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A omparative analysis of Bernstein type estimates forthe derivative of multivariate polynomialsby Szilárd Gy. Révész (Budapest)Abstrat. We ompare the yields of two methods to obtain Bernstein type point-wise estimates for the derivative of a multivariate polynomial in a domain where thepolynomial is assumed to have sup norm at most 1. One method, due to Sarantopou-los, relies on insribing ellipses in a onvex domain K. The other, pluripotential-theoretiapproah, mainly due to Baran, works for even more general sets, and uses the pluriom-plex Green funtion (the Zaharjuta�Siiak extremal funtion). When the insribed ellipsemethod is applied on nonsymmetri onvex domains, a key role is played by the general-ized Minkowski funtional α(K, x). With the aid of this funtional, our urrent knowledgeof the best onstant in the multivariate Berstein inequality is preise within a onstant
√

2 fator. Reently L. Milev and the author derived the exat yield of the insribed el-lipse method in the ase of the simplex, and a number of numerial improvements wereobtained ompared to the general estimates known. Here we ompare the yields of thisreal, geometri method and the results of the omplex, pluripotential-theoretial approahin the ase of the simplex. We observe a few remarkable fats, omment on the existingonjetures, and formulate a number of new hypotheses.1. Introdution. If p is a univariate algebrai polynomial of degree atmost n, then by the lassial Bernstein�Szeg® inequality ([41℄, [13℄, [9℄) wehave(1) |p′(x)| ≤
n
√

‖p‖2
C[a,b] − p2(x)

√
(b − x)(x − a)

(a < x < b).
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230 Sz. Gy. RévészThis inequality is sharp for every n and every x ∈ (a, b), as
sup

{ |p′(x)|√
‖p‖2

C[a,b] − p2(x)
: deg p ≤ n, |p(x)| < ‖p‖C[a,b]

}

=
n√

(b − x)(x − a)
.We may say that the upper estimate (1) is exat, and the right hand sideis just the �true Bernstein fator� of the problem.Polynomials and ontinuous polynomials are also de�ned on topologialvetor spaes X (see e.g. [14℄). The set of ontinuous polynomials over Xwill be denoted by P = P(X), and the polynomials in P with degree notexeeding n by Pn = Pn(X).In the multivariate setting a number of extensions were proved for thelassial result (1). However, due to the geometri variety of possible onvexsets replaing intervals of R, our present knowledge is still not �nal. Theexat Bernstein inequality is known only for symmetri onvex bodies, andwe are within a bound of some onstant fator in the general, nonsymmetriase.We may de�ne formally, for any topologial vetor spae X, a subset

K ⊂ X, and a point x ∈ K, the nth Bernstein fator as
(2) Bn(K, x)

:=
1

n
sup

{ ‖Dp(x)‖√
‖p‖2

C(K) − p2(x)
: deg p ≤ n, |p(x)| < ‖p‖C(K)

}
,

where Dp(x) is the derivative of p at x, and for any unit vetor y ∈ X,
(3) Bn(K, x, y)

:=
1

n
sup

{ 〈Dp(x), y〉√
‖p‖2

C(K) − p2(x)
: deg p ≤ n, |p(x)| < ‖p‖C(K)

}
,

where 〈Dp(x), y〉 is the diretional derivative in diretion y (whih equalsthe value attained by the gradient, as a linear funtional, at y).Our aim is to investigate these and related quantities, and to analyzemethods of estimating them.2. The insribed ellipse method of Sarantopoulos. Reall that aset K ⊂ X is alled a onvex body in a normed spae (or a topologial vetorspae) X if it is a bounded, losed onvex set with nonempty interior. Theonvex body K is symmetri if there exists a enter of symmetry x so thatre�etion of K at x leaves the set invariant, that is, K = −(K − x) + x =
−K + 2x. We will all K entrally symmetri if it is symmetri with respet



Bernstein type estimates 231to the origin, i.e. K = −K. This ours i� K an be onsidered the unit ballwith respet to a norm ‖ · ‖(K), whih is then equivalent to the original norm
‖ · ‖ of X in view of BX, ‖·‖(0, r) ⊂ K ⊂ BX, ‖·‖(0, R).The maximal hord of K in diretion v 6= 0 is

