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The Cauchy problem for the coupled
Klein—Gordon—Schrodinger system

by CHANGXING MIAO and YOUBIN ZHU (Beijing)

Abstract. We consider the Cauchy problem for a generalized Klein—-Gordon—Schr6-
dinger system with Yukawa coupling. We prove the existence of global weak solutions by
the compactness method and, through a special choice of the admissible pairs to match
two types of equations, we prove the uniqueness of those solutions by an approach similar
to the method presented by J. Ginibre and G. Velo for the pure Klein—Gordon equation or
pure Schrédinger equation. Though it is very simple in form, the method has an unnatural
restriction on the power of interactions. In the last part of this paper, we use special
admissible pairs and Strichartz estimates to remove the restriction, thereby generalizing
previous results and obtaining the well-posedness of the system.

1. Introduction and the main results. In this paper, we consider
the Cauchy problem for a coupled Klein—Gordon—Schrodinger system with
Yukawa coupling:

it + Au = f1(|ul?,v)u,
(1.1) 6—Av+ﬂ2v:—%f2(|ul2,v),
u(0) =@, v(0) =1, 0(0) =y,
which is a generalization of the system
U+ Au = —uw,
(1.2) b — Av+ pPo = |ul?,
u(0) =¢, v(0)=v1, ©(0) =1,
considered in [18] by using a generalized bilinear estimate of Strichartz type

and Bourgain’s idea [3, 4] to split the data into low and high frequency parts.
Systems (1.1) and (1.2) describe a classical model of Yukawa’s interaction
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of a conversed complex nucleon field with a neutral real meson field. Here u
is a complex scalar nucleon field and v is a real scalar meson field.

A large amount of work has been devoted to the study of Klein—Gordon—
Schrodinger system [2, 8, 9, 12, 14, 17, 18, 22], starting from I. Fukuda
and M. Tsutsumi [9]. They considered the initial boundary value problem
for the K-G-S system under the initial conditions u(0) = ¢ € H}(£2) N
H3(02),v(0) =91 € HY(2)NH?(£2), 9(0) = ¢ € H}(£2) and the boundary
conditions u(x,t) = v(z,t) = 0 for x € 912 and ¢t € R. Here {2 is a bounded
smooth domain in R3. By using Galerkin’s method, they proved the existence
of global strong solutions under the above conditions. The initial condition
on ¢ is unnatural and should be changed into a natural condition such as
© € HX(2) N H2(0).

A second study was done by J.-B. Baillon and J. M. Chadam [2]. They
proved the existence of global strong solutions of the initial value problem
for the K-G-S system under the initial conditions ¢ € H2(R?), 1, € H?(R?)
and vy € H'(R3) by using LP-L? estimates for the elementary solutions of
the linear Schrodinger equation and linear Klein—-Gordon equation. LP-L4
estimates are very useful for the initial value problem for the K-G-S sys-
tem (see, e.g., A. Bachelot [1]). But they are not available in the case of
the initial boundary value problem. Therefore it does not seem that their
method is directly applicable to the initial boundary value problems (1.1)
and (1.2).

In [14], N. Hayashi and W. Wahl proved the existence of global strong
solutions to systems including the K-G-S system under initial conditions as
in [2] and boundary conditions as in [9]. They obtained the result by using
estimates of the nonlinearity in fractional order Besov spaces developed by
P. Brenner and W. Wahl [5], the nonlinear interpolation theorem obtained
by W. Wahl [19-21], and the inequality of H. Brezis and T. Gallouét [6] (see
also H. Brezis and S. Wainger [7]).

The main purpose of the present paper is to study the well-posedness
of the system. We prove the existence of a global weak solution by the
compactness method. It is well known that the Schrédinger equation and
Klein—Gordon equation have different kinds of admissible pairs; the method
used in the proof of uniqueness for a single equation cannot be applied
straightforwardly to the coupled case, but through a special choice of the
pairs, we prove the uniqueness of solutions by an approach similar to the
method presented for the pure nonlinear Schrédinger equation or pure non-
linear Klein-Gordon equation [10, 11]. Like the result in [11], we need an
unnatural restriction on the power of the interactions. In the last part of this
paper, by using special admissible pairs and Strichartz estimates, we remove
the restriction on the power, thereby generalizing the result and obtaining
the well-posedness of the system.
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First of all, let us recall some of the main notations that will be used
in this paper. We denote by || - || the norm in L". Pairs r,7’ of conjugate
indices, where 2 < r < oo, satisfy 1/r + 1/r’ = 1. For any integer k, we
denote by H¥ = H*(R™) the usual Sobolev spaces. For any interval I C R,
I denotes the closure of I. For any Banach space B, we denote by C(I, B) the
space of strongly continuous functions from I to B, by C, (I, B) the space
of weakly continuous functions from I to B, and by C*(I,B), 0 < a < 1,
(resp. CE(I, B)) the space of functions from I to B that are strongly Holder
continuous with exponent « (resp. strongly Lipschitz continuous), uniformly
on any compact subinterval of I. For any ¢, 1 < ¢ < oo, we denote by
LY(I, B) (resp. L{ (I, B)) the space of measurable functions ¢ from I to B

loc

such that ()5 € L9(I) (resp. o(-)| € L (D).

loc
To obtain the existence of a global weak solution of system (1.1), we
shall need the following assumptions on the interactions f; and fo:

(H1) f1(x,A), falx, A) € C(RT x R, R) and for some p, 1 < p < oo, and
all y e RT,\ €R,

{ | F106A)X2] < COP? + [AP),
200 A)| < C(P2 + [AP).

H1) f1(x, ), f2(x, A) € C(RT x R,R) and for some p, 1 < p < oo, and
( X X
all y € RT,\ € R,

{ 106X S OO+ X2+ AP+ |A]),
|f206 A < COP2 + X2+ AP +|A]).

(H2) There exists a function F(x,\) € C}(R* x R, R) such that

OF (x, \) OF (x, \)

OOV

what is more, F'(x, \) satisfies the estimate
(1.3) F(x, ) = =i |A[? = Cox P +0/2
for some Cy > 0, p > p1 and 1 <p; <1+ 4/n.
In particular, (H1), (H1’) and (H2) hold for x = |u|? and X\ = v, and it

is easy to see that (H1’) is more general than (H1).

As is well known, there is a so-called critical growth condition on p to
prove the uniqueness. Even if it holds, the above assumptions are still not
enough to obtain the uniqueness of the global weak solutions obtained. So
we shall introduce the following stronger assumptions on the interactions f;
and fofor 1 <p<14+4/(n—2):
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(H3) f1(Jul?,v), f2(Jul?,v) satisfy
| fr(lua]?, v1)ur — fi(luzl?, vo)usl
< C(lua P+ JuoP=t 4 for P71+ oo P ) (Jun — ua| + |vr = va),
| fa(lwa]?, 1) = falluzl?, v2)]|
< C(JurP=t + Jug P~ + o1 [P~ + o2 P~ (Jur — ua| + |v1 — va).
(H3") fr(lul?,v), f2(|ul? v) satisty
| fi(Jui? v0)ur — fi(Juzl?, v2)us|
SO+ [P~ + fuoP =t + o [P+ [va P (Jur — uz| + v — v2]),
|f2(|U1|2,U1) - f2(|U2|27U2)|
<O+ Jur P71 4 |ug P71 4 |01 [P~ + oo P~ (Jug — ua| + |v1 — v2]).
After all these preparations, our main results are the following:

THEOREM 1. Let fi(|u|?,v), fo(Jul?,v) satisfy (H1) or (H1') and (H2).
If p+ 1 > 2%, assume in addition that

(1.4) F(lul?,v) > =pi[o]? + C(luP* + o/t
for some C > 0. Let X = H' N LPT 2* =2n/(n — 2) and

1
(15) /8(7") = 20[(7') =1- 5(7”) min<1, m), 6(7") =

Let (¢, 1, wg) € X x X x L2. Then (1.1) has a global weak solution
Cw(R, X) x Cyw(R, X) such that

ue LR, X)N N C"(R, L"),
2<r<max(p+1,2*)
veLY.(R X)NCHR,L*) N N CAUN(R, L7,
2<r<max(p+1,2*)

b € Lis. (R, L*) N Cw(R, L?) N CH(R, X).

|3

(u

,v) €

If p4+1 > 2% assume in addition that F' can be decomposed as ' = Fy + F»
where Fy satisfies (H1) or (H1") and (H2) for some p,1 < p < p, and Fy is
weakly lower semicontinuous. Then

(1.6) lu@)ll2 = llellz for all t €R,
(17) E(U,U,f}) < E(‘Padjlvd@)‘
THEOREM 2. Let fi(|u|?,v), fa(lul?,v) satisfy (H3), and

2
n—2 (n+1)(n-2)

2
1+ —<p<1+
n—1
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Then there exists at most one pair (u,v) € L>®(I, H') x L*°(I,H"') which
satisfies (1.1) in D' (I, H') x D'(I, H').

