n) ≤ 2(1− ε+ γ(l))(δ(r)− σ′).

Let γ(r) = γ(l) = 1− ε. Using δ(r) = n
n−1γ(r) =

n
n−1 (1− ε), (3.50) reduces

to
(3.51) (n− 2) ≤ 2n(1− ε)− 2σ′(n− 1),

which is satisfied for 0 ≤ σ′ < 1/2, and for ε ≤ 3/2n.
Thus we have show that the interpolation is always possible. Since 1/l′ =

1/k + 1/s, we can always choose k and s to ensure that λ + δ(k) − 1 and
δ((p− 1)s)− 1 have the same sign. In fact

(3.52)





λ+ δ(k)− 1 = 0 implies
1

kc
=
n− 2(1− λ)

2n
,

δ((p− 1)s)− 1 = 0 implies
1

sc
=
(n− 2)(p− 1)

2n
.

It is easy to see that

(3.53)





1/k > 1/kc ⇔ λ+ δ(k)− 1 < 0,

1/k < 1/kc ⇔ λ+ δ(k)− 1 > 0,

1/s > 1/sc ⇔ δ((p− 1)s)− 1 < 0,

1/s < 1/sc ⇔ δ((p− 1)s)− 1 > 0.

If 1/kc + 1/sc < 1/l
′, let 1/l′ − (1/kc + 1/sc) = ε > 0, and define

(3.54)
1

k
=
1

kc
+
ε

2
>
1

kc
,
1

s
=
1

sc
+
ε

2
>
1

sc
.

Then λ+ δ(k)− 1 and δ((p− 1)s)− 1 are both negative.
If 1/kc + 1/sc > 1/l

′, then we can also choose k and s to ensure that
λ+ δ(k)− 1 and δ((p− 1)s)− 1 are both positive.
Now we begin to apply interpolation to prove the Claim; for this purpose,

we consider the following two cases:
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Negative Case.

(i) δ((p− 1)s)− 1 < 0, hence (p− 1)s < 2∗, therefore

(3.55) H1 →֒ L(p−1)s.

(ii) λ+ δ(k)− 1 < 0, hence B12,2 →֒ Bλk,2, therefore

(3.56) H1 = F 12,2 = B
1
2,2 →֒ Bλk,2.

Thus

(3.57) ‖ϕ‖(p−1)s, ‖ϕ‖Bλk,2 ≤ C‖ϕ‖H1 .

So

(3.58) ‖f1(|u|
2, v)u‖Bλ

l′,2
, ‖f2(|u|

2, v)‖Bλ
l′,2

≤ C(‖u‖p−1H1 + ‖v‖
p−1
H1 )(‖u‖H1 + ‖v‖H1).

Positive Case.

(i) δ((p− 1)s)− 1 > 0, i.e., (p− 1)s > 2∗, hence

(3.59) L(p−1)s = F 0(p−1)s,2 ←֓ B0(p−1)s,2 ∼ (H1, B̺
′

r,2)θ1 .

(ii) λ+ δ(k)− 1 > 0, i.e., δ(k) > 1− λ, hence

(3.60) Bλk,2 ∼ (B12,2, B
̺′

r,2)θ2 = (H
1, B̺

′

r,2)θ2 .

So

(3.61) ‖f1(|u|
2, v)u‖Bλ

l′,2
≤ C(‖u‖p−1(p−1)s + ‖v‖

p−1
(p−1)s)(‖u‖Bλk,2 + ‖v‖Bλk,2)

≤ C(‖u‖
(p−1)θ1
H1 ‖u‖

(p−1)(1−θ1)

B̺
′

r,2

+ ‖v‖
(p−1)θ1
H1 ‖v‖

(p−1)(1−θ1)

B̺
′

r,2

)

· (‖u‖θ2H1‖u‖
1−θ2

B̺
′

r,2

+ ‖v‖θ2H1‖v‖
1−θ2

B̺
′

r,2

)

= C(‖u‖
(p−1)θ1+θ2
H1 ‖u‖

(p−1)(1−θ1)+(1−θ2)

B̺
′

r,2

+ ‖v‖
(p−1)θ1+θ2
H1 ‖v‖

(p−1)(1−θ1)+(1−θ2)