τ(K, v) := sup{λ ≥ 0 : ∃y, z ∈ K suh that z = y + λv}(4)
= sup{λ ≥ 0 : K ∩ (K + λv) 6= ∅}
= sup{λ ≥ 0 : λv ∈ K − K}
= 2 sup{λ ≥ 0 : λv ∈ C} where C := C(K) := 1

2(K − K).Usually τ(K, v) is not a �maximal� hord length, but only a supremum.Nevertheless, we shall use the familiar �nite-dimensional terminology (seefor example [42℄).The support funtion to K, where K an be an arbitrary set, is de�nedfor all v∗ ∈ X∗ (sometimes only for v∗ ∈ S∗ := {v∗ ∈ X∗ : ‖v∗‖ = 1}) as(5) h(K, v∗) := sup
K

v∗ = sup{〈v∗, x〉 : x ∈ K},and the width of K in diretion v∗ ∈ X∗ (or v∗ ∈ S∗) is
w(K, v∗) := h(K, v∗) + h(K,−v∗) = sup

K
v∗ + sup

K
(−v∗)(6)

= sup{〈v∗, x − y〉 : x, y ∈ K} = 2h(C, v∗) = w(C, v∗).Then the minimal width of K is w(K) := infS∗ w(K, v∗) and the sharpinequalities(7) w(K) ≤ τ(K, v) ≤ diamK, w(K) ≤ w(K, v∗) ≤ diamKalways hold, even in in�nite-dimensional spaes (f. [36, �2℄).In R the position of a point x ∈ R with respet to the �onvex body� Ian be expressed simply by |x| (as ±x oupy symmetri positions). In themultivariate ase the most frequent tool is the Minkowski funtional. For any
x ∈ X the Minkowski funtional or (Minkowski) distane funtion [16, p. 57℄or gauge [33, p. 28℄ or Minkowski gauge funtional [31, �1.1(d)℄ is de�ned as(8) ϕK(x) := inf{λ > 0 : x ∈ λK}.Clearly (8) is a norm on X if and only if the onvex body K is entrallysymmetri with respet to the origin. In that ase the norm ‖ · ‖(K) := ϕKan be used in approximation-theoreti questions as well. As said above, for
‖ · ‖(K) the unit ball of X will be K itself. In ase K is nonsymmetri, theso-alled generalized Minkowski funtional α(K, x) emerged in the problemof quantitative desription of the position of a point x ∈ R

d with respet tothe onvex body K. This notion also goes bak to Minkowski [25℄ and Radon[32℄ (see also [15℄, [36℄). There are several ways to introdue it; perhaps theshortest is the following. First let



232 Sz. Gy. Révész
(9) γ(K, x) := inf

{
2

√
‖x − a‖ ‖x − b‖

‖a − b‖ : a, b ∈ ∂K, x ∈ [a, b]

}
.Then we an set(10) α(K, x) :=

√
1 − γ2(K, x).In fat, the wide appliability of (10) stems from the fat that this geo-metri quantity inorporates quite niely the geometri aspets of the on-�guration of x with respet to K, whih is mirrored by about a dozen (!),sometimes strikingly di�erent-looking, equivalent defnitions of α(K, x). Forthe above and many other equivalent formulations with full proofs, furthergeometri properties and some notes on the appliations in approximationtheory, see [36℄ and the referenes therein; for the �rst appearane of it inapproximation-theoreti questions, see [37℄.The method of insribed ellipses was introdued by Y. Sarantopoulos [38℄.It works for arbitrary interior points of any, possibly nonsymmetri onvexbody. The rux of the method is the followingLemma 1 (Insribed Ellipse Lemma, Sarantopoulos, 1991). Let K be anysubset in a vetor spae X. Suppose that x ∈ K and the ellipse(11) r(t) = a cos t + by sin t + x − a (t ∈ [−π, π)).lies inside K. Then for any polynomial p of degree at most n we have theBernstein type inequality(12) |〈Dp(x), y〉| ≤ n

b

√
‖p‖2

C(K) − p2(x).Theorem 1 (Sarantopoulos, 1991). Let p be any polynomial of degree atmost n over the normed spae X. Then for any unit vetor y ∈ X we havethe Bernstein type inequality
(13) |〈Dp(x), y〉| ≤

n
√

‖p‖2
C(K) − p2(x)

√
1 − ‖x‖2

(K)

.