THEOREM 3. Let f1(|ul?,v), f2(|u|?,v) satisfy (H3'). Then there exists
at most one pair (u,v) € L>(I,H') x L>(I,H") which satisfies (1.1) in
DI(I,HY) x D'(I, HY).

This paper is organized as follows. In Section 2, we prove the existence
of a global weak solution by the compactness method. Under the stronger
assumption (H3), by using the same strategy for the two equations of the
system, we prove in Section 3 the uniqueness of the solutions obtained in
Section 2 for p as in Theorem 2. Though the method is very simple, the
restriction on p is unnatural. By choosing two sets of special admissible pairs
(r,q), we use a Strichartz estimate to remove the restriction on p under the
more general assumption (H3’) instead of (H3) in Section 4.

2. Existence of global weak solutions. Now, we are ready to prove
the existence of a global weak solution to (1.1) by the compactness method,
which can be found in [11]. For the convenience of the reader, we prove it and
a related lemma in detail. For (u,v) € H! x H' such that F(|u|?,v) € L*,
the energy is defined by

(21)  E(u,0,0) = ||Vull3 + [Voll3 + 19113 + p?[[ol3 + | F(lul?,v) dz.
Rn

The assumption (H2) formally implies the conservation of the L?-norm for
u and of the energy.

The dual of X = H' N LPt! is denoted by X' = H~! 4+ L®+tD/P_ the
duality being realized through the L? scalar product (f,g), linear in g and
anti-linear in f.

LEMMA 2.1. Let f1, fo satisfy (H1) or (H1"), I be a bounded open interval
of R and (u,v) € L>®(I, X) x L*>(I,X). Then

(1) fi(lul? v)u, fo(ul? v) € L=(1, L? 4 LPTD/P),

(2) Let in addition (u,v) satisfy (1.1) in D'(I,X") x D'(I,X"). Then

(a) We have
we LI, X", weCy(,X)N N ce(I, L)
2<r<max(p+1,2*)

with o(r) defined by (1.5).
(b) & € L>®(I,X"),v € CE(I, X"). If in addition v € L>(I, L?), then
v € Cyw(I,L?), wveC,I,X)NCE(T, L*)N N P, L)

2<r<max(p+1,2*)
with B(r) defined by (1.5).
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(3) For any t,s € I, (u,v) satisfies the integral system
t
u(t) =U(t — s)u(s) — iSU(t — 1) fi(Jul?, v)u(r) dr,
(2.2) s

v(t) = K(t —s)v(s) + K(t — s)v(s) —

VKt —7)foul, v) dr

s

| =

where the integral is a Bochner integral in H=*, k > max(1,5(p+1)).
(4) We have

(2.3) |lul|2 = const, V€ I.

Proof. For simplicity, we only consider the general case (H1’') in the
proofs of this lemma and the following theorem. For (H1), the proofs are
similar but a little simpler.

(1) We decompose uf; as

ufi = fir + fi2 = (wfi — wfiXjupo)<1) + @1X o] <1-

Then
(2.4) { Fua(lul2,0)| < C(ul? + [ol?),
| frz([uf?,0)] < C(Jul + Jv]),
thus
(25) { [Frr(ul2,0) 0577 < C(Jufp* + o+,
| frz([uf?,0)]* < C(lul* + [v]?).

Similarly, for fo = fo1 + foo we have
{ | for ([ul?, 0)|PHD/P < C(|ufP ! + fo]P ),
| foa(|ul?,0)[2 < C(luf® + [v]?).

Now (1) follows from (2.5), (2.6) and standard measurability arguments.
(2) (a) Since u € L>(I, X), it follows from (1) that

(2.7) —Au+ fi(Ju?,v)u e LI, H ' + LeHD/Py — D'(1, X").
Note that for all ¢ € C°(I, X’),

(i, 9) = —(u, ) < sup [lullx [l x+ < oo,
tel

(2.6)

we have
(2.8) weD(I,X)— D'(I,X).

Since (u,v) satisfies (1.1) in D'(I, X’) x D'(I, X’), this together with (2.7)
and (2.8) implies

(2.9) 0= —i(—Au+ fi(|ul? v)u) € L=(I,X).
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From v € L>*(I, X) — L>*(I, X’) and (2.9) we obtain
1
) — u(s ||X/—HSu¢9t+ (W=0)s)(t—s)ao)| < It = sl il erxo

sou € CH(I,X") < Cyu(I, X’). Together with the fact that v € L>(I, X)
and Lions’ lemma [15], it follows that u € Cy, (1, X).

We can approximate u, v by sequences {u;} and {v;} in C3°(R, X) such
that, after restriction to I, u; converges to u in L?(I,X) and 4 converges to
@ in L*(I, X'), and similarly for v and v;. This implies that u € C(I, L?),ve
C(I, L?), and u; and v; tend to u and v respectively in C(1, L?). In fact, since
uwe L*(I,X) — L?>(I,X") and @ € L?(I, X'), we can easily get u € C(I, X'),
and then

lu(t) = u(s)ll2 < llu(t) — uls)ll%lult) —u(s)] "
< 2 Lo g0y l(t) — ()15
-0 (t—s)
ie.,uecC(,L?.
Letting j — oo on both sides of the identity
t
i (£) = ui ()13 = 2\ Re(it;(7), uj (r) — uy(s)) dr,

we obtain
lu(t) = u(s)l3 < 4ft = sl @] oo (r,x0n [ull oo 1,%) -
Thus u(t) € CY/2(I, L?). By interpolation, we have
{(CW(L L?), L>(I, H'))g, ~ C*(I, L"),
(CY2(I, L?), L>(I, LP*1))g, ~ Co2(I, L7),

where
b1-b_ 1 b 161
2 2% r’ 2 p+1
So
0‘1:%:%(1_5(”)’ “2:%:%<1_5(§?1))’
ie.,

u € N oI, L")
2<r<max(p+1,2*)

with a(r) defined by (1.5).
(b) In view of the fact that v € L>°(I, X), it follows from (1) that

(Av = p®v) = 3 follul?,v) € L>(I, H™! + L@HD/P) — D'(1, X).
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By similar arguments to (a), we also have
ve L®(I,X"), veCHI,X'), ©eCuI, L%, vel,(,X).
On the other hand,

lo(t) — v(s Hz—HSv@H (L= 0)s)(t = )b <[t = s| ol (r.0
0

implies that v(t) € CL(I, 2) and we also have by interpolation
(

vt N CPUNI, LT
2<T<maX(P+1,2*)
with §(r) defined by (1.5).
(3) We again approximate u,v by regularized sequences {u;} and {v;}
as in (2)(a). The functions u; and v; satisfy
( t

ui(t) = Ut = s)u(s) = Ut = 7)(a;(7) — iduy (7)) dr,

~—

03 (8) — Kt = )uy(o) - K(t — s)iy(s)

= SK(t — 1) (1 = D)o (1) + (7)) dr.

