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On nonsingular polynomial maps of R?

by NGUYEN VAN CHAU (Hanoi) and
CARLOS GUTIERREZ (Sao Carlos)

Abstract. We consider nonsingular polynomial maps F = (P,Q) : R? — R? un-
der the following regularity condition at infinity (J): There does not exist a sequence
{(pk, qx)} C C? of complex singular points of F' such that the imaginary parts (3(px), S(qx))
tend to (0, 0), the real parts (R(px), R(qx)) tend to co and F(R(pr), R(qr))) — a € R Tt
is shown that F is a global diffeomorphism of R? if it satisfies Condition (Js) and if, in
addition, the restriction of F' to every real level set P~'(c) is proper for values of |c| large
enough.

1. Introduction. This paper addresses the question of whether a poly-
nomial map F = (P, Q) : R? — R? which is a local diffeomorphism is also
a global diffeomorphism. Pinchuk’s example [P] of a polynomial local dif-
feomorphism which is not a global diffeomorphism proves the necessity of
some extra condition. In this paper, we propose a condition, called Con-
dition (Js) below, which we believe to be necessary and sufficient for a
polynomial map which is a local diffeomorphism to be a global diffeomor-
phism. In this way, we provide a positive answer in a simple (but not trivial)
topological situation. Everything indicates that the very important problem
of characterizing polynomial maps of the real plane that are global diffeo-
morphisms is very difficult. Condition (J) ensures the nice feature that
the complex singularities of the complexification of the polynomial map de-
fined on the real plane do not have a direct influence on the behavior of
the map at infinity. Certainly, polynomial maps satisfying the well known
constant Jacobian Keller condition satisfy the (J5) condition which we now
define.
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For a complex point p = (a +1ib, c +1id) € C?, a,b,c,d € R, we denote by
S(p) = (b,d) and R(p) := (a,c) the imaginary part and the real part of p.
Condition (J) can be formulated as:

(Joo)  There does not exist a sequence {py} C C? of singular points of
the complexification F' : C2 — C? of F such that S(pg) — (0,0),
R(pr) — oo and F(R(py)) — a € R2.

THEOREM 1.1. Suppose F = (P,Q) : R? — R? is a nonsingular polyno-
mial map satisfying Condition (J). Then F is a global diffeomorphism of
R? provided that, for all |c| > 0 large enough, either

(i) P~Y(c) is connected or
ii) F|p-1(, 18 proper.
()

This theorem improves the main result of [CG|, where the nonzero con-
stant Jacobian case was considered. Its proof, presented in §3, is based on
the examination, in §2, of the behavior at infinity of nonsingular polynomial
maps of R? satisfying (Js). Theorem 1.1 is not valid for analytic maps of
R?. Indeed, in [CG], we have constructed a nonzero constant Jacobian an-
alytic map F = (P,Q) : R? — R? which is noninjective, nonsurjective, at
most 2-to-1 and such that for all |c| large enough, P~!(c) is connected and
F‘P—l(c) is proper. This example will be presented in §4. In that section we
will also see that Pinchuk’s example [P| does not satisfy Condition (J)
and can be modified so that the resulting map F = (P, Q) is a noninjec-
tive nonsingular polynomial map which, when restricted to every level set
P~Y(c),Q7(c), is proper for ¢ < 0.

In the case of complex nonsingular polynomial mappings a result anal-
ogous to Theorem 1.1(ii) was obtained earlier by Druzkowski [Dru] and
Chadzynski [Cha]. Namely, if a nonsingular polynomial mapping F' = (f, g)
of C? is proper on the set g~!(c) for some ¢ € C, then F is injective. Theo-
rem 1.1(ii) is, in some sense, a real counterpart (but not a consequence) of
that result.

Before continuing, we wish to thank the referee whose comments have been
appreciated and incorporated into this work. Also, we wish to mention some
results related to ours. Fernandes, Gutierrez and Rabanal [FGR] (see also
[CGL]) showed that if f : R?2 — R? is a differentiable map (not necessarily
C') and if, for some ¢ > 0, Spec(f)N[0,¢) = (), then f isinjective; here Spec( f)
denotes the set of (complex) eigenvalues of the derivative D f(x) when z varies
in R2. Campbell [Cal] classified the C'! maps R? — R? whose eigenvalues are
both 1; all such maps are diffeomorphisms having explicit inverse.