Theorem 2 (Sarantopoulos, 1991). Let K be a symmetri onvex bodyand y a unit vetor in the normed spae X. Let p be any polynomial of degreeat most n. Then
|〈Dp(x), y〉| ≤

2n
√

‖pn‖2
C(K)

− p2(x)

τ(K, y)
√

1 − ϕ2(K, x)
.In partiular ,

‖Dp(x)‖ ≤
2n

√
‖p‖2

C(K) − p2(x)

w(K)
√

1 − ϕ2(K, x)
,where w(K) stands for the width of K.



Bernstein type estimates 233The above solves the problem for the ase of a symmetri onvex body K.However, in the general, nonsymmetri ase it an be rather di�ult todetermine or even estimate the b-parameter of the �best ellipse�, whih an beinsribed in a onvex body K through x ∈ K and be tangential to diretion y.Still, we an formalize what we want to �nd.Definition 1 (Milev�Révész, 2003). For any K ⊂ X and x, y ∈ K, thebest ellipse onstant is the extremal quantity(14) E(K, x, y) := sup{b : r ⊂ K with r as given in (11)}.Also, in [23℄ we de�ned(15) E(K, x) := inf{E(K, x, y) : y ∈ X, ‖y‖ = 1}.Clearly, the insribed ellipse method yields Bernstein type estimateswhenever we an derive some estimate of the ellipse onstants. In the aseof symmetri onvex bodies, Sarantopoulos's Theorems 1 and 2 are sharp;for the nonsymmetri ase we only know the following result.Theorem 3 (Kroó�Révész [20℄, 1998). Let K be an arbitrary onvexbody in a normed spae X, and let x ∈ intK and ‖y‖ = 1. Then
(16) |〈Dp(x), y〉| ≤

2n
√

‖p‖2
C(K) − p2(x)

τ(K, y)
√

1 − α(K, x)for any polynomial p of degree at most n. Moreover ,
(17) ‖Dp(x)‖ ≤

2n
√

‖p‖2
C(K) − p2(x)

w(K)
√

1 − α(K, x)
≤

2
√

2n
√

‖p‖2
C(K) − p2(x)

w(K)
√

1 − α2(K, x)
.Note that in [20℄ the best ellipse is not found; for most ases, the on-strution there only gives a good estimate, but not an exat value of (14) or(15). (In fat, here we have quoted [20℄ in a strengthened form: the originalpaper ontains a somewhat weaker formulation.)It is worth realling here that geometrially the proof of (16) followsthe following idea. To onstrut an ellipse through x, parallel to y there,and insribed in K, it su�es to �nd the best suh ellipse (i.e., of maximalpossible b-parameter), whih is insribed in the quadrangle formed by theverties of a maximal hord in diretion y (or, in in�nite dimensions, somehord ε-almost maximal in that diretion), and the verties of the parallelhord through x. That ellipse is preisely alulated, and its b-parameter isestimated independently of the loation of these hords (even if they degen-erate into one line, in whih ase the ellipse beomes a line segment). (Ingeneral the best b-parameter annot be alulated, though.) We will reallthis geometrial onstrution later.



234 Sz. Gy. RévészOne of the most intriguing questions in this area is the following onje-ture, formulated �rst in [36℄.
Conjecture A (Révész�Sarantopoulos, 2001). Let X be a topologialvetor spae, and K be a onvex body in X. For every x ∈ intK and every(bounded) polynomial p of degree at most n over X we have

‖Dp(x)‖ ≤
2n

√
‖p‖2

C(K) − p2(x)

w(K)
√

1 − α2(K, x)
,where w(K) stands for the width of K.3. Some results on the simplex. We denote by |x|2 := (

∑d
i=1 x2

i )
1/2the Eulidean norm of x = (x1, . . . , xd) ∈ R

d. Let
∆ := ∆d :=

{
(x1, . . . , xd) : xi ≥ 0, i = 1, . . . , d,

d∑

i=1

xi ≤ 1
}

be the standard simplex in R
d. For �xed x ∈ int∆, and y = (y1, . . . , yd),

|y|2 = 1, the best ellipse onstant of ∆ is, by De�nition 1, E(∆, x, y). By atedious alulation via the Kuhn�Tuker theorem and some geometry, thefollowing was obtained in [23℄.Theorem 4 (Milev�Révész, 2003). Let p ∈ Pd
n. Then for every x ∈ int∆and y ∈ S

d−1 we have
(18) |Dyp(x)| ≤

n
√
‖p‖2

C(∆) − p2(x)