S

Letting j — oo, for fixed t and s we obtain
uj(t) = Ut = s)uj(s) — u(t) = U(t = s)u(s),
vi(t) = K(t = s)vj(s) — K(t — 5)0;(s)
—v(t) — K(t — s)v(s) — K(t — s)0(s)
in L?, and
Ut —71)(t;(1) — iAuj(7)) dr — SU(t —71)(u(r) —iAu(r)) dr,
K(t —1)((0* = A)vy(1) + (7)) dr
— VKt —)((1* = A)v(r) + 6(r)) dr

S

in H=*. Then (2.2) follows from (1.1).
(4) Letting j — oo in the identity

B e o B o

lu (0113 — llug ()13 = § 2Reity (7),u; (7)) dr,
0a

and using the fact that Re(tw;,u;) = 0 as a consequence of (1.1), yields the

result.
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Proof of Theorem 1. Without loss of generality, we consider any compact
interval J containing 0.

STEP 1: Finite-dimensional approzimation. Let {w;}, j € Z*, be an
orthonormal basis of X. For any m € Z%, we look for an approximate
solution of (1.1) of the form

un(t) = D gueOwr(@), va(t) = Y bk (tywi(e)

1<k<m 1 <hem
with
(2.10) { (wj, i 4 At — f1(|[Um)?, V) tim) = 0,
. (wja'bm - A’Um + N2vm + %f2(|um|2,vm)) _ 07

and the initial conditions
U (0) = pm(x) = Z1§k§m Crrwi(z),
Um(0) = Y1m(®) = D21 <<y Dimrwi(z),
@m(o) = 7/)2m(x) = Zlgkgm D2mkwk($)7

where Coni, Dimk, Dami are chosen in such a way that
(2.11)  lim |lom —@llx = lm |[1m —P1llx = lim [[th2m — 922 = 0.
m— o0 m— oo m—0o0

By linear independence of {w,}, (2.10) can be put in normal form and by
Peano’s theorem [13], it has a solution in some interval [—T,,,T,,] with
T, > 0. In order to prove that T;, = oo, we ought to derive some a pri-

ori estimates on the solution of (2.10). Multiplying by gmj,§mj,hmj and
summing over j from 1 to m, we obtain

(i (), 3% + Aty — f1(|Um|?, v )um) = 0,

(U (), 1T, + Aty — f1 (| |?, Vi )um) = 0,

(0m (t), Bm — Avm, + (2 0m + 5 fo(Jtm|*, vm)) = 0,

therefore

(2.12) lum ()13 = llmll3,

and
(2.13)  [[Vumll3 + Vomllz + [[omll3 + 2 [lom]3 + S F(jum|*, vm) dz
Rn
= IVeml3 + IVe1mll3 + [d2mll3 + 12 1$1mll3 + | Flpml*, $1m) dz

Rn

< IVll3 + IVell3 + 1all3 + w2 llval3 + § F(lel®, 1) da
Rn
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Since

(214) > gmkl S Cllumllz <00y Y [hmil* < Cllom|l3 < oo,

1<k<m 1<k<m
by Picard’s theorem, (2.12)—(2.14) imply the existence of a global solution
of (2.10), that is, T}, = 0.

STEP 2: Uniform estimates on U, vn,. In order to take the limit as
m — 00, we need stronger uniform estimates on u,, and v,,.

CaAse 1: p+ 1 < 2*. We have proved in Step 1 that

lml3 = llomll3, B (m, vm, 6m) = E(om, Y1m, ¥2m),
hence from (H2),

H‘Pm”g + E(¢m7¢1m7¢2m)

= Juml3 + IVum 3 + 1V0ml3 + [oml3 + 12 loml3 + § F(luml?,0m) do
Rn
> [l |3 + Va3 + [Vomll3 + om 3

+ (1 = i) lvmll3 = Co S |t [P .
Rn

By direct computation, we have

~Co | Jul" T da = —3||Vul3 — Al

Rn
where
2 — 1)o 1 2 DA -6 1
A=C, (2914-)2(291-i-)>07 B_ (p1 + 1)( (p1+1))
0 - BFISETHT) 2—(p1+1)d(p1 +1)
0
with g¢ small enough that
€5 1 2
— < — for a= ,
a — 20 (p1+1)é(p1 +1)

thus
leml3 + E(m, Y1ms 2m) = 5llumll + [[Vumll3 + [Voml3 + 0m3
+ (12 = ) loml13 — Al 13-
It is easy to see that

[wmllpt1s [[omllp1s twml| s [[om ]| 2
< Clemll3 + E(pms Y1ms bom) + Allpmll3) 2,

and
[0m 15 < lemll3 + E(ms Y1m, Yom) + Allom |5
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So
sup Hume,Sgp vaHx,sgp lomllz < M|lemll2: E(@ms Yim, 2m))-

CASE 2: p+1 > 2*. From (1.4), we have

lemll3 + E(em, Y1m, Yom)
2 [[um 13 + 1 Vw3 + Vw3 + [[0m]13
+1 +1
+ (N2 - M?)Ilva% + Cl”um||£+1 + CIHUmHngp
SO
e llp1s [lom o1 < CUlemll + E(ms rm, Pam)) Y.
Arguing as in Case 1, we also have
w25 1ol 1, [mlle < C(loml13 + E(ms brms Yam))/2.

Combining the above two cases, we always have

Slzp HumHXa Sl;;p ||vaX7 Slzp ||vm||2 S M(H@m”% E(SO’IWJ sz)lm’ me))

Since ||¢ll2 and E(¢,11,12) are continuous functions of ¢, 1 and 13, by
(2.11), we obtain

(2.15) sup sup ||t || x, sup sup ||vp || x, sup sup |0, |2 < oo,
m t m t m t

i.e.,

(2.16) Sup [[tm || oo (7,x)5 SUP [[Vm || Loo (7, %), SUP |0 || Lo (5,22) < 00.
m m m

Note that f1(|tm|?, vm)tm and fo(Jtm|?, vm) are bounded from X x X to
L? + L®*tY/P and (2.16) implies that they are uniformly bounded in L>(.J,
L? + L®+1)/P) and therefore &,,,7,, defined by
{ é.m = _Aum + f1(|um|25’um)uma
Nm = Avm - NZUm - %f2(|um|2vvm)a
are uniformly bounded in L>°(J, X"). It follows from the relation
t

i (8) = wm ($)113 = =2 § Im(upn (s), Em(7)) dr

< 2[s =t [Jumll o (7.x) 1§m | Lo (5.x7)
that the sequence {u,,} is uniformly (in m and t) Hélder continuous in L?
with exponent 1/2, i.e., un,(t) € CY/%(J, L?). From this together with the
fact that wu,, € L>°(J, X), we obtain by interpolation
(2.17) U (t) € N co(J, L.

2<r<max(p+1,2*)
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Note that vy, (t) € L(J, X) and (Avy, — p2vy,) — 1 fo(|tm|?, vm) €L (J, X)
— D'(J, X’). By a similar argument to Lemma 2.1(2), we obtain

Om € CE(J, X") N Cyp(J, L?) N L% (J, L?),
and

(2.18) Um € Co(J, X)NCH(J, L) N N P (g, L.
2<r<max(p+1,2*)
STEP 3: Convergence of subsequences. Noting that (L*(J, X)) =
L'(J, X"), (2.15) means one can extract subsequences that weak* converge

to u,v and v respectively, still called {u,,}, {vmn} and {0,,} for simplicity,
i.e., as m — oo,

Um % u in L®(J, X),
Vm — v in L®(J, X),
Om =0 in L2°(J, L?).

(2.19)

To prove that (u,v) satisfies (1.1), we need some preparations. Let
U=iu+ Au, ©=1— Av+ p?v.

It is easy to see w,v € D'(J, X) + L>(J, H~!). We first prove that

(2.20) F1(Jtm|2 vm)um 5> @ in L°(J, L2 + L@+D/P),

221) < fa(lumron) ST in L¥(, L2+ L)

By (2.15), (H1') and Lemma 2.1, {fi(|um|?, vm)um}, {f2(|um|? vm)} are
bounded and therefore weak* relatively compact in L>(.J, L? + L(P+1)/p),
On the other hand, from (2.10) and (2.19), for all 6(t) € C°(J,C) and
Jj<m,

(222)  {(wy, fi(luml®, vm)um)0(7) dr = | (wj, it + Aup)0(r) dr
J J

= — S ((wy, ium)0(T) — (wj, Auy)0(7)) dr
J
" | (w7 = (wy, Aw)d(r)) dr
J
= S(w],zu—l-AU S (wj,u
J J

Since {w;} is a basis of X, and 0(7)w; € C(J, X), (2.22) means that any
weak* convergent subsequence of { f1 (|tm|?, Um )tm } in L (J, L2 4 L®+TD/P)
converges to u in D’'(J, X'), therefore (2.20) holds.