2. Condition (J). In the following, the Euclidean space R? will be
viewed as a subset of C2. Let F = (P,Q) : R? — R? be a polynomial map
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which is dominant (i.e. F(R?) is an open set). Recall that the nonproper
value set Ap of F is the set of all values a € R? which have no neighborhood
with compact inverse image under F. It is well known that Apg, if nonempty,
is the union of the images of a finite number of nonconstant polynomial maps
from R into R? (see for example [J]). When F is a local homeomorphism,
the map F : R?\ F~1(Ap) — R?\ Af is an unbranched covering and Ap
is just the discontinuity set of the integer-valued function #F~!(a) defined
on R?. When A = 0, F is a homeomorphism of R2.

By means of the Newton—Puiseux expansion, we can describe both the
behavior of F' at infinity and the set Ap. Let (ug,v9) € A be a smooth point
of Ap. Take a line segment L that intersects Ap transversally at the point
(up,v0). Then F~1(L) has some branches at infinity along which F tends to
the value (ug, vo). Let v C F~!(L) be one of such branches. In suitable linear
coordinates of R? the branch « can be given by (R, 00) > = +— (z,7(x)) € v
with a Newton—Puiseux expansion at infinity of the form

oo
Y(w) = eptHm,
k=0

where ¢, € R, ged({k : ¢t # 0} U {m}) = 1 and the series Y, cxt* is
absolutely convergent in the complex disk |¢| < . Then, following [C], we
can find a unique finite fractional series ¢(z,¢) with parameter ¢ such that
v(x) = p(x,&) + lower order terms in x and

F(ZE,QO(:L‘,f)) = (P¢($,£),Q¢(l‘,£))
= (py (&), 4, (€)) + lower order terms in x,

with p,,q, € R[{] and max(degp,,degq,) > 0. Such a fractional power
series p(z,&) is called a real dicritical series of F. Let us represent ¢(z,§)
in the normal form
ne—1
p(r,8) = Y aja' /Mo ot Tmelme - ged({f aj # 0} U {my,ny}) = 1,
j=0
and define the maps @, F, : Rt x R — R2 by &(t,€) := (7", @t ™, €))
and Fi, := F o ®. One can easily check the following properties:

(i) @ is an analytic homeomorphism from R x R onto its image U, :=
@(R* x R) which is a neighborhood of the branch ~ considered.

(ii) F,isa polynomial map in (¢, &), and the image of the polynomial map
Jo(&) = (pp(§), q,(&)) contains the value (ug, vo) and is an irreducible
component of Ap.

In other words, the map @ gives local analytic coordinates (¢,£) in the
neighborhood U, of the branch v, and the polynomial map F,, gives a rep-
resentation of F' in these coordinates.
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As noted above, the set Ap, if nonempty, is the union of the images
of a finite number of nonconstant polynomial maps from R into R2. In
this way one can construct a finite family A of dicritical series ¢ such that
Ap = Ugea fo(R), and the corresponding family {$(R* x R)} of open sets
covers all branch curves at infinity along which F' tends to a value in Ap.
This structure can be used to examine the behavior of F' at infinity. In the
following we will use this structure to study the geometry of a nonsingular
polynomial map F' satisfying Condition (Jx).

Recall that the exceptional value set Ej, of a polynomial h : R? — R is
the smallest subset of R such that the restriction h : R2\h~1(E}) — R\ E}, is
a locally trivial fibration. When Ej = (), the map h gives a trivial fibration
with fiber homeomorphic to R. By a local irreducible complex branch of a
real curve V C R? we mean the complexification of a local irreducible real
branch of V. A local irreducible complex branch of Ap can be seen as the
image f,(D(&o,¢)) of a small disk D(&p,¢) :={£ € C: [ — &l < €}, where
& € R and ¢ is a dicritical series of F'.

THEOREM 2.1. Suppose F = (P,Q) : R? — R? is a nonsingular poly-
nomial map satisfying Condition (Jx). If the complex line L := {u = c}
intersects transversally all local irreducible complex branches of Ap located
at Ap N L, then ¢ € Ep.