E(∆, x, y)
,where(19) E(∆, x, y) =

{
y2
1

x1
+ · · · + y2

d

xd
+

(y1 + · · · + yd)
2

1 − x1 − · · · − xd

}−1/2

.Note that(20) 1

E(∆, x, y)
≤ 2

τ(∆, y)
√

1 − α(∆, x)for every x ∈ int∆ and y ∈ S
1, whih is not aidental: the general estimate(16) must also be valid for ∆, and the preise value, alulated for ∆, anonly be better. But equality ours for some diretions; we will return to thispoint soon.From now on let us restrit ourselves to the ase d = 2. We denote theverties of ∆ by O = (0, 0), A = (1, 0), B = (0, 1) and the entroid (i.e. masspoint) of ∆ by M = (1/3, 1/3). It is alulated in [23℄ that(21) α(∆, x) = 1 − 2r(x)
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r := r(x) = min{x1, x2, 1 − x1 − x2} =





x1, x ∈ △OMB,
x2, x ∈ △OMA,
1 − x1 − x2, x ∈ △AMB,and if y = (cos ϕ, sinϕ) (0 ≤ ϕ ≤ π) then

(22) τ(∆, y) =





1/(y1 + y2), ϕ ∈ [0, π/2],
1/y2, ϕ ∈ (π/2, 3π/4],
−1/y1, ϕ ∈ (3π/4, π].Then it an be alulated that we have equality in (20) exatly for thediretions y = (cosϕ, sinϕ) with ϕ = 0, π/2, 3π/4 + πZ and for some valuesof x.Why is that so? For these and only these vetors, an we have a oini-dene of the above geometrial �gure, the quadrangle in the proof of (16),and the exat domain in whih we must really insribe the ellipse through

x and parallel to y there; for all other diretions the maximal hord in di-retion y lies stritly inside ∆, and another ellipse, slightly strethed behindthat hord, an also be insribed. Therefore, it is geometrially natural thatnothing better an be obtained (than the ellipse alulated in Theorem 3)only for these diretions, while for other diretions preise alulation of thebest ellipse must always yield a better ellipse onstant.Denote by |Dp(x)|2 the Eulidean length of the gradient vetor of p at x,also equal to the operator norm ‖Dp(x)‖ with respet to the Eulidean norm.In [23℄ the following estimates were dedued from Theorem 4.Proposition 5 (Milev�Révész, 2003). Let p ∈ P2
n. Then for every x ∈

int∆ we have
(23) |Dp(x)|2 ≤

n
√

‖p‖2
C(∆) − p2(x)

E(∆, x)
,where(24) E(∆, x) =

√
2x1x2(1 − x1 − x2)

x1(1 − x1) + x2(1 − x2) + D(x)with
D(x) :=

√
[x1(1 − x1) + x2(1 − x2)]2 − 4x1x2(1 − x1 − x2)(25)

=
√

[x1(1 − x1) − x2(1 − x2)]2 + 4x2
1x

2
2 > 0 (∀x ∈ int∆).From this the following improvements of Theorem 3 were ahieved forthe speial ase of K = ∆.



236 Sz. Gy. RévészProposition 6 (Milev-Révész, 2003). Let p ∈ P2
n and ‖p‖C(∆) = 1.Then for every x ∈ int∆ we have

(26) |Dp(x)|2 ≤

√
3n

√
‖p‖2

C(∆) − p2(x)

w(∆)
√

1 − α(∆, x)
.

Furthermore, using the quantity √
1 − α2(∆, x) on the right , we even have

(27) |Dp(x)|2 ≤

√
3 +

√
5n

√
‖p‖2

C(∆) − p2(x)

w(∆)
√

1 − α2(∆, x)
.The result (27) improves the onstant in Theorem 3 but falls short ofyielding Conjeture A, sine 2

√
2 = 2.8284 . . . >

√
3 +

√
5 = 2.2882 . . . > 2.On the way of proving these, it was noted that no better onstants followfrom the insribed ellipse method, interpreted so that E(K, x) is onsideredthe yield of the ellipse method. We shall return to this subjet later on.4. Baran's pluripotential-theoreti method. Another method ofonsiderable suess in proving Bernstein and Markov type inequalities is thepluripotential-theoreti approah. Classially, all that was onsidered only inthe �nite-dimensional ase, but nowadays even the normed spaes setting isultivated. To explain the method, one needs an understanding of omplexi�-ations of real normed spaes (see e.g. [28, 6℄), as well as the Zaharjuta�Siiakextremal funtion V (z). We start with a formulation whih is perhaps easierto digest. It is very muh like the Chebyshev problem (f. [36, �8℄), exeptthat we onsider it all over the omplexi�ation Y := X + iX of X, takelogarithms, and after normalization by the degree, merge the information de-rived from all polynomials of any degree into one lustered quantity. Namely,for any bounded E ⊂ Y , VE vanishes on E, while outside E we have thede�nition