Klein—Gordon—Schrédinger system 175
As to vy, by (2.19), for all §(t) € C*(J,C) and j < m,

| (), =3 fa(Jum|?, vm))0(7) dr = g (W, Dm — AV + p20,,)0(7) dr
J J

= § ((wy,0m)0(r) + (wy, (4% = A)v)0(7)) dr
J
" (wy, 0)0(7) + (wy, (4 — A))o(r)) dr
J
= | (w;, ¥ — Av+ p?0)0(7) dr = | (w;,0)6(r) dr,
J J

therefore (2.21) holds.
By definition of % and v,
{ u(t) = —it + iAu € L®(J, LetD/P 4 g1y = L2(J, X'),
B(t) =04 Av — pv € L®(J, LPtD/P 4 H=1) = [°°(J, X').

From this together with u(t),v(t) € L*(J,X), by a similar argument to
that in Lemma 2.1(2), we have

u(t) € Cyp(J,X)N N cmM (g, L"),
2<r<max(p+1,2*)
(2.23) v(t) € Cu(J, X)NCE(J, L) N N cP(J, L"),

2<r<max(p+1,2*)

0(t) € Cop(J,L?) NCL(J, X").
We next prove that for all ¢t € J,
Um (1) 2 u(t),  vn(t) = v(t).

Firstly, for fixed ¢, (2.15) implies that {u,,(f)} is bounded on X uniformly
in m, and is therefore weakly relatively compact since X is reflexive. By
(2.19), we only need to prove that it has the unique weak limit point w.
Suppose that it has another limit point x in X. For 7 in a neighborhood
of t, (2.17) and (2.23) imply

lu(r) = u(@®)ll2, lum (T) = um(t)]l2 < Clt — 7|12,

so for v > 0 we can estimate

lu(t) = x @) = (u(t) = x(1), um(t) — x(t))

t+y
+ o= | () = x(0), u(t) = u(r) + tm (7) =t (£) + u(7) =t (7)) dT

-



176 C. X. Miao and Y. B. Zhu

< (u(t) = x(t), um(t) = x(t)) + 2072 u(t) = x(8)]2
1 t+y

+ % tsv(u(t) - X(t)’ U(T) - um(T)) dr

=I+II+1II

Now U, (t) = x in X implies I = 0, u,(t) v, u(t) in L*°(J, X) implies
I11 =0 for fixed ~, II tends to zero with v, so x(¢) = u(t) in this interval.
Iterating this process, we obtain x(¢) = u(t) in the whole interval J.

The same result for {v,,} can be deduced from (2.18) and (2.23).

STEP 4: Initial conditions. For all 6(t) € C°(J,C) with #(0) = 1. Inte-
grating by parts, we have for Jy = (0,00) N J,

J (wj, it (T)O(7) + &m(T)0(7)) dT = —(wj, itom).
Jo
Letting m — oo and using (2.11), we get
| Gu(r)0(7) + ii(r)0(r)) dr = —igp,

Jo
ie.,

iw(T)0(7)].0s = —i0(0),
so u(0) = ¢.
For v,,, we can prove similarly that v(0) = v and v(0) = ..
STEP 5: (u,v) satisfies (1.1). By definition of @, v, we only need to prove
that
(2.24) ﬂ:fl(]ulz,v)u, V= —%fQ(]uP,v).
(2.20) and (2.21) imply, for J and any bounded open set 2 C R",

”fl(‘um’zvvm)umH(erl)/p,JX_Q? Hf2(|um‘2aUm)”(erl)/p,JxQ < 00,

SO

(2.25) Filluml? vm)um =8, follum|*, vm) =0
in LPHD/P( ] x ).

On the other hand, w,,(t) € C*/?(J, L?) implies u,, is equicontinuous in
J x 2, and (2.15) implies u,, is uniformly bounded in H'(£2), so that, by
H'(2) << L?(2) and Ascoli’s theorem, the sequence {u,,} is relatively
compact in C(J, L?(£2)). Since (2.19) means u,, — u in L°°(J, L?(12)), we
have

Uy — u  in C(J, L*(£2)),

thus
Up — u  in L2(J x 2).
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Moreover, v, € CF(J,L?) (see (2.18)) implies vy, is equicontinuous in
J x £2, and by a similar argument, we also have
v — v in C(J, L*(£2)),
thus
vm — v in L2(J x 02).
We can then extract subsequences of {u,,} and {v,,} such that
U, S u, U, S0,
and
{ Fil(etm P v Yty =5 Fa(ul?, v
o[t 2 0m, ) =5 fa(jul?,0)

in J x £2. Moreover, fi(|tm|?, vm)tm, f2(|tum|?,vm) € L=(J, L? + LFP+1/p)
implies fl(’umkP?Umk)umk? f2(|umk|27vmk) € L(p+1)/p(J x §2), and then

f1(|umk|27vmk)umk = f1(|’LL’2,’U)U,
_%f2<‘umk‘27vmk) o _%f2(‘u’27v)
in LPTD/P(J x ). From (2.25) and (2.26), (2.24) holds in J x {2 because

the weak limit points of {u,,} and {v,,} are both unique.
Since {2 is arbitrary, we obtain, for all (¢,x) € J x R™,
Al v)u=1, —3f(lul?v) = 2.
STEP 6: Conservation laws. Since (u,v) satisfies (1.1), ||u(t)||2 = [l¢]l2
follows from Lemma 2.1(4). In order to prove the energy inequality, we need

some properties.
For fixed t € J, since X is reflexive, the convergences

*

Uy — u in X,

*

(2.26)

Um — v in X,
om 0 in L2
as m — oo, imply
Um — u in L2,
Um — v in L2,
Om — 0 in L2,
On the other hand, by the conservation of L2-norm,
i [l (8)2 = Y [lomll2 = ]2 = u(t)]2
thus
lim[Ju (£) — ()]s = 0.

m

Moreover, wu,,(t) € CY/?(J, L?) means u,, is equicontinuous in L2, S0 tu, (t)
is uniformly strongly convergent in L? for all ¢ € J.
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By the interpolation inequality
i (t) = u(®)llr < C(lum X + el X ) = ull3,
we get
im g, = ulle(sLry =0
for all 2 <r < max(p+ 1,2%).

Further, (2.18) means v,, is equicontinuous in J, and sup,,, sup, ||vm||x <
00 means sup,, Sup, || vm||r2 < co. By Ascoli’s theorem, {v,, ()} is relatively

compact in C(J, L?). Note that v, “% v in L>(J,X) implies v,, = v in
L°°(J, L?), so we obtain
Vm — v in C(J, L?).
By interpolation, we also have
W}I_I)Iloo H'Um — UHC(J,LT') =0.

We have proved in Step 1 that E(um, Um, Om) = E(©m, V1m, Yom). Letting
m — oo, we have from (2.11)

IVemll3 + IVo1ml3 + [Y2ml3 + 42 l[1mll3

m—00

= IVl + 1Vell3 + 19213 + w2l I3,

and
@27) | | Flgnl dum)dz— | F(gP, 1) ds
R~ R~
< VUF(eml? 1m) = F(1o?, ¥rm)| + (0l t1m) = Flel?, 91)]) dz
Rn
1
<V VIAlom? + (1 = a)lel?, Yim))(em| + 1D [om] — o] | da d
R™ 0
1
+ | V12010l Bim + (1= B)y)| [W1m — 1| dB da
R 0
=T+1I™=0.