To prove this theorem we need the following elementary fact:

LEMMA 2.2. Let f(t,€) = (u,v) be a holomorphic map from a neighbor-
hood U C C? of (0,0) into C2, f(t,€) = (p(&), q(&))+higher order terms in t,
£(0,0) = (0,0). Assume that for some § > 0 small, the line u = 0 intersects
the local branch I' :== f({0} x D) transversally, where D := {¢ € C : |§| < ¢},
and that {(t,§) € U : det(Df(t,€)) = 0} C {(t,§) € U : t = 0}. Then
$(0) # 0.

Proof. Since the line u = 0 intersects I" transversally at (0,0), we can
assume that, locally around 0, I" is a smooth branch of a curve paramete-
rized by v = h(u), where h is an analytic diffeomorphism, with A(0) = 0,
defined in a small neighborhood of 0. Define the new coordinates (u,v) =
(u,v — h(u)) in a neighborhood of (0,0). Let f be the representation of f in
these coordinates. Then

f(t,&) = (p(€),0) + higher order terms in ¢,
£(0,0) = (0,0), f({t =0}) c I' = {v = 0} and det(Df(t,£)) # 0 for t # 0.
By examining the Newton diagrams of f;, fo and det D f we can verify that
f(ta 5) = (gul(ta 5) + tug (ta 5)7 tkvl (tv ‘5))7

where u1, ug and v; are holomorphic functions defined in U, u;(0,0) # 0 and
v1(0,0) # 0 (see e.g. [O, Lemma 4.1]). It follows that p(0) = u1(0,0) # 0. =
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Proof of Theorem 2.1. Let ¢ € R. Assume that the complex line L :=
{u = ¢} intersects transversally all local irreducible complex branches of Ap
located at Ap N L.

Let A 5 ¢ be an open interval. We will see that it is enough to construct
a smooth vector field V on P~1(A) such that (grad P(z),V(z)) = 1, and
the solutions of the differential equation Z = V(z) do not tend to infinity.
In fact, if A is small enough and ¥(z,t) is the local flow induced by such
a vector field V, then ¥ : P~1(c) x A — P~!(A) is well defined and it is a
diffeomorphism satisfying P(¥(2,t)) = ¢+ t. Hence, P : P7}(A) — Ais a
trivial fibration and, by definition, ¢ € Ep.

To construct the vector field V' as above, first we consider a given branch
~ at infinity of the real curve P = c. Let ¢ be the dicritical series with
coordinates (t, ) associated to . Assume that in these coordinates 7y locates
at the point (0, &p). Taking the derivative of Fi, we have

det(DF,(t,€)) = —my, det(DF(P(t, &))" 2me 1

Condition (Ju) ensures that det(DF,(t,£)) # 0 for |t| # 0 small enough; in
fact, otherwise, there would exist a holomorphic map £ : {t € C : || < &}
— C with £(0) = & such that det(DF(®(t,£(t)))) = 0. Therefore,
R(D(t,£(t))) =D(t, &) + higher order terms in ¢ for t €R and F(R(D(t,£(t)))
tends to (py(&0),qp(&)) € R? as t tends to zero. Hence, we can apply
Lemma 2.1 to find positive numbers o and 3 and a neighborhood W, =
{(t, &) eR?:0 <t < a, |€—&] < B} of v such that

GO A0 forle~Gl < B GPALE A0 for (1) €W,

The property we need here is that in W, the motions in the direction V, :=
(B%P@, 0) cannot tend to the line ¢ = 0 and (grad P(z), V;(2)) # 0 for z € W,,.

Summarizing, for every branch ~ at infinity of the real curve P = ¢, we
have obtained a neighborhood W, of v and a vector field V,, defined on W,
Since the curve P = ¢ has only finitely many branches at infinity, we can
choose a real number R > 0, as large as necessary, and a small interval A > ¢
so that the family {W, }, together with the open ball Bg of radius R centered
at (0, 0) is an open covering of P~1(A). Let Vg (z) := grad P(z) defined on Bp.
Note that Vr(z) # 0, since F' has no singularities. Then by using a smooth
partition of unity we can construct, from the fields V., and Vg(2), a smooth
vector field V' (2) defined on P~(A) with the desired properties. m

The following corollary, which is an immediate consequence of Theo-
rem 2.1, will be used to prove Theorem 1.1.