B̺
′

r,2

+ ‖u‖
(p−1)θ1
H1 ‖u‖

(p−1)(1−θ1)

B̺
′

r,2

‖v‖θ2H1‖v‖
1−θ2

B̺
′

r,2

+ ‖v‖
(p−1)θ1
H1 ‖v‖

(p−1)(1−θ1)

B̺
′

r,2

‖u‖θ2H1‖u‖
1−θ2

B̺
′

r,2

)

≤ C(‖u‖
(p−1)θ1+θ2
H1 + ‖v‖

(p−1)θ1+θ2
H1 )

· (‖u‖
(p−1)(1−θ1)+(1−θ2)

B̺
′

r,2

+ ‖v‖
(p−1)(1−θ1)+(1−θ2)

B̺
′

r,2

).

Let (p− 1)θ1 + θ2 = p− ν. Then (p− 1)(1− θ1) + (1− θ2) = ν and

(3.62) (p− 1)(n/2− 1) = δ(l) + 1− λ+ νσ′.
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Since λ = σ′′ + δ(l)/n, (3.62) becomes

(p− 1)(n/2− 1) = δ(l) + 1− σ′′ − δ(l)/n+ νσ′(3.63)

= γ(l) + 1− σ′′ + νσ′.

The condition ν ≤ 1 becomes

(3.64) (p− 1)(n/2− 1) ≤ 1 + γ(l)− σ′′ + σ′,

which is satisfied by choosing γ(l) = 1 − ε, σ′′ ≤ σ′ + ε provided that
p− 1 ≤ 4(1− ε)/(n− 2).

By (3.58) and (3.61),

(3.65) ‖U(t)f1(|u|
2, v)u‖

B̺
′′

r,2
≤ C|t|−δ(l)‖f1(|u|

2, v)u‖Bλ
l′,2

≤ C|t|−δ(l)((‖u‖p−νH1 + ‖v‖
p−ν
H1 )(‖u‖

ν

B̺
′

r,2

+ ‖v‖ν
B̺
′

r,2

)

+ (‖u‖p−1H1 + ‖v‖
p−1
H1 )(‖u‖H1 + ‖v‖H1))

≤ C|t|−δ(l)(1 + ‖u‖ν
B̺
′

r,2

+ ‖v‖ν
B̺
′

r,2

).

By a similar argument, we have

(3.66) ‖K(t)f2(|u|
2, v)‖

B̺
′′

r,2
≤ C|t|−γ(l)(1 + ‖u‖ν

B̺
′

r,2

+ ‖v‖ν
B̺
′

r,2

).

Now we use the Claim to complete the proof of Lemma 3.3 for γ(r) =
1−ε. We can easily obtain ̺m = −(1− nε)/(n− 1), corresponding to σ = 0,

and ̺M =
1
2 +

(n+1)ε−2
2(n−1) , corresponding to the upper limit allowed by the

condition of Lemma 3.1. For that purpose, we estimate iteratively for ̺′′

increasing from ̺m to ̺M in steps of ε and for 1/q = σ
′′, using the Claim.

We obtain at each step

(3.67)



‖u(t)‖
B̺
′′

r,2
≤ ‖U(t)ϕ‖

B̺
′′

r,2
+ C

t\
0

|t− τ |−δ(l)(1 + ‖u‖ν
B̺
′

r,2

+ ‖v‖ν
B̺
′

r,2

) dτ,

‖v(t)‖
B̺
′′

r,2
≤ ‖K̇(t)ψ1 +K(t)ψ2‖B̺′′r,2

+ C

t\
0

|t− τ |−γ(l)(1 + ‖u‖ν
B̺
′

r,2

+ ‖v‖ν
B̺
′

r,2

) dτ.

The norms of the constant terms were considered in Lemma 3.1. Apply-
ing the Young inequality to the time integral, we obtain, for any compact
interval J containing 0,
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(3.68)





‖u(t)‖
Lq(J,B̺

′′

r,2)
≤ ‖U(t)ϕ‖

Lq(J,B̺
′′

r,2)

+ C(J)(1 + ‖u‖ν
Lνq(J,B̺

′

r,2)
+ ‖v‖ν

Lνq(J,B̺
′

r,2)
),

‖v(t)‖
Lq(J,B̺

′′

r,2)
≤ ‖K̇(t)ψ1 +K(t)ψ2‖Lq(J,B̺′′r,2)

+ C(J)(1 + ‖u‖ν
Lνq(J,B̺

′

r,2)
+ ‖v‖ν

Lνq(J,B̺
′

r,2)
).