In fact, we again decompose f1 and fo as in (2.4)—(2.6), to get

I <O\ (lpnl” +lol” + [1m ") om — ¢l da
R

+C | (eml +1e))lom — ¢l da
Rn
< C([lemPllprrye + el a1y /p + Pl ) o) llom — @l x
+ C(llemll2 + [lell2)[|om — @2

m—00

< Cllom —wllx — 0,
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and similarly

11 < C { (JelP + [1ml? + [¢1[") |1 — ¥1 | da
R’n

+C (Il + [im] + [1 ) [¢orm — 1| de
Rn
< COllprm — | x ™= 0.
Thus
E(oms Y1ms Yam) — E(p,1,12).
On the other hand,
E(um, v, 0m) = | Vum[3 + [ Vomll3 + [0ml3 + 4 lvm 3
+ S F(lum|?, vm) d.
Rn
CASE 1: p+ 1 < 2*. By the same process as in the proof of (2.27), we
obtain
\ Fllum|? vm) dz ™3 | F(|uf?,v) da,
Rn Rn
and since ||V |3, [[Vomll3,|0ml3,|vm]|3 are all weakly lower semicontinu-
ous, we get
liminf E (U, Vm, Om) > E(u,v,0),

m—00

so (1.7) holds.

CASE 2: p+ 1 > 2*. Using F} instead of F, and p instead of p in (H1’),
we can still prove that
V Fu(juml?, vm) do ™= | Fi([uf?,v) da,
Rn Rn
and since ||V |3, [[VUm||3:10m 13, |vml3, §gn Fo(|um|?, vm) dz are all weak-
ly lower semicontinuous, we also have (1.7).

3. Uniqueness of solutions. In this section, we will prove that under
stronger assumptions on the interactions, the solutions obtained in §2 are
unique. Clearly (H3) implies (H1), and p < 14+4/(n — 2) implies that H! —
LP*1 so that X = H'. Firstly, let us introduce some preliminary lemmas.

LEMMA 3.1. Let n > 3, o0 and r satisfy

(3.1) 0<1-p(r), 0<d(r)<n/2, 0<6(r)+o0—1<1/2,
and let q satisfy
(3.2) r)+o—1=1/q,

(3.3) or)+o0—-1<2/qg<d(r), q>2.
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Then for any (@, 1,19) € H* x H x L2,
U@l o a2, < Cligln.
1K ()2 + K() 1]l Lo, B2,y < C[¢2ll2 + [¢1][a1)-
The proof is given in [10, 11].

LEMMA 3.2. Let fi(Jul?,v), fo(Jul?,v) satisfy (H3) for 1 < p < oo, and
let0<A<1,1<lI'<k<oo,1<m<o0andl/s=1/I"—-1/k. Then

(3.4)

Ml o)l < Cllullsy, + oz, )l + o7,
Iallul® 0l < Clllullzy, + ol )l + ol )

Proof. Use the equivalent norm of the Besov space Bl/’m,

0 \ dt 1/m
3 ol = ol + { esu o=l 1
o o lvIst

where 7, denotes the space translation by y € R".
We only need to prove the result for BI‘; , instead of BY . From (H3) and
the Holder inequality, we have
(3.7)
[[f1(Ju(z + y)l2 v(@+y)ul +y) — fillu@)? v(@)ul@)]r
C([ullf, yye + 0Nty 2 DNl +y) = ul@) e + [o(@ +y) —o(@)]w),
[ f2(u(z + y)l2 v(@+y)) = fa(lu(@)]?, 0(@))[l
< C(llullfy s + 1017 D Ul + y) = u@) |l + lo(@ +y) = o(@)|lx),

from which (3.5) follows immediately.

LEMMA 3.3. Let n > 3, 0 € I be an open interval, and (p,1,12) €
H' x H' x L2. If o, v satisfy (3.2) of Lemma 3.1, and 1/q > o+ 6(r) —
then u(t),v(t) € L, (I, BYy) and for any compact J C I containing 0,

loc
(3.8) HUHL‘Z(J,Bf,Q)v HU”LQ(J,B;)
< Cllullgys olla lellays [l s [[¢2] 2)-
Proof. Consider

t

u(t) =U(t)p =i\ Ut =) fi(lul, v)u(r) dr,

(3.9) 0 Lt
v(t) = K)o + K(t)g — 3 VE(t = 7)fo|uf*,v) dr
0

Let 0 = 0+ 6(r) — 1, and choose 7, ¢’ and ¢” such that
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(3.10) 1<6(r)<n/2, 0<o' <o’ <o +e<1/2
with € to be chosen later.
CLAIM.
(3.11) IIU(t)fl(IU\vi)UHBe; < CITP O+l +[0)1%0 ),
L 2 2
(3.12) HK(t)fz(IUI%v)HBe; < CITOA+full, + ol )
L) r,2 r,2

for0<y<1,0<6<1,0<v <1 and C depending only on v, v and &,
but not on o' and o".

By an L"-L"" estimate and Sobolev embedding, we have
(3.13) U@ A (ul, v)ull gor < CIUE Al v)ull grgr-za0
< Cl O fa((ul?, v)ull psi-2s0
< Cl O fu(ful v)ul gy, .
and
(B14) KO LR 0)l g < CUK @ f(0P, )| g2
< Clt O fol(ul 0)]1 s

where Bl)‘; =260 By, is ensured by the condition

1 1 1-2 - 0"
(3.15) L1 A+1=260=0" ¢ o
A n
therefore by
o(l
(3.16) A>o"+ %,
in particular by
(3.17) A=o"+ %

And Bl)/\,Q — B[};l_z’g(” is ensured by the condition

(3.18) A> A+ 1-25(1),
hence by
(3.19) B(l) > 1/2.

Noting that 0 < ¢” < 1/2, we have 0 < A < 1 for 2 <[ < o0, and using
Lemma 3.2 for m = 2, we obtain

(3.20) £ (lul?, v)ullpy , < Cllullpy, + I0llsy ), (- s F 10117, - s
If2(lul®, o)y, < Clllullgy, + llvllsy ) ullf, 2y, + 10l5,2,)-
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Firstly, we consider || - HBﬁ,z' Since A = 0" +0(l)/n, 2 <1 < o0, d(r) >1,
o' =04+0(r)—land 0 < o' < 0" <o'+e<1/2, wehave A\ > o” > o’ > ¢'.
We can use interpolation between Bf:Q and H“ to estimate norms in B,i‘z,
where H* ~ (H', L?), for 0 < a < 1, hence

1 6 1-94
(3.21) A=00+(1-0)a<6o+(1-10), i e
i.e.,
1—-A
(3.22) 0<d(k) < - o(r).
Secondly, we consider || - [|(p—1)s-
CASE 1: (p —1)s > 2*.
SUBCASE (i): ¢’ < 0. Note that
(323) L(pil)s = F(Opfl)s,Z - B?pfl)s,Q ~ (Bf,Q’ H1)9
where
1 0 1-46
— 0, _ -2
(3.24) 0=00"+(1-96), . r+ 5
p
Hence
O_/
(3.25) B((p— 1)) = 7= 0) = 1+ 12—

SUBCASE (ii): ¢’ > 0. Noting that ¢/ = ¢’ +0(r) — 1, 0 < o/ < 1/2, we
have

o 1 1 1 ¢ _ 1 1 1 n—3

3.26 -+ = - - > - - = > 0.
( ) n r 2 n n-_ 2 n 2n 2n
Define

1 1 !
(3.27) =2

roor n
Then
(3.28) LP=Ds ~ (L7 L),
where

1 0 1-—

3.29 =—4+—, 0<60<1
(3:29) (p—1s 7 * 2
Hence
(3.30) 5((p—1)s) =05(F) =0(0(r)+ o) =0(1+0") <1+0.

CASE 2: (p — 1)s < 2*. Noting that H' < LP~1$ we have
(3.31) d((p—1)s)<d(2)=1<1+7"
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Combining the above two cases, we need the interpolation conditions

1A
< <
0.<8(k) < 3= 6,

foid ol
0<d((p—1)s)<1 i ! =14+ —
< (=19 < 1rmin( o 1T ) =1

(3.32)

where ¢/, = max(0, £¢’), or equivalently

og&mgf‘f&m

(3.33) n e o’ n n
D212 )<< (p-1)~
(p )(2 1+Q,_>_S_(p )5

which are satisfied provided

(b= 1) 5 = 500,

(3.34) . o 1—A
Y < .
In fact, (3.33) and n/s = d(I) + d(k) imply that

)s&o+ams -1,

|3

n o
B DY (AL
(p=1) (2 1+ 0"
and we can always choose k such that (3.33) holds under (3.34).