(28) VE(z)

:= sup

{
1

n
log |p(z)| : 0 6= p ∈ Pn(Y ), ‖p‖E ≤ 1, n ∈ N

}
(z /∈ E).For E ⊂ X one an easily restrit even to p ∈ P(X).Note that log |p(z)| is a plurisubharmoni funtion (PSH, for short), asits one (omplex) dimensional restritions are just logarithms of univariatepolynomials over C. After normalization by the degree, (1/n) log |p(z)| hasvery regular growth towards in�nity: it is at most log+ |z| + O(1). So it isreasonable to onsider the Lelong lass of all suh funtions:(29) L(E) := {u ∈ PSH : u|E ≤ 0, u(z) ≤ log |z| + O(1) (|z| → ∞)}



Bernstein type estimates 237and to de�ne(30) UE(z) := sup{u(z) : u ∈ L(E)}.This funtion may be named the pluriomplex Green funtion. The Zaharju-ta�Siiak theorem says that (30) and (28) are equal, at least as long as
E ⊂ C

d is ompat, whih we now assume together with E being a non-pluripolar set. (A set E ⊂ C
d is pluripolar if there exists a PSH funtion van-ishing on E; otherwise, the set is alled nonpluripolar.) Then, being supremaof PSH funtions (subharmoni funtions on all omplex �lines�), they are,modulo upper semiontinuous regularization, PSH themselves. They play aentral role in the theory.An extension of the Laplae and Poisson equations is the so-alled om-plex Monge�Ampère equation, using the operator(31) (∂∂u)d := d!4ddet[ ∂2u

∂zj∂zk

(z)

]
dV (z),where dV (z) = dx1 ∧ dy1 ∧ · · · ∧ dxd ∧ dyd is just the usual volume ele-ment in C

d. At �rst, the omplex Monge�Ampère operator is applied onlyto smooth funtions, u ∈ PSH∩C2 say, but due to the work of Bedford andTaylor [7℄, the operator extends, in the appropriate sense, to the whole set ofloally bounded PSH funtions (whih overs the ase of the upper semion-tinuous regularization V ∗
E for any nonpluripolar E, see e.g. [19℄). Therefore,it makes sense to onsider(32) (∂∂V ∗

E)d,whih is then a ompatly supported measure λE and is alled the omplexequilibrium measure of the set E. It is shown [7℄ that in fat the supportlies in the polynomial onvex hull Ê of E; in ase E is onvex, Ê = Eand V ∗
E = VE ; moreover, this measure is normalized in a ertain sense, as

λ|E(Cd) = λ|E(Ê) = (2π)d.For the theory of plurisubharmoni funtions and some reent develop-ments onerning Bernstein and Markov type inequalities for onvex bodiesor even more general sets, we refer to [1�8, 10, 19, 21, 22, 26, 30℄.There are further yields of the theory of PSH funtions, when applied tothe Bernstein problem: here we present a few results of Mirosªaw Baran. Formore preise notation we now introdue (interpreting 0/0 as 0 here)Definition 2.(33) G(E, x) :=

{
grad p(x)

n
√

‖p‖2 − p(x)2
: 0 6= p ∈ Pn, n ∈ N

}
,and following Baran we also onsider(34) G̃(E, x) := conG(E, x).