Since νq ≤ q < 1/σ′, we can continue this iteration; after a finite number of
steps, we obtain u(t), v(t) ∈ Lq(J,B̺r,2) for all ̺ ∈ [̺m, ̺M ] and 1/q = σ.

This completes the proof of the special case of γ(r) = 1−ε. For γ(r̄) ≥ 1,
let σ = ¯̺+ δ(r̄)− 1 = ̺ + δ(r)− 1 for r ≤ r̄. Then B̺r,2 →֒ B ¯̺r̄,2, therefore
‖ · ‖B ¯̺r̄,2 ≤ C‖ · ‖B

̺
r,2
, so it can be reduced to the case of γ(r) = 1− ε.

Proof of Theorem 2. Let (u1, v1) and (u2, v2) be two solutions of (1.1).
Then

(3.69)





u1(t)− u2(t) = −i

t\
0

U(t− τ)(f1(|u1|
2, v1)u1 − f1(|u2|

2, v2)u2) dτ,

v1(t)− v2(t) = −
1

2

t\
0

K(t− τ)(f2(|u1|
2, v1)− f2(|u2|

2, v2)) dτ.

We estimate (3.69) in Lr̄ for some r̄ satisfying

(3.70) 0 ≤ γ̄ = γ(r̄) =
n− 1

n+ 1
, 0 ≤ δ̄ = δ(r̄) =

n

n+ 1
.

On the one hand,

(3.71) ‖U(t− τ)(f1(|u1|
2, v1)u1 − f1(|u2|

2, v2)u2)‖r̄

≤ C|t− τ |−δ̄‖f1(|u1|
2, v1)u1 − f1(|u2|

2, v2)u2‖r̄′

≤ C|t− τ |−δ̄(‖u1‖
p−1

(p−1)l̄
+ ‖u2‖

p−1

(p−1)l̄
+ ‖v1‖

p−1

(p−1)l̄
+ ‖v2‖

p−1

(p−1)l̄
)

· (‖u1 − u2‖r̄ + ‖v1 − v2‖r̄)

where 1/r̄′ = 1/r̄ + 1/l̄, so 2δ̄ = n/l̄. On the other hand,

(3.72) ‖K(t− τ)(f2(|u1|
2, v1)− f2(|u2|

2, v2))‖r̄

≤ C‖K(t− τ)(f2(|u1|
2, v1)− f2(|u2|

2, v2))‖B0r̄,2

≤ C|t− τ |−γ̄‖f2(|u1|
2, v1)− f2(|u2|

2, v2)‖B2β(r̄)−1
r̄′,2

≤ C|t− τ |−γ̄‖f2(|u1|
2, v1)− f2(|u2|

2, v2)‖s̄

≤ C|t− τ |−γ̄(‖u1‖
p−1

(p−1)l̄
+ ‖u2‖

p−1

(p−1)l̄
+ ‖v1‖

p−1

(p−1)l̄
+ ‖v2‖

p−1

(p−1)l̄
)

· (‖u1 − u2‖r̄ + ‖v1 − v2‖r̄)
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where B0r̄,2 →֒ F 0r̄,2 = Lr̄ for r̄ ≥ 2, and Ls̄ = F 0s̄,2 →֒ B0s̄,2 →֒ B
2β(r̄)−1
r̄′,2 . To

ensure the embeddings, we need

(3.73) s̄ ≤ r̄′ ≤ 2,
1

s̄
−
1

r̄′
=
1− 2β(r̄)

n
,

i.e.,

(3.74) s̄ ≤ r̄′ ≤ 2,
n

s̄
=
1

r̄
+
n+ 1

2
,

therefore 1/r̄ + 1/l̄ = 1/s̄ implies

n

l̄
=
n

s̄
−
n

r̄
=
1

r̄
+
n+ 1

2
−
n

r̄
= 1 + γ̄.