Since o < 1 — ((r), a sufficient condition for o + 6(r) — 1 < 1/2 is
1—p(r)+6d(r) —1<1/2, hence y(r) < lorr < 2(n—1)/(n—3). So

6@s&ﬂsa€“‘”>: n

n—3 n—1’
and the first interpolation condition is satisfied if (p — 1) > 5, or equiv-
alently

2
n—1

As to the second condition, note that 1 4+ o' — o’ = 0(r), 0’ < o' + ¢,
A =0"4§(1)/n. A sufficient condition is

(3.35) p—1>

/ !/

< 1tr(l)—e— 2 5 — 1424+ 2D
-0

n

n

(3.36) (p—1)<5—1—

1+ o_

In fact, we only need to prove that

0_/

1—0o

5(1)

n

1—A

(3.37) 14+~() —e— o’

(&M—1+5+ >§5m+w@)

In view of the fact that
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(3.38) 14+~()—e— 1igl<6(r)—1+s+¥)

1-6(l)/n—ec—0o
1—-o

=0(r) +4(1),

and

(3.39) 5(1) + (r) =2 1=o" = o)/n

= =0 +50)

1—-y¢

(3.37) is equivalent to

1-6()/n—ec—0
1-¢

1—0"=46()/n
1— o

(3.40)  &(r) +8(1) < 8(1) + 5(r)

)

i.e., 0’ < ¢’ + ¢, which is obviously true.
Now we begin to reduce condition (3.36). When ¢’ = 0, it reduces to
21 +~() —¢)
n—2 ’
which is satisfied for v(I) =1 — ¢ provided p — 1 < 4(1 —¢)/(n — 2).
We only need to consider the case of ¢’ > 0. Under (3.41) we have

(3.41) p—1<

B2 (=250 - 1ret ) <20 4900 -1 £

n
In fact, we only need to prove that

204+~()—¢€) (n o’
(343) T(E‘l_ug’)

<o) —e- 12 (s - 14+ 20),

while from

204+~()—¢€) (n o’
(3:44) n—2 (5_1_1+g’>

we only need

(3.45) (1+v(l)—e)1i";,_z(n—2) 7 (5(7’)—1+€+6(l)>,

or equivalently
(3.46) 2(1+~() =)A= &} ) = (n=2)(0(r) = 1+ +6(1)/n)
where we used 1 — ¢’ = (1 — o/, )(1 + 0").
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SUBCASE (i): ¢ . Then ¢/, =0 and (3.46) reduces to
(3.47) 2(1+ () e)>(n—=2)0(r)—1+e+4d(1)/n).
Since §(r) = —"5 (), this is equivalent to

(3.48) (n— 2)( D) - (1—e)+ Ll)l) <201+ (1) — 2).

n—1 n—

By direct computation, we have
(3.49) (n=2)y(r) < (n—=1)(1 —¢) +~(),
which is satisfied by choosing v(I) = 1 —¢ and (r) < -*5(1 —¢), and in
particular for v(I) =~v(r) =1 —e.

SUBCASE (ii): o/ > 0. Then ¢/, = ¢, and ¢’ = ¢’ 4 6(r) — 1 implies
1—0o, =1-0 =6(r)— o' Therefore (3.46) reduces to
(3.50) (n—=2)0(r)—1+e+d6(1)/n) <21 —e+~()(6(r) — o).
Let v(r) = y(l) = 1 —¢. Using §(r) = -57(r) = "5 (1 —¢), (3.50) reduces
to
(3.51) (n—2)<2n(l —¢)—20'(n—1),

which is satisfied for 0 < ¢’ < 1/2, and for € < 3/2n.

Thus we have show that the interpolation is always possible. Since 1/’ =
1/k 4+ 1/s, we can always choose k and s to ensure that A + (k) — 1 and
0((p—1)s) — 1 have the same sign. In fact

A+ 0(k) —1 =0 implies i = w’
ke 2n
(3.52) R
—1)s)—1= lieg L - \n=2)p-1)
d((p—1)s) 0 implies . >

It is easy to see that
1/k>1/kc e X+d(k)—1<0,

(3.53) 1/k <1/ke e X+d(k)—1>0,
1/s >1/s. < d6((p—1)s) —1 <0,
1/s<1/sc < d((p—1)s)—1>0.

If1/k.+1/s. <1/U',1et 1/I" — (1/k. 4+ 1/s.) = € > 0, and define

1 1 ¢ 1 1 1 ¢ 1

(3.54) E:k_c+§>k_c’ g:8_6+§>;'
Then A+ §(k) — 1 and 6((p — 1)s) — 1 are both negative.

If 1/k. +1/s. > 1/, then we can also choose k and s to ensure that
A+6(k)—1and 6((p — 1)s) — 1 are both positive.

Now we begin to apply interpolation to prove the Claim; for this purpose,
we consider the following two cases:
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NEGATIVE CASE.

(i) 6((p—1)s) — 1 < 0, hence (p — 1)s < 2*, therefore
(3.55) H' < [(P=Ds,

(ii) A4 0(k) —1 < 0, hence By 5 — B,’;Q, therefore

(3.56) H' = F;,=Bj, < B},.
Thus

(3.57) lellp-1)s: lelly , < Cllollar
So

(358) [l f(lul® v)ullgy I f2(lul, v)lgy
< O(lullf’ + ol Qull s + l[oll).
PosiTive CASE.
(i) 6((p—1)s) =1 >0, ie., (p—1)s > 2*, hence

(3.59) Lr=s = F&fl)sg - B?pfl)s,Z ~ (H', B£,2)01
(ii) A+ 6(k) —1 >0, ie., (k) > 1 — A, hence

(3-60) Bl/c\,Q ~ (321,2, 35,2)92 = (Hl’ 35,2)02

So

(3.61) Al >u||Bx < C(llullt, 2y, + G20 ) (luls, + 10]5,)
C(|lu || 1 1)91|| ||(P na- 91)_|_|| H(;D 1)91“ ||(p71)(1*91))
H 9

1-6 1-6
'(IIUHHlHUHBQ/“rHvll ol o)

—1)01+6 1)(1—6 + 1-6
ZC(HUH% )61 2||u H(p )(1—061) ( 2)
+ ||UH(P1*1)91+92||v”(l>*/1)(1*91)+(1*92)

1)6, 1 1 04 2
+ [l D% H(” I ol|%, [jo]|"?

vl

—1)0 71 1-0 9
+ ol| “||v|r“1,, YO0 4%, 2)

el

1)0,+6 1)6 0
< CO(|full %Y 0y [FAaiaasd)

(1) (1-01)+(1-02) (p—1)(1—01)+(1-05)
~((Ju || + [loll )-
BY,

Let (p—1)01 +02 =p—v. Then (p—1)(1 —01) + (1 —02) = v and
(3.62) (p—1)(n/2-1)=561)+1—-X+vo'
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Since A = o’ + d(1)/n, (3.62) becomes

(3.63) (p—1)(n/2-1)=6()+1—-0"=6(l)/n+vo’
=y()+1—-0"+vo'

The condition ¥ < 1 becomes

(3.64) (p—1D(n/2-1)<14+7() —d" + 7,

which is satisfied by choosing y(I) = 1 — ¢, ¢” < ¢’ + ¢ provided that
p—1<4(1—-¢)/(n—2).
By (3.58) and (3.61),

(3.65) Uil v)ull por, < CltI O fulul?, v)ull gy

< O (Ul + ol ) Ul + l10l7.)

-1 -1
+ (lullz + o lE ) (el a + [lollz)
< C t 75(1) 1 v ’ v ’ .
< O A+ Gy +l0l5.)