238 Sz. Gy. RévészClearly supn∈N Bn(E, x) = supu∈G(E,x) ‖u‖ for any ompat E ⊂ R
d.Theorem 7 (Baran, 1995). Let E be a ompat subset of R

d with non-empty interior. Then the equilibrium measure λ|E is absolutely ontinuousin the interior of E with respet to the Lebesgue measure of R
d. Denote itsdensity funtion by λ(x) for all x ∈ intE. Then (1/d!)λ(x) ≥ vol G̃(E, x)for a.a. x ∈ intE. Moreover , if E is a symmetri onvex domain of R

d, then
(1/d!)λ(x) = vol G̃(E, x) for a.a. x ∈ intE.
Conjecture B (Baran, 1995). We have (1/d!)λ(x) = vol G̃(E, x) evenif E is a nonsymmetri onvex body in R

d.Now onsider E = K ⊂ X, where K is now a onvex body. Our morepreise results in [35℄ (see also [36, �8℄) yield
VK(x) = log(α(K, x) +

√
α(K, x)2 − 1).However, in the Bernstein problem the values of VK are muh more of interestfor omplex points z = x + iy, in partiular for x ∈ K and y small andnonzero. More preisely, the important quantity is the normal (sub)derivative(35) D+

y VE(x) := lim inf
ε→0

VE(x + iεy)

ε
,as this quantity ours in the following estimate of the diretional derivativeand thus also in the gradient.Theorem 8 (Baran, 1994 & 2004). Let E ⊂ X be any bounded , losedset , x ∈ intE and 0 6= y ∈ X. Then for all p ∈ Pn(X) we have(36) |〈Dp(x), y〉| ≤ nD+

y VE(x)
√
‖p‖2

E − p(x)2.Proof. For R
d and partial derivatives this is ontained in [3℄; the aseof in�nite-dimensional spaes is onsidered in [6℄, but only for symmetrionvex bodies. The same estimate ours, without proof but with refereneto Baran, in the reent publiation [11℄. For arbitrary diretions y ∈ R

d onean onsider a rotation A : R
d → R

d.It is not obvious how suh theoretial estimates an be applied to onreteases. First, one has to �nd the value of VE preisely enough to be ableto ompute even its derivative. Only then do we really have something.However, even that is addressed by onsidering the Bedford�Taylor theory ofthe Monge�Ampère equation and the equilibrium measure [7℄, as the densityof the equilibrium measure gives the extremal funtion. In some onreteappliations all that may be alulated, a partiular example (see [5, Example4.8℄) being the following.



Bernstein type estimates 239Proposition 9 (Baran, 1995). The extremal funtion of the standardsimplex in R
d is

V∆(z) = log |h(|z1| + · · · + |zn| + |1 − (z1 + · · · + zn)|)|.Here h(z) := z+
√

z2 − 1 is inverse to the Joukowski mapping ζ 7→ (1/2)(ζ +
1/ζ), with the hoie of the square root that is positive for positive z exeed-ing 1, so that h maps to the exterior of the unit disk.From this and the alulation with the rotated diretions above, we andedue (1)Proposition 10. For the standard simplex ∆ of R

d, any unit vetor
y = (y1, . . . , yn) and any x = (x1, . . . , xn) ∈ int∆ we have the formula(37) D+

y V∆(x) =

√
y2
1

x1
+ · · · + y2

n

xn
+

(y1 + · · · + yn)2

1 − (x1 + · · · + xn)
.Hene we are led to the following surprising orollary.Corollary 11. The pluripotential-theoreti estimate (36) of Baran, al-ulated for the standard simplex of R

d in (37), gives the result exatly iden-tial to (18), obtained from the insribed ellipse method.Muh remains to be explained in this striking oinidene, the �rst thingbeing
Hypothesis A. Let K ⊂ X be a onvex body. Then for all points x ∈

intK the insribed ellipse method and the pluripotential-theoreti method ofBaran results in exatly the same estimate, i.e. for all y ∈ S∗ we have(38) D+
y VK(x) =

1

E(K, x, y)
.

5. Further geometri alulations. At this point it seems worth for-mulating a few naturally ourring assumptions.
Hypothesis B. Let K ⊂ X be a onvex body. Then for all x ∈ intK theexat Bernstein fator is just what results from the pluripotential-theoretimethod of Baran:(39) Bn(K, x) = sup

y∈S+

D+
y VK(x).

Hypothesis C. Let K ⊂ X be a onvex body. Then for all x ∈ intK theexat Bernstein fator is just what results from the insribed ellipse methodof Sarantopoulos:(40) Bn(K, x) =
1

E(K, x)
.

(1) The same formula is mentioned in [11, p. 145℄.