COROLLARY 2.3. Suppose F' = (P,Q) : R?> — R? is a nonsingular poly-
nomial map satisfying Condition (Jx). Then the nonproper value set Ap
cannot be a finite union of lines and semi-lines.
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Proof. Assume by contradiction that Ap is the union of finitely many
lines and semi-lines. We can choose a direction (a,b) € R?\ {(0,0)} so that
the lines au + bv = ¢, ¢ € R, intersect transversally all complexifications
of the lines and semi-lines in Ap. Then, applying Theorem 2.1 to the pair
(aP+bQ, Q) we see that the exceptional value set E,p.pg is empty and that
the map aP + bQ : R? — R gives a trivial fibration with fiber diffeomorphic
to R. As F' has no singularities, it is monotone along the fibers of aP + b(@).
It follows that it is injective. Hence, as every injective polynomial map of R?
must be bijective [N, Ku|, F is a diffeomorphism of R? and Ap = (. This
contradiction proves the corollary. =

REMARK 2.4. In the above-mentioned representation, Ap = (J,c 4 fo(R)
and no component f,(R) is a semi-line. In fact, this can be proved by ap-
plying Lemma 2.2 to the map Fi,.

3. Proof of Theorem 1.1. The conclusion of the theorem will follow
from Corollary 2.3 and the following lemmas.

LEMMA 3.1 (Lemma 2.2 in [CG]). Let F = (P,Q) : R? — R? be a
polynomial map. Assume that, for every |c| large enough, the restriction of
F to P~1(c) is proper. Then the nonproper value set Ap of F, if not empty,
must be formed by some lines and semi-lines parallel to the vertical axis.

Proof. Assume that, for |c| > R > 0, the restriction of F to P7(c) is
proper. From the definitions above, we can easily see that if L C R? is a
line and the restriction of F' to F~!(L) is proper, then L N Ar = (). This
implies that Ar must be contained in {(c,d) € R? : |c| < R}. On the other
hand, by Proposition 2.1, A is the union of the images of some nonconstant
polynomial maps (p,q) : R — R2. Therefore, the first component of every
such polynomial map must be constant and so Ar must consist of some lines
and semi-lines parallel to the vertical axis. m

LEMMA 3.2. Let F = (P,Q) : R? — R? be a nonsingular polynomial map
and let R be a positive number. If, for every |c| > R, the level set P~1(c) is
connected, then the restriction of F to P~1(c) is proper.

Proof. Let F = (P,Q) : R> — R? be a nonsingular polynomial map.
Assume that P~1(c) is connected for every |¢| > R > 0. We define W :=
{(e,d) € R% : |c| > R}. Since ( is monotone along each connected component
of a level set of P, F takes injectively F~1(W) onto W. It follows from the
definition of Ap that W N Ap = ). Therefore, for |c| > R, the restriction of
F to P~Y(c) is proper. =

Proof of Theorem 1.1. Combine Lemmas 3.1 and 3.2 and Corollary 2.3. =
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4. Discussion and examples. The following discussion and examples
will clarify the statements and assumptions of the preceding results.

4.1. Condition (J). In the real case, this condition generalizes the well
known Jacobian condition, det DF' = ¢ # 0, and ensures that the complex
singularities of F' do not directly influence the behavior of F' at infinity. As
a real analogue of the Jacobian Conjecture, it is natural to ask whether a
nonsingular polynomial map of R? is a global diffeomorphism if it satisfies
condition (Js).

4.2. Condition (i) of Theorem 1.1. Tt is clear that the restriction of F' to
the inverse image F~!({(a,b) : |lal]| > 0}) is injective. For a local diffeomor-
phism % : R? — R?, denote by n(h) the minimal integer k such that there
exists an open disk D C R? with #h~!(p) = k for all p € D. Condition (i)
implies that n(F) = 1. In Pinchuk’s example, n(F') = 2 (see [Ca2, Ca3|). We
conjecture that a nonsingular polynomial F' must be a global diffeomorphism
if n(F) =1.

4.3. Pinchuk map and Condition (Jx ). In 1994, Pinchuk [P] found a
noninjective nonsingular polynomial map of R%. Here, we will show that it
does not satisfy Condition (Jx).