By a similar argument, we have

(3.66) 1K @) £2(ul®, o) gor < OO+ Jlull”,r + 0]l )-
T, r,2 r,2

Now we use the Claim to complete the proof of Lemma 3.3 for v(r) =
1—e. We can easily obtain g,, = —(1 — ne)/(n — 1), corresponding to o = 0,

and oy = + (";(rl)gl)z, corresponding to the upper limit allowed by the

condition of Lemma 3.1. For that purpose, we estimate iteratively for o”
increasing from g,, to oy in steps of € and for 1/¢q = ¢”, using the Claim.
We obtain at each step

(3.67)

t
el oy < 1Tl g, +C Y It =717+l + ol ) dr,

@l ey < 1K (t)¢ + K ()92l pey

)

t
c\lt—r®an v, Y
+ é! 7| (+HUHB$2+HUHB$2) T

The norms of the constant terms were considered in Lemma 3.1. Apply-
ing the Young inequality to the time integral, we obtain, for any compact
interval J containing 0,
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1Ol ey < ||U<t>saum(wg~)

e OO+l o+ 10 )
1o o g7 < HK( o1 + K(0)all o e

CONUA ey + 101 )

Since vq < g < 1/0’, we can continue this iteration; after a finite number of
steps, we obtain u(t), v(t) € L1(J, Bﬁ'g) for all p € [om, om] and 1/q = 0.

This completes the proof of the special case of y(r) = 1—e¢. For v(F) > 1,
let 0 =9+ 0(F) —1=0+6(r)—1for r <7 Then B, < BE,, therefore
Il - HB?Z < CJ| - || ge, so it can be reduced to the case of y(r) =1 —e.

Proof of Theorem 2. Let (u1,v1) and (ug,v2) be two solutions of (1.1).
Then
t

ur(t) —ua(t) = =i \U(t = 7)(fr(Jua|*, v1)ua — fr(lual?, v2)uz) dr
(3.69) °

vi(t) = va(t) = =5 VK (t = 7)(fa(Jual?, 01) = fo(luzl, v2)) dr
0

| =

We estimate (3.69) in L” for some 7 satisfying

n—1
. <A =~F) = —— <
(370) 0=y =", 0%

Sell
(o)
—
ml
~—
I

On the one hand,
(3.71)  [|U(t = 7)(fr(Jur]*, v1)ur — fr(Juzl®, v2)uz) |
< Ot = 70| fr(Jur |, v1)us — fr(luz|?, v2)usl|w

< C|t - T’ 6(”ul||(p ni + HUQH(p ni + |’U1||(p ni + Hv?H(p 1)[)

*([lur = w27 + llor — v2l7)
where 1/7 = 1/ + 1/1, so 20 = n/l. On the other hand,

(3.72)  K(t—7)(follurl*,01) = fo(Juzl*,v2)) |l
< CE(t = ) (f2(lur]?,v1) = fa(luzl?, v2))ll 5o,

< Clt =77 fa(lua?, 01) — f2(|u2|277)2)”3%?<;>—1
< Ot — 1|77 fo(Jur[?, v1) = fo(Juzl?, v2)Is
< O’t - T‘ 7(”ulH(p ni + ”uQH(p ni + |’U1||(p ni + Hv?H(p 1)[)

(lur — uallz + [lvr — va7)
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where BP , — FYy = L7 for 7 > 2, and L® = FQy — By, — Bg/ﬂg)_l. To
ensure the embeddings, we need

(3.73) 5<7 <2, i__izl—Zﬂ(r)’
s 7 n
i.e.,
1 1
(3.74) s<r<e, Lol 0
S T 2

therefore 1/7 4+ 1/1 = 1/5 implies

n n n 1 n4+l n -
l s r 7 2 7
By the Holder inequality, we obtain
(3.75) )
lui(t) —ua ()|l < C( sup ||ur — w7 + sup l[v1 — val|7) ¢ =0~ 1/™
0<r<t o<t

(Y Frr— +HU2H(,, )T, (p—1)m, [0,1]

1o, oy T 1021021y 1y j0.0):
||vl(t)—vz(t)||f30(osup ||U1—U2||r+ S o1 = val|7) [t /™

(HUlH(p DL (p—1)m, [0, T Hu2”(p DI, (p—1)m,[0,1]

( 11l 7 o vy to. + 102G, 07 -1y 0,0
Hence we need 1/m < 1 —6 and 1/m < 1 —7. Let n/l = 26 = 1 +#; then
= (n—1)/(n+1),8=n/(n+1). ,

If (p— 1)l < 2*, we can simply use H' < L®P~D! Tt remains to consider
the case of (p—1)I > 2*. This time we turn to Lemma 3.3 for o = 0, therefore
we need some r such that

1<6(r)<3/2, 2<(p—1)I<r

(3.76) SN <
(=1 ~1< oy
or equivalently
1<46(r) < 3/2, B
2 r  1+% 20
(3.77) [SPolsIE e
1 n n n
—>—(p-1—=—p-D=(==1)p-1) - =.
F25e--F-0-n=(5-1)o-1-]
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it is sufficient to consider

(3.79) (p—1)(n/2—1)—25 <146,
- 2(1+9) 4 2
(3.80) p—1< =

n—-2 n-2 (n+1)n-2)

Secondly, we still need to prove that

1
(3.81) po1< 7,
n
since - = #M, it becomes
2(14+7)
.82 —1< =
(3:82) b ~n—24(r)

which follows from (H3) provided (1+7)(n —2) > 2(n —246(r)), a condition
which is satisfied by choosing ¥y = (n — 1)/(n + 1) and §(r) = 3n/2(n+ 1) <
3/2.

Taking in (3.75) the supremum over ¢ in a sufficiently small interval con-
taining 0, we obtain a linear inequality which implies that (u1,v1) = (ug, v2)
in that interval. Iterating the process yields (u1,v1) = (ug2,v2) everywhere
in I.

THEOREM 3.2. The solution of (1.1) satisfies the conservation of energy

(383) E(u,v,i)) = E(‘Pﬂ/hﬂb)-

Proof. By the uniqueness of the solution (u, v), we can apply time rever-
sal to system (1.1) and therefore to the energy inequality, thereby completing
the proof of energy conservation (3.83).

4. Improvement of the uniqueness. Though the method presented
in §3 is very simple in form, the restriction on p is unnatural. By choosing
two sets of special admissible pairs (r,q), we will use a special Strichartz
estimate to remove the unnatural restriction on p under the more general
assumption (H3') instead of (H3) in this section. Clearly (H3') implies (H1’)
and p < 1+4/(n — 2) implies that H* — LP*! so X = H.

Proof of Theorem 3. To reduce the length of the paper, we will be brief.
Let (u1,v1) and (usg,v2) be two solutions of (1.1). Then

t
(41)  wi(t) —ua(t) = =i\ Ut - 7)(fllual®, v)ur — fr(lual?, v2)ug) dr

0
t

VE(t =) (fa(Jur]?, 01) = follual?, v2)) dr

0

(42) U1 (t) - Uz(t) = —

| =
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Taking r; = p+ 1, we have

2 1 n+1 n—2 2 1 1
o 6(r1), m2m—1) 2m—1) (p—1), — . =7(r2) = (n—1) <§ —g>
Thus 1 —2/¢1 >0 and 1 —2/¢2 > 0.

Let X = L (I, L") N L=(I,L?), Y = L% (I, L") N L>(I, L?) and Z =
X x Y. We estimate (4.1) and (4.2) in X and Y respectively. Firstly,

(4.3) w1 —uellx = l[ur — uallpa (1,L71)nL=(1,12)
= | = ifu =t o = falus?, v)us) dr

L91(I,L71)NL> (I,L2)
< Cll(hua P~ +Hua " o [P+ o) (Jua — wal v — v Dl g 104
+ lur — w2l prr,z2) + llvi —vallpr 1,02
< Cll(hua P~ a7+ Jor P70 oo™ = wal o g g
+ Cll(Jua P71+ JualP ™+ Jor [P+ oo~ or = val [l a4
+ CI|([Jur — ual|pee(r,22) + lv1 — v2|lLo(1,12))
=1 + 1+ Is.