240 Sz. Gy. RévészThese hypotheses are ertainly not true for the diretional derivativesin all diretions y ∈ S∗, where both methods an be improved upon forsome y, as is seen below. Care has to be exerised in formulating onjeturesand hypotheses in these matters: the situation is more omplex than onemight like to have, and the simple heuristis of extending the results of thesymmetri ase sometimes fails. In this respet see [12, 21, 22℄ and [11℄, whereanother ase of deviation from symmetri ase extension is observed for theso-alled �Baran metri� on the simplex.There is an important and immediate observation we have not utilizedyet. Namely, we have exhibited methods (atually, two equivalently strongones) to estimate Dyp(x). However, if we are looking for the total derivative
grad p(x), then the estimate we used was only the trivial ‖grad p(x)‖ ≤
supy∈S∗ |Dyp(x)|. Can we do any better? Yes, we an, depending on theestimating funtions we have for Dyp(x).Consider e.g. the estimates from Theorem 3, whih was obtained also forthe simplex and thus the triangle ∆. For the triangle we have an expliitomputation of the maximal hords τ(∆, x) (f. (22)), and also of the gener-alized Minkowski funtional α(∆, x) (see (21)), so everything is expliit andwe an ompute the estimating funtions. As an example, onsider e.g. thepoint M := (1/3, 1/3) and ompute all quantities involved in the normal-ization of the diretional derivative estimates. As a result, we an exatlydetermine the arising domain H(∆, M), where in general we write(41) H := H(K, x) := {v = ty : y = (y1, . . . , yd), |t| ≤ r(y)}with r(y) being the available normalized estimate for the diretional deriva-tive in diretion y.It turns out that the domain H(∆, M) desribed by the general es-timates of Theorem 3 is a �eey-loud like domain whih is symmetriwith respet to the origin, and its upper half is (the part above the x-axisof) the union of three disks: D((

√
3/2,

√
3/2),

√
3) ∪D((0,

√
3/2),

√
3/2) ∪

D((−
√

3/2, 0),
√

3/2). (Here the reader may wish to draw a �gure for bettervisualization.) An immediate observation is that the domain is not onvex,and so this is ertainly not an exat desription of all possible diretionalderivatives of the gradient.We an onlude that if some domain (41) is given with r(y) being somenormalized estimate for the diretional derivative in diretion y, then tobound G(K, x) an additional proess of restriting to the �kernel� part(42) H̃ := H̃(K, x) :=
⋂

y∈S∗

{v : |〈v, y〉| ≤ r(y)}

is available. That is, we always have G̃(K, x) ⊂ H̃. Note that H̃ is a onvex,symmetri domain for any point set H.



Bernstein type estimates 241In order to illustrate this �kernel tehnique�, let us ome bak to the abovease of estimates from Theorem 3 for the triangle at point M . After somestandard onsiderations with Thales irles we �nd that H̃ is the hexagonaldomain
H̃(∆, M)

= con{(
√

6, 0), (
√

6,
√

6), (0,
√

6), (−
√

6, 0), (−
√

6,−
√

6), (0,−
√

6)}.Observe that the area of the possible streth of G is onsiderably reduedfrom the ��eey-loud� domain to the derived hexagonal domain as
areaH(∆, M) = 9 +

9

2π
= 23.137 . . .while area H̃(∆, M) = 18. For omparison reall that Baran's Conjeture Bwould say that the area should be 1

2λ∆(M) = π/
√

3−3 = 16.324 . . . .Let us alulate the �kernel set� H̃(∆, x) from the exat estimates (18),(36), (37) whih we obtain from the ellipse (and hene also from Baran's)method. We obtain the following (2).Proposition 12. With the above notations, H̃(∆, x) is an ellipse do-main. Moreover , its major axis µ := µ(x) and minor axis ν := ν(x) aregiven by
(43) µ =

√
2

x1(1 − x1) + x2(1 − x2) + D(x)
,

ν =

√
2

x1(1 − x1) + x2(1 − x2) − D(x)
,where D(x) is the quantity de�ned in (25).Proof. For �xed x ∈ ∆ we are to desribe the solution set (42) for K = ∆,with r(y) being the quantity (19). That is, we determine all those vetors u =

(u1, u2) ∈ R
2 whih satisfy |〈u, y〉| ≤ 1/E(∆, x, y) for all y = (cos ϕ, sinϕ).Using (19) and squaring, we see that the de�ning inequalities desribe theset {

u : (u1 cos ϕ + u2 sinϕ)2 ≤ cos2 ϕ

x1
+

sin2 ϕ

x2
(44)

+
(cosϕ + sinϕ)2

1 − x1 − x2
(∀ϕ ∈ R)

}
.

