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A domain whose envelope of holomorphy is not a domain

by EDGAR LEE STOUT (Seattle, WA)

Abstract. We construct a domain of holomorphy in CV, N > 2, whose envelope of
holomorphy is not diffeomorphic to a domain in CV.

The envelope of holomorphy plays a central role in multivariate complex
analysis; the standard textbooks in several complex variables give various
constructions for it. Given a domain D in CV, the envelope of holomor-
phy of D is a Riemann domain (D*, ) so that 7 : D* — C¥ is a locally
biholomorphic map. Roughly speaking, (D*, ) is the largest Riemann do-
main to which all functions holomorphic on D extend. The manifold D*
is presented as an abstractly given complex manifold, and, in general, the
map 7 is not injective. Thus, the manifold D* is not presented as a do-
main in CV. The question arose in a recent discussion with some colleagues
whether D* might, nonetheless, be biholomorphically equivalent to a domain
in CN.

It is the purpose of this note to exhibit a domain {2 in CN, N > 2, whose
envelope of holomorphy is not biholomorphically equivalent to a domain
in CN. The construction of {2 requires the following lemma, in which B,
denotes the open unit ball in C™ centered at the origin.

LEMMA. In C", n > 2, let
D.={z=2+iy c C" =Ry +iR}) : 2z € B, and |y| > ¢}.

If K is a compact subset of By, then for sufficiently small € > 0 there is a
domain D. C By, that contains D and K, and with the property that each
function holomorphic on D. continues holomorphically into D..

Precisely: The fixed domain 55 has the property that for each function
f holomorphic on D, there is a corresponding (single-valued) function f
holomorphic on D, that is an extension of f.
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Proof. The set bB,, N{z :y = 0} is the (n — 1)-sphere S*~1 = bvB,, N R,
which, as a compact subset of R", is polynomially convex. Consequently,
there is € > 0 small enough that the polynomially convex hull of the set
S. = bB, N{z : |y| < e} is contained in B, \ K. Thus, if ¢ > 0 is small,
then §5, the polynomially convex hull of the set S, is disjoint from K.
A function holomorphic on D, continues holomorphically into B,, \ Sc. For
this continuation, one can consult the appendix to [5] or [1]. For the D, of
the lemma, we can take the latter set.

We now proceed to the construction of (2.

Fix an integer N > 2. The space CV contains N-dimensional compact
totally real submanifolds, e.g., the unit torus T, which is the distinguished
boundary of the unit polydisc in CV. The paper [6]—see in particular Lem-
mas 3, 4, and 5—therefore provides in CV a pair M; and M, of compact,
connected, totally real N-dimensional submanifolds of class > with the
following properties:

(a) M N Ms consists of two points, say p; and po.

(b) In a neighborhood of p; and in a neighborhood of py the manifolds
M; and Ms coincide with their tangent planes and these tangent
planes are transversal.

(c) For small balls B; centered at pj;, each of the intersections Ej N
(My U My) is polynomially convex.

It is further shown that

(d) The union M; U My has a neighborhood basis consisting of Stein
domains.

Let us denote the union MyUM> by Y. That X' has a Stein neighborhood
basis implies that it is holomorphically convex in the sense of Harvey and
Wells [2], i.e., that every nonzero complex homomorphism of the algebra
O(Y) of germs of functions holomorphic on X is of the form f — f(p)
for some necessarily unique point p € Y. Alternatively phrased, X is, in
a natural way, the spectrum of the algebra €(X). As a consequence of
the holomorphic convexity of X, we can invoke an approximation theorem
of O’Farrell, Preskenis, and Walsh [4, Theorem 2] to conclude that every
continuous function on X' can be approximated uniformly on X by functions
holomorphic on varying neighborhoods of Y.

Without loss of generality, we can suppose that the point p; from prop-
erty (a) above is the origin. We can then choose coordinates so that the
tangent space ToM; is RV and so that in the unit ball By centered at 0,
the manifolds M; and My both coincide with their tangent planes, which
means that M; NBy = RY NBy and that My N By = ToM N By.
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Let v : T — X map the unit circle T in the plane into Y’ homeomorphi-
cally and in such a way that y(1) = 0, v(—1) = pe, and so that 7 carries
the upper half of T into M7, and the lower half into Ms. The map -y is not
homotopically trivial in .

We construct a continuous function ¢ : ¥ — T with ¢ o y(ef) = ¢
for all points e € T. There is such a function: By replacing ¢ by /|| if
necessary, we see that it suffices to find a zero-free function ¢ on X' such that
@ oy(e) = e for all points e € T. To do this, let A; and A2 be continuous
real-valued functions on Mj and My, respectively, that satisfy A; oy(e) =t
when 0 <t < 7 and Ag 0 y(e) = ¢t when 7 < t < 27. The function ¢ that
agrees on M with e and on My with €2 is continuous and zero-free on ¥
and satisfies pory(e') = e for all t. By construction, ¢|M; is homotopic to a
constant as is ¢|Ma. (That ¢|M; is homotopic to a constant, is immediate:
The map H : [0,1] x M; — T given by H(t,z) = ¢"**1(*) is a homotopy
connecting H(1,-) = ¢ = e to the constant map H(0,-).)