Now,

(44) L= Ol + b+ ot P+ ool ur = sl ] g g ot
< Cll(lua e + llualfoits + llonllFots + o2l 7ot lur = wall o] o
< C(HUIHLoo(I,Hl) + HU2HLoo(17H1) + HUIHL;(I,Hl) + HU2HZ£;1(1,H1))

) |I|172/QI||U1 - U2HL41(I,LT1)

where we used H' < LP*! and the Holder inequalities with

1 1 1 -1 1
ri o (p+1) p+1 p+1 p+1 p+1
and
1 1 1 1 2
(46) —/:——|——7 SO - =1 - —.
a1 q1 X X q1
As to I, since
1 1 -1 1
p+1  (p+1) 2% T2
n—2 n+1 n—2
=(p— —1
P=D 5+ 5m=y 2w @Y
n—2 n—+1
= —1
om0 P~V 5Ty
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it is easy to deduce from p — 1 < ﬁ that for sufficiently small €,

4 —2¢ 2n — 2¢
4.8 —1< 1<
(4.8) p-ls——0p, ptls 5
and then (4.7) becomes
2-2 -2 1
(49) re—e_y o n >1——
2n — 2¢ 2n — 2¢ p+1
n—2 n+1
>__"MT2 o)+ T
e vy ) A Ty

n—2 4-—2¢ n+1
> - +
2nin—1) n—2  2(n-1)
4 — 2 n+1 n2+n—4+ 2

T 2n(n—1) + 2(n—1) on(n —1)

If we let € — 0, (4.9) reduces to n? +n —2 > n? +n — 4, which is obviously
true.

Thus
1 -1 —1 o
(4.10) I, < CH(HQ“HI;P + HU2H€[1 + Hleip + HU2H€[1 vy — 1)2”T2HL<A
-1 -1 - -
< Clllunllzc g gy + M2l Zocr moy + 01 Loo () + 1020 1, 11)
) ’I|1—1/¢11—1/‘12HU1 — ’Ug”qu(I,LT?)

where
(4.11) l/:i+l, SO l:i_izl_l_i.
@ 2 X X @& 42 @ 42
Secondly, by the Strichartz estimate [16],
(4.12)  |lv1 —vally = |lvr = v2|lpaz (1,2 )nLee (1,22)

< Cllvr — v2[ e (I,BY, 5)NL>=(I,L?)

= 0| - 5V = DGl 00) = follual,e2)) dr]

L92(1,BY, ;)NL>=(1,L?)
< O (Jur [P~ + JuaP~t + o1 P71 + Jue]P ) |ur — us lLr(r.B5)

+ Cll(Jua P~ + JualP ™+ Jor P+ ool or = val [l ag . 2ot
b2

+ CI|([Jur — u2l|pee(r,22) + lv1 — V2|l (1,22))
=1L+ 1+ Is.

Now,
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(4.13) Iy = Cll(Jua 7" + ua P~ 4 o P71+ oaP ™ ur — wal [l 1 7 551
< Ol ([P~ + [P+ foa [P~ + oo P fus = wa] [l 1 Loy
—1 —1 -1 -1
< C(”Ul”ioo(I,Hl) + HUQHioo(LHl) + ”UIHioo([,Hl) + HUQHI;Joo([,HI))

YO uy = ua| (I,L71)

where
1 1 1 1 1
(414) —:——i——’ SO [E— - —,
I ¢ x X Q1
and
1 n+2 n—2 1 p—1 1
4.15 = > (p—1 — —
(4.15) oy~ o 2PVt T e
ie.,
n—2 1
4.16 1> _
(4.16) =P T

which is obviously true for 1 < p < (n+ 2)/(n — 2). Moreover,
(417) L =Cll(Jua™" + Jua ™ + o [P+ oo PTY)
o= UQ|”L4’2(1,Bf§f2T2>*1)
< C(”Ul”i:ol(I,Hl) + HU2HI£;1(1,H1) + ”UIHIZ;l([,Hl) + HU2HI£;1(LHI))

TPy — Vol pa2 (1,L72)

where
1 1 1 1 1 1 2
(418) —/:——i——? SO _:_/__: - =,
42 q2 X X qds q2 q2
and
1 2 -1 -1 1
(4.19) 1 260y -1 _p-1 1

T4 n 2% T

which determines the choice of the rs.
So

(4.20)  [[(ur(2), 02 (2)) = (u2(t), v2 (D)l z = lJur (£) —u2(®)|lx +[lo1 (£) —v2 (8[|
< O[minC=2/an =2/ || (uy (£), 01 (1) — (ua(t), va (1) 2

= a|(u1 (), v1(t)) — (ua(t), va(t))]|z.

Choosing I small enough to ensure that a < 1, we obtain the uniqueness of

(1.1) in this tiny interval; iterating this process we get the uniqueness for
all t € R.



194 C. X. Miao and Y. B. Zhu

Acknowledgements. The authors are grateful to Professor Xin Zhou-
ping for his careful comments and valuable suggestions.

References

[1] A. Bachelot, Probléme de Cauchy pour des systémes hyperboliques semi-linéaires,
Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 453-478.

[2] J.-B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Schrodinger—
Klein—Gordon equations, in: Contemporary Developments in Continuum Mechanics
and PDE, North-Holland, Amsterdam, 1978, 37—44.

[3] J. Bourgain, Refinements of Strichartz’ inequality and applications to 2D-NLS with
critical non-linearity, Int. Math. Res. Not. 1998, no. 5, 253—-283.

[4] —, Scattering in the energy space and below for 3D-NLS, J. Anal. Math. 75 (1998),
267-297.

[5] P. Brenner and W. Wahl, Global classical solutions of nonlinear wave equations,
Math. Z. 176 (1981), 87-121.

[6] H. Brezis and T. Gallouét, Nonlinear Schridinger evolution equations, J. Nonlinear
Anal. 4 (1980), 677-681.

[7] H. Brezis and S. Wainger, A note on limiting cases of Sobolev embedding, Comm.
Partial Differential Equations 5 (1980), 773-789.

[8] I Fukuda and M. Tsutsumi, On coupled Klein—Gordon—Schrédinger equations II1,
Math. Japon. 24 (1979), 307-321.

[9] —, —, On coupled Klein—Gordon—Schrodinger equations II, J. Math. Anal. Appl.
66 (1978), 358-378.

[10] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein—Gordon
equation, Math. Z. 189 (1985), 487-505.

[11] —, —, The global Cauchy problem for the nonlinear Schrédinger equation revisited,
Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 309-327.

[12] B. L. Guo and C. X. Miao, The global existence and asymptotic behavior of solutions
for the coupled Klein—Gordon—Schrédinger equations, Sci. China Ser. A 38 (1995),
1444-1456.

[13] P. Hartman, Ordinary Differential Equations, Birkh&user, Boston, 1982.

[14] N. Hayashi and W. Wahl, On the global strong solutions of coupled Klein—Gordon—
Schrédinger equations, J. Math. Soc. Japan 39 (1987), 489-497.

[15] J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non-linéaires,
Dunod, Paris, 1969.

[16] C. X. Miao, Harmonic Analysis and Applications to PDE, 2nd ed., Science Press,
2004.

[17] T.Ozawa and Y. Tsutsumi, Asymptotic behaviour of solutions for the coupled Klein—
Gordon—Schrédinger equations, Adv. Stud. Pure Math. 23 (1994), 295-305.

[18] H. Pecher, Global solutions of the Klein—Gordon—Schrodinger system with rough
data, Differential Integral Equations 17 (2004), 179-214.

[19] W. Wahl, Analytische Abbildungen und semilineare Differentialgleichungen in Ba-
nachraumen, Nachr. Akad. Wiss. Gottingen II: Math. Phys K1. 1979, 153-200.

[20] —, Nichtlineare Evolutionsgleichungen, in: Teubner Texte Math. 50, Leipzig, 1983,
294-302.



Klein—Gordon—Schrédinger system 195

[21] W. Wahl, Uber das Verhalten fir t — 0 der Lésungen nichtlinearer parabolischer
Gleichungen, insbesondere der Gleichungen von Navier—Stokes, Bayreuth. Math.
Schr. 16 (1984), 151-277.

[22] B. X. Wang, Classical global solutions for non-linear Klein—Gordon—Schrédinger
equations, Math. Methods Appl. Sci. 20 (1997), 599-616.

Institute of Applied Physics and Computational Mathematics

P.O. Box 8009, Beijing 100088, China

E-mail: miao_changxing@iapcm.ac.cn
youbinzhu@yahoo.com.cn

Received 27.2.2006 (1659)