Pinchuk’s map F' = (P,Q) can be constructed in the following way
(see [E]). Let g := oy — 1, h := g(zg + 1) and f := ((h + 1)/z)(xg + 1)2.
Then let

P:=f+h
and
Q := —g° — 6gh(h+ 1) — 170fh — 91h* — 195fh* — 69h* — 75 f — T h™.
We have
det(P,Q) = g> + (g + f(13 + 15h))* + f2,

which is always positive on RZ.
To check Condition (J) for (P, Q) we choose the function

o(z,€) = x faj_g/Q.
Then computing with Maple V we get

P(t™2,0(t72,6)) = (€' +26%) + 1(3¢” + 36) + 12(3¢6* + 1) + 1%,

Q2 p(t72,6)) = (—=75¢"0 — UFB¢® —434¢° — 261¢*)
+ t(—698€3 — 167365 — 142567 — 450£7)
+ 12(—608¢% — 24046* — 5625,/2¢% — 1125¢8)
+ t3(—170¢ — 153563 — 2775¢° — 1500¢7)
+¢(—365¢% — 2413¢1 — 1125¢°)
+ t7(—270€% — 45065) — 75t5¢4.
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One can see that the exceptional complex curve of Fr has a component
parameterized by C 5 £ — (54 +2¢2, —75¢10 — %68 — 434£6 — 26154).

Now, considering the function det DF' along the parameters &(t,&) :=
(t7% @(t72,€)), we have

det(D®(t,€)) = —2t7°
and
det(DF(®(t,€))) det(DD(t, £))
= 706£3¢ 4+ 1706* 4 706t€> + 10746%¢% + 3706t£° + T468t%¢* + 7468t3¢3
+ 73060 4+ 117568 + 840610 + 225¢12 4 170t* + 3706t1¢2 + 7080&7¢
+ 17745652 + 23680t3¢° + 17745t ¢* + 7080t°€3 + 5880€%¢
+ 1764065t + 29400€7¢3 + 29400t%¢5 + 17640t°¢° + 5880t5¢4
+ 1800&M ¢ + 6300£10¢2 + 12600£°t% + 1575068t + 12600677

+ 6300t°€5 + 1800¢7€% + 1175t5¢2 4 840t7€3 4 730t°¢ 4 225¢8¢2.
This is a polynomial in R[¢][¢] with ¢-free term
4170 + 730€2 4 1175¢* + 84065 + 225¢%)

which vanishes at £ = 0 and may also vanish at some other real values a;.
It follows that det(DF(®(t,£))) = 0 for some fractional power series t —
&(t) = —a; + terms with degt > 0. Thus, for such series &;(t) we have
det(D(P,Q)(t 2,12 + &(t)t3)) = 0. As above, we have

P(t_Q, 2 + &(t)t?’) = a;l + 2(112 + terms with degt > 0,
Q2,12+ &(1)1%) = —75a}0 — 1268 — 43445 — 2610
+ terms with degt > 0,
each of which tends to a real value as t tends to zero. Hence, we can select

arbitrarily small real values t so as to obtain a sequence for which Condition
(Joo) does not hold.

4.4. Condition (ii) of Theorem 1.1. Related to this condition, we may
apply the following proposition to the noninjective nonsingular polynomial
Pinchuk map [P] presented in Section 4.3 above.

PROPOSITION 4.1. Suppose F : R? — R? is a nonsingular polynomial
map with the closure of F(R?) equal to R?. Then there is a polynomial dif-
feomorphism ¢ of R? such that the restriction of p o F = (P,Q) to every
level set P~Y(c), Q~Y(c) is proper for ¢ < 0.

Proof. This proposition is obviously true when F' is injective. Suppose
that F' is not injective. Then
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n
Ap = J{f() s te R}
i=1
for some polynomial maps f;(t) = (pi(t),q:(t)). By using a linear change
of coordinates if necessary, we can assume that degp; > 1 and deggq; > 1.
Choose a positive integer k such that 2k > degp;, 4k > deg ¢;, and define

o(u,v) = (u+ v v+ (u+ v2k)2),

which is an automorphism of R2. Then one can see that the branches at
infinity of the set Ag,op are contained in the positive cone of R2. From this
it is easy to obtain the conclusion.

4.5. Nonzero constant Jacobian analytic maps. There exists a nonzero
constant Jacobian analytic map F' = (P, Q) : R? — R? which is noninjective,
nonsurjective, at most 2-to-1 and such that for all |c| large enough, P~1(c)
has exactly one connected component and also the restriction of F' to each
level P~!(c) is proper. It will be seen that this map is a sort of “algebraic
map”.