(2) These omputations were exeuted jointly with Nikola Naidenov from the Univer-sity of So�a during the author's stay in So�a in Otober 2004. The author regrets thatin spite of his undoubted ontribution [29℄ to this work, Nikola Naidenov hose not to benamed as a oauthor.



242 Sz. Gy. RévészPutting x3 := 1 − x1 − x2, the ase of cos2 ϕ > 0 yields(45) (u1 + u2t)
2 ≤ 1

x1
+

t2

x2
+

(1 + t)2

x3
(∀t := tanϕ ∈ R),whih is a seond degree inequality in t. Solving it we arrive at(46) au2

1 + bu2
2 − cu1u2 ≤ 1,where the oe�ients are all stritly positive and have the form(47) a := a(x) := x1(1 − x1), b := b(x) := x2(1 − x2),

c := c(x) := 2x1x2.Thus (46) determines an ellipse domain, and alulation of its axes leads tothe result.So we are led to the following result.Theorem 13. With the above notations, we have
area H̃(∆, x) =

π√
x1x2(1 − x1 − x2)

.Proof. As is well known, the area of an ellipse domain with axes µ and
ν is πµν, hene Proposition 12 leads to the asserted value.Corollary 14. We have G(x) ⊆ conG(x) ⊆ H̃(x) with area H̃(x) =
1
2λ(x). Hene either conG(x) = H̃(x) for all x ∈ ∆, or Baran's ConjetureB fails.Proof. One must ompute the density funtion λ(x) of the equilibriummeasure. This has already been done by Baran, [5, Example 4.8℄: we have
λ(x) = 2π/

√
x1x2(1 − x1 − x2). On omparing to Theorem 13 we �nd theasserted identity. Sine H̃ is an ellipse domain and also conG is a onvexdomain, the inlusion conG(x) ⊂ H̃(x) and equality of their areas entailsthat conG(x) = H̃(x). On the other hand, if at some point x ∈ ∆ therespetive areas di�er, then area conG(x) < area H̃(x) = 1

2λ(x), hene theonjetured identity of Baran fails.Remark 1. While using the information on the support funtional from
H(∆, x) improves upon the known area estimates, it does not improve themaximal gradient norm estimate of [23℄.Indeed, as H̃(∆, x) is an ellipse domain, we have to onsider its majoraxis. It turns out that in the ase of the standard triangle, this alulationyields max

v∈H̃
‖v‖ = maxv∈H ‖v‖ = 1/E(∆, x).Note that maxv∈V ‖v‖ = maxv∈conV ‖v‖ for any set V , hene regard-ing the maximal gradient norm estimate it makes no di�erene whether weonsider conG(x) or G(x) only. Also note that starting from a set H ⊃ G



Bernstein type estimates 243and onsidering the �kernel� H̃, we neessarily obtain a onvex set, so from
G ⊂ H̃ it follows that even taking the onvex hull we still have conG ⊂ H̃.Corollary 15. Conjetures A and B annot hold simultaneously.Proof. Aording to Corollary 14, Baran's Conjeture B holds if onlythere an be no improvement on the estimates of the ellipse (or Baran's)method on the simplex. But then Conjeture A fails. Conversely, if Conje-ture A holds, then there is an improvement at least at ertain points andin ertain diretions ompared to the estimates of the ellipse (or Baran's)method, hene the estimates of Corollary 14 stritly exeed the right valueand Baran's Conjeture B fails.6. Conluding remarks. Also, another real, geometri method of ob-taining Bernstein type inequalities, due to Skalyga [39, 40℄, should be men-tioned here; the di�ulty with it is that to the best of our knowledge, no onehas ever been able to ompute, neither for the seemingly least ompliatedase of the standard triangle of R

2, nor in any other partiular nonsymmetriase, the yield of that abstrat method. Hene in spite of some remarks thatthe method is sharp in some sense, it is unlear how lose these estimatesare to the right answer and of what use they an be in any onrete ases.Given the above �ndings, it seems plausible that Conjeture A, if nottrue, an be disproved by some expliit example. To onstrut a polynomialwith large gradient, as ompared to the norm, means to onstrut a highlyosillating polynomial. For that, various natural and more intriate ideaswere tried by Nikola Naidenov [29℄ in So�a during the Fall of 2004. We hopehe will report on his experienes in the near future.The author would like to thank Norm Levenberg for enlightening om-ments and suggestions, and an anonymous referee for areful orretions.
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