By the approximation theorem of O’Farrell, Preskenis, and Walsh, the
function ¢ can be approximated uniformly on X by functions holomorphic
on varying neighborhoods of Y. There is, therefore, a neighborhood {2y of X
on which there is a zero-free holomorphic function fy such that the map
fooy : T — C\ {0} is homotopic to the inclusion T — C \ {0}, such
that 29 = 29,1 U 22 with 291 and 2y 2 domains that contain M; and Mo,
respectively, such that fo|f201 and fo|{20 2 have holomorphic logarithms, say
¢1 and fo. These logarithms can be chosen so that ¢1(p2) = f2(p2). With this
choice, ¢1(0) = £2(0) % 2mi.

Let 2 C (29 be a domain of the form Wy U W5, where W7 is a thin
ribbon around M; that is contained in 2p; and that satisfies W1 N By C
{z=x+iy e RY + iRéV : lyl < n} for a small n > 0 whose size will be
specified further below. The domain W5 is constructed in the following way.
The domain {2y 5 contains a ball B(0, ) of some radius 7 > 0 centered at the
origin. We take r to be less than 1 so that at points of By (0, 7) the manifold
M agrees with its tangent space. Having fixed r, we introduce the set

A={z=a+iye (Ré\f —i—iRZ]/V) NBN(0,7) 1y > |e]}.

t

We insist that our € be so small that the tangent space Ty Ms meets the sphere

bBx (0, 7) in a set that is contained in Zr,a' The Lemma proved above shows

that there is a domain Dy containing A, . and By (0, ) N1y Ma such that every

function f that is holomorphic on A, . continues holomorphically into Dy.
Our domain Wy is defined by

Wy = (V \ BN(O,’I“)) U Ar,z—:a

in which V' C (2 is a thin tube around the manifold M, that is contained
in 9072.
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We now choose the 1 used in the definition of W to be smaller than
the € used in the definition of W5. This has the effect that Wi and A, are
disjoint and, indeed, have disjoint closures.

As noted already, our domain {2 is the union Wy U Ws.

The envelope of holomorphy of 2 is a Riemann domain (£2*, 7). It has
the property that 7(£2*) D 2, but more than that, 7(£2*) also contains the
domain Dy.

Let ¢ : £2 — §2* be the canonical injection, so that oy is the identity map
on (2, and for every f holomorphic on {2, there is a unique f* holomorphic
on (2* that satisfies f = f* 0.

The map ¢ carries the manifold M; onto a submanifold M7 of 2. It also
carries the open subset My . = My \ (By(0,7)N{z: |y| < e}) onto a locally
closed (') submanifold M , of £2* that meets M at a single point, viz., at
the point ¢(p2), and the intersection there is transversal.

Because the manifold (2* is a Stein manifold, there is a map j : Dy — 2*
that agrees on A, . with .

The existence of j is seen as follows. Since (2* is a Stein manifold, we can
assume it to be a complex submanifold of C™ for a sufficiently large m. The
map ¢ is defined on A, ., and, with 2* C C™, it is given by an m-tuple
(t1y...,tm) of holomorphic functions. Each ¢s extends to a holomorphic
function js on Dy. The map j is then the m-tuple (ji,. .., jm)-

It carries the totally real disc I' = Ty M2 N By (0, ) onto a locally closed
submanifold I'* of £2*. The set I™ U M3 __ is a smooth submanifold—call it
M5—of 2* that is diffeomorphic to the manifold M.

The manifolds M7 and M3 meet only at the point ¢(p2), which we denote
by p5. Because the map ¢ is injective, the intersection M{ N My is necessarily
contained in the set 7~ (M3 N My) = 7=1(0) U {p3}. The point now is that
¢(0) is different from j(0) as follows from the existence of the function fy
that we constructed above. To prove this, we define a function @ by the
condition that v = ¢; on Wi and ¢ = f5 on Wy. This function is well
defined and holomorphic on (2, and it is a branch of log fo on {2. Denote
by 1o the continuation of 9|4, . into the domain Dy. The value of 9y at 0
differs by 4+27i from the value of ¢ at 0. This means that the points ¢(0)
and j(0) differ. Therefore the manifolds M; and Mj meet at a single point
in £2*.

Intersection theory [3, middle of p. 132] shows that in C¥ it is impossible
for two IN-dimensional compact smooth manifolds to intersect at a single
point if the intersection is transversal, so the domain {2* is not biholomor-
phically equivalent to a domain in C¥.

This completes our discussion of the announced domain {2.

(*) A set is locally closed if it is a closed subset of an open subset of the ambient space.
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This discussion gives rise to an obvious and probably difficult question:

Can one give conditions under which the envelope of holomorphy of a domain
in C"V is biholomorphically equivalent to a domain in C¥? Note that this is
not the question of when the envelope of holomorphy is schlicht. Precisely,
the latter question, which is classical and not easy, is this: If D is a domain
in CV with envelope of holomorphy (D, ), what conditions on D guarantee
that the projection 7 is injective?

(6]
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