To construct F, first consider the map Fy = (P, Q1) : (0,00) x R — R?
given by Py(x,y) = z(y?> — 1) and Q1(x,y) = zy(y?> — 4). Then:

(1) det(DFi(z,y)) = z(y* + y? + 4) > 0 everywhere;

(2) if ¢ < 0 then P, !(c) is the connected set which is the graph of the

map y — x = ¢/(y?> — 1) defined in (—1,1);

(3) if ¢ > 0 then Pfl(c) has two connected components which are the
graphs of the maps x — y = /(c+z)/rand z — y = —/(c+ z)/x
defined in (0, c0);

) P 1(0) has two connected components: {y = 1} and {y = —1};

) Fi is not injective because F1(1,2) = Fi(1,—2) = (3,0);

) Fi is not surjective because (0,0) ¢ F1((0,00) x R);

) for all ¢ € R\ {0}, F} restricted to P, '(c) is a proper map.

4

o~~~ ~

5
6
7

Now consider the analytic diffeomorphism H; : (0,00) x R — (0,00) x R
given by Hy(x,y) = (v/2x, h(y)), where the diffeomorphism A : R — R is the
solution of the differential equation

1
/
Rt R+ 4 h0) = 0.
We can see that h(y) satisfies the algebraic equation (h(y))®/5 + (h(y))3/3
+ 4(h(y)) = y. Let F5 = Fy o H;. We can check that det DFy = 1.

As H; takes vertical lines onto vertical lines, there is a diffeomorphism
f :(0,00) — R such that Hi({(z, f(z)) : * € (0,00)} is the connected
component {(z,—+/(5+ z)/z) : x € (0,00)} of P71(5). Define the area pre-
serving analytic diffeomorphism Hj : (0,00) xR — (0,00) X R by Ha(z,y) =
(z,y+ f(x)). Observe that Hj takes the positive first quadrant {(z,y) € R? :
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x>0,y > 0} onto the set {(z,y) € R?: 2 >0, y > f(x)}, which in turn is

taken by Hy onto {(z,y) €R?:2 >0,y > —/(5 + x)/z}.
We conclude that F3 = (P3,Q3) = F} o Hy o Hy, restricted to the first
quadrant, has the following properties:

(1)
(2)
(3)

(4)
()
(6)

det(DF3(x,y)) = 1 everywhere;

if ¢ < 0 then Py !(c) is connected;

if ¢ € (0,5) then P; !(c) has two connected components, and if ¢ > 5
then P !(c) is connected;

P;1(0) has two connected components;

F3 is noninjective and nonsurjective;

for all ¢ € R\ {1}, Fj restricted to P; (c) is a proper map.

Let H3 : R? — (0,00) x R and Hy : R? — R x (0,00) be the following
area preserving diffeomorphisms:

V244 >
Hy(z,y) = |2+ Va2 +4,y—— 1),
o= ( PR

Hy(z,y) = ( er\/Q\/y——+y+\/z/—+>

Observe that the function k(z) = z++v/x? + 4 satisfies the algebraic equation

Q=0
P=3
=0
Q=0
P=0
P=3
Q=0

Fig. 1
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(k(x))? — xk(z) = 4. It can be seen that Hs o Hy takes R? onto the first
quadrant and that F' = (P, Q) = F30 H3zo Hy is as required at the beginning
of this section.

Now we summarize the properties of the map F' = (P,Q) just con-
structed:

(1) det(DF(x,y)) =1 everywhere;

(2) if ¢ € (—00,0) U [5,00) then P~1(¢c) is connected, and if ¢ € [0,5)
then P~!(c) has two connected components; in this way the foliation
induced by the Hamiltonian vector field Xp has exactly one Reeb
component, {P < 0};

(3) if ¢ € R\ {0}, then Q@ !(c) has two connected components, and
Q~'(0) has three connected components; in this way the foliation in-
duced by X has exactly two adjacent Reeb components with union

{Q <0}

(4) F is noninjective and nonsurjective; more precisely, F~1(3, 0) consists
of two points and (0,0) ¢ F(R?);
(5) for all ¢ € R\ {0}, F restricted to P~!(c) is a proper map.

Figure 1 shows the foliations induced by the Hamiltonian vector fields
Xp and Xg.
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