By the Hölder inequality, we obtain

(3.75)



‖u1(t)− u2(t)‖r̄ ≤ C( sup
0≤τ≤t

‖u1 − u2‖r̄ + sup
0≤τ≤t

‖v1 − v2‖r̄)|t|
1−δ̄−1/m̄

· (‖u1‖
p−1

(p−1)l̄,(p−1)m̄,[0,t]
+ ‖u2‖

p−1

(p−1)l̄,(p−1)m̄,[0,t]

+ ‖v1‖
p−1

(p−1)l̄,(p−1)m̄,[0,t]
+ ‖v2‖

p−1

(p−1)l̄,(p−1)m̄,[0,t]
),

‖v1(t)− v2(t)‖r̄ ≤ C( sup
0≤τ≤t

‖u1 − u2‖r̄ + sup
0≤τ≤t

‖v1 − v2‖r̄)|t|
1−γ̄−1/m̄

· (‖u1‖
p−1

(p−1)l̄,(p−1)m̄,[0,t]
+ ‖u2‖

p−1

(p−1)l̄,(p−1)m̄,[0,t]

+ ‖v1‖
p−1

(p−1)l̄,(p−1)m̄,[0,t]
+ ‖v2‖

p−1

(p−1)l̄,(p−1)m̄,[0,t]
).

Hence we need 1/m̄ < 1− δ̄ and 1/m̄ < 1 − γ̄. Let n/l̄ = 2δ̄ = 1 + γ̄; then
γ̄ = (n− 1)/(n+ 1), δ̄ = n/(n+ 1).
If (p− 1)l̄ ≤ 2∗, we can simply use H1 →֒ L(p−1)l̄. It remains to consider

the case of (p−1)l̄ > 2∗. This time we turn to Lemma 3.3 for ̺ = 0, therefore
we need some r such that

(3.76)




1 ≤ δ(r) < 3/2, 2 ≤ (p− 1)l̄ ≤ r,

δ((p− 1)l̄)− 1 ≤
1

(p− 1)m̄
,

or equivalently

(3.77)





1 ≤ δ(r) < 3/2,
2

l̄
≤ p− 1 ≤

r

l̄
=
1 + γ̄

n
r =
2δ̄

n
r,

1

m̄
≥
n

2
(p− 1)−

n

l̄
− (p− 1) =

(
n

2
− 1

)
(p− 1)−

n

l̄
.

Firstly, to prove

(3.78) (p− 1)

(
n

2
− 1

)
−
n

l̄
≤
1

m̄
< 1− δ̄ < 1− γ̄,
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it is sufficient to consider

(3.79) (p− 1)(n/2− 1)− 2δ̄ < 1− δ̄,

i.e.,

(3.80) p− 1 <
2(1 + δ̄)

n− 2
=
4

n− 2
−

2

(n+ 1)(n− 2)
.

Secondly, we still need to prove that

(3.81) p− 1 ≤
1 + γ̄

n
r;

since rn =
2

n−2δ(r) , it becomes

(3.82) p− 1 ≤
2(1 + γ̄)

n− 2δ(r)
,

which follows from (H3) provided (1+ γ̄)(n− 2) ≥ 2(n− 2δ(r)), a condition
which is satisfied by choosing γ̄ = (n− 1)/(n+ 1) and δ(r) = 3n/2(n+ 1) <
3/2.
Taking in (3.75) the supremum over t in a sufficiently small interval con-

taining 0, we obtain a linear inequality which implies that (u1, v1) = (u2, v2)
in that interval. Iterating the process yields (u1, v1) = (u2, v2) everywhere
in I.

Theorem 3.2. The solution of (1.1) satisfies the conservation of energy

(3.83) E(u, v, v̇) = E(ϕ, ψ1, ψ2).

Proof. By the uniqueness of the solution (u, v), we can apply time rever-
sal to system (1.1) and therefore to the energy inequality, thereby completing
the proof of energy conservation (3.83).

4. Improvement of the uniqueness. Though the method presented
in §3 is very simple in form, the restriction on p is unnatural. By choosing
two sets of special admissible pairs (r, q), we will use a special Strichartz
estimate to remove the unnatural restriction on p under the more general
assumption (H3′) instead of (H3) in this section. Clearly (H3′) implies (H1′)
and p < 1 + 4/(n− 2) implies that H1 →֒ Lp+1, so X = H1.

Proof of Theorem 3. To reduce the length of the paper, we will be brief.
Let (u1, v1) and (u2, v2) be two solutions of (1.1). Then

u1(t)− u2(t) = −i

t\
0

U(t− τ)(f1(|u1|
2, v1)u1 − f1(|u2|

2, v2)u2) dτ,(4.1)

v1(t)− v2(t) = −
1

2

t\
0

K(t− τ)(f2(|u1|
2, v1)− f2(|u2|

2, v2)) dτ.(4.2)
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Taking r1 = p+ 1, we have

2

q1
= δ(r1),

1

r2
=

n+ 1

2(n− 1)
−

n− 2

2(n− 1)
(p−1),

2

q2
= γ(r2) = (n−1)

(
1

2
−
1

r2

)
.

Thus 1− 2/q1 > 0 and 1− 2/q2 > 0.

Let X = Lq1(I, Lr1) ∩ L∞(I, L2), Y = Lq2(I, Lr2) ∩ L∞(I, L2) and Z =
X × Y . We estimate (4.1) and (4.2) in X and Y respectively. Firstly,

(4.3) ‖u1 − u2‖X = ‖u1 − u2‖Lq1 (I,Lr1 )∩L∞(I,L2)

=
∥∥∥− i

\
U(t− τ)(f1(|u1|

2, v1)u1 − f1(|u2|
2, v2)u2) dτ

∥∥∥
Lq1 (I,Lr1 )∩L∞(I,L2)

≤ C‖(|u1|
p−1+|u2|

p−1+|v1|
p−1+|v2|

p−1)(|u1 − u2|+|v1 − v2|)‖Lq′1(I,Lr′1 )

+ ‖u1 − u2‖L1(I,L2) + ‖v1 − v2‖L1(I,L2)

≤ C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)|u1 − u2| ‖Lq′1 (I,Lr′1 )

+ C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)|v1 − v2| ‖Lq′1 (I,Lr′1 )

+ C|I|(‖u1 − u2‖L∞(I,L2) + ‖v1 − v2‖L∞(I,L2))

= I1 + I2 + I3.

Now,

(4.4) I1 = C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)|u1 − u2| ‖Lq′1 (I,Lr′1 )

≤ C‖(‖u1‖
p−1
Lp+1
+ ‖u2‖

p−1
Lp+1
+ ‖v1‖

p−1
Lp+1
+ ‖v2‖

p−1
Lp+1
)‖u1 − u2‖Lp+1‖Lq′1

≤ C(‖u1‖
p−1
L∞(I,H1) + ‖u2‖

p−1
L∞(I,H1) + ‖v1‖

p−1
L∞(I,H1) + ‖v2‖

p−1
L∞(I,H1))

· |I|1−2/q1‖u1 − u2‖Lq1 (I,Lr1 )

where we used H1 →֒ Lp+1 and the Hölder inequalities with

(4.5)
1

r′1
=

1

(p+ 1)′
= 1−

1

p+ 1
=

p

p+ 1
=
p− 1

p+ 1
+
1

p+ 1
,

and

(4.6)
1

q′1
=
1

q1
+
1

χ
, so

1

χ
= 1−

2

q1
.

As to I2, since

1−
1

p+ 1
=

1

(p+ 1)′
≥
p− 1

2∗
+
1

r2
(4.7)

= (p− 1)
n− 2

2n
+

[
n+ 1

2(n− 1)
−

n− 2

2(n− 1)
(p− 1)

]

= −
n− 2

2n(n− 1)
(p− 1) +

n+ 1

2(n− 1)
,
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it is easy to deduce from p− 1 < 4
n−2 that for sufficiently small ε,

(4.8) p− 1 ≤
4− 2ε

n− 2
, p+ 1 ≤

2n− 2ε

n− 2
,

and then (4.7) becomes

n+ 2− 2ε

2n− 2ε
= 1−

n− 2

2n− 2ε
≥ 1−

1

p+ 1
(4.9)

≥ −
n− 2

2n(n− 1)
(p− 1) +

n+ 1

2(n− 1)

≥ −
n− 2

2n(n− 1)

4− 2ε

n− 2
+

n+ 1

2(n− 1)

= −
4− 2ε

2n(n− 1)
+

n+ 1

2(n− 1)
=
n2 + n− 4 + 2ε

2n(n− 1)
.

If we let ε→ 0, (4.9) reduces to n2 + n− 2 ≥ n2 + n− 4, which is obviously
true.

Thus

I2 ≤ C‖(‖u1‖
p−1
H1 + ‖u2‖

p−1
H1 + ‖v1‖

p−1
H1 + ‖v2‖

p−1
H1 )‖v1 − v2‖r2‖Lq′1(4.10)

≤ C(‖u1‖
p−1
L∞(I,H1) + ‖u2‖

p−1
L∞(I,H1) + ‖v1‖

p−1
L∞(I,H1) + ‖v2‖

p−1
L∞(I,H1))

· |I|1−1/q1−1/q2‖v1 − v2‖Lq2 (I,Lr2 )

where

(4.11)
1

q′1
=
1

q2
+
1

χ
, so

1

χ
=
1

q′1
−
1

q2
= 1−

1

q1
−
1

q2
.

Secondly, by the Strichartz estimate [16],

(4.12) ‖v1 − v2‖Y = ‖v1 − v2‖Lq2 (I,Lr2 )∩L∞(I,L2)

≤ C‖v1 − v2‖Lq2 (I,B0r2,2)∩L
∞(I,L2)

= C
∥∥∥−
1

2

\
K(t− τ)(f2(|u1|

2, v1)− f2(|u2|
2, v2)) dτ

∥∥∥
Lq2 (I,B0r2,2)∩L

∞(I,L2)

≤ C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)|u1 − u2| ‖L1(I,B−12,2)

+ C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)|v1 − v2| ‖Lq′2 (I,B2β(r2)−1
r′2,2

)

+ C|I|(‖u1 − u2‖L∞(I,L2) + ‖v1 − v2‖L∞(I,L2))

= I1 + I2 + I3.

Now,
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I1 = C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)|u1 − u2| ‖L1(I,B−12,2)
(4.13)

≤ C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)|u1 − u2| ‖L1(I,L(2∗)′ )

≤ C(‖u1‖
p−1
L∞(I,H1) + ‖u2‖

p−1
L∞(I,H1) + ‖v1‖

p−1
L∞(I,H1) + ‖v2‖

p−1
L∞(I,H1))

· |I|1−1/q1‖u1 − u2‖Lq1 (I,Lr1 )

where

(4.14)
1

1
=
1

q1
+
1

χ
, so

1

χ
= 1−

1

q1
,

and

(4.15)
1

(2∗)′
=
n+ 2

2n
≥ (p− 1)

n− 2

2n
+
1

p+ 1
=
p− 1

2∗
+
1

r1
,

i.e.,

(4.16) 1 ≥ p
n− 2

2n
+
1

p+ 1
,

which is obviously true for 1 ≤ p < (n+ 2)/(n− 2). Moreover,

(4.17) I2 = C‖(|u1|
p−1 + |u2|

p−1 + |v1|
p−1 + |v2|

p−1)

· |v1 − v2|‖Lq′2 (I,B2β(r2)−1
r′2,2

)

≤ C(‖u1‖
p−1
L∞(I,H1) + ‖u2‖

p−1
L∞(I,H1) + ‖v1‖

p−1
L∞(I,H1) + ‖v2‖

p−1
L∞(I,H1))

· |I|1−2/q2‖v1 − v2‖Lq2 (I,Lr2 )

where

(4.18)
1

q′2
=
1

q2
+
1

χ
, so

1

χ
=
1

q′2
−
1

q2
= 1−

2

q2
,

and

(4.19)
1

r′2
−
2β(r2)− 1

n
=
p− 1

2∗
+
1

r2
,

which determines the choice of the r2.

So

(4.20) ‖(u1(t), v1(t))−(u2(t), v2(t))‖Z = ‖u1(t)−u2(t)‖X+‖v1(t)−v2(t)‖Y

≤ C|I|min(1−2/q1,1−2/q2)‖(u1(t), v1(t))− (u2(t), v2(t))‖Z

= a‖(u1(t), v1(t))− (u2(t), v2(t))‖Z .

Choosing I small enough to ensure that a < 1, we obtain the uniqueness of
(1.1) in this tiny interval; iterating this process we get the uniqueness for
all t ∈ R.
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