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Canonical tensor fields of type (p,0) on Weil bundles

by JACEK DEBECKI (Krakow)

Abstract. We give a classification of canonical tensor fields of type (p,0) on an
arbitrary Weil bundle over n-dimensional manifolds under the condition that n > p.
Roughly speaking, the result we obtain says that each such canonical tensor field is a sum
of tensor products of canonical vector fields on the Weil bundle.

Let A be a Weil algebra and T4 the Weil functor corresponding to A,
which is a product preserving bundle functor (see [2]). Fix non-negative
integers n and p. A canonical tensor field of type (p,0) on T4 is, by definition,
a family of tensor fields Vi of type (p,0) on T4 M indexed by n-dimensional

manifolds and satisfying for all such manifolds M, N and every embedding
f: M — N the condition

(1) QPTTAf o Vi = Vy o TAY.

Recall that a derivation of the algebra A is a linear map D : A — A such
that D(ab) = aD(b)+bD(a) for all a,b € A. The vector space of derivations
of A will be denoted by Der A. It is well known (see [1]) that if n > 1, then
there is a one-to-one correspondence between the canonical tensor fields of
type (1,0) (in other words, canonical vector fields) on 7 and the derivations
of A. Namely, every D € Der A induces a unique canonical vector field D on
T4 such that

(2) Dan(X) = (D(X"),..., D(X™))

for every X € A", and conversely, for every canonical vector field V' on TA
there is a unique D € Der A such that V = D. Our purpose is to generalize
this result to all p.

Consider the tensor product K’ A of the vector spaces A. For every
r € {1,...,p} and every a € A we have the linear map 7} : Q" A — Q" A
such that
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Zi(h1 @ Qby) =b1 @ Qb1 ®aby Qb1 ® - Ry
for all by,...,b, € A.

DEFINITION. Let Der? A denote the vector space of p-linear maps D :
Ax - x A— Q" A with the property that

(3)  D(a1,...,ar—1,bc,ar41,...,ap)
=Zy(D(ar,...,ar—1,C Qp41,...,Gp))
+ Z (D(a1,...,0r-1,b,Gr41,...,0ap))
for every r € {1,...,p} and all a1,...,ar—1,ar41,...,ap,b,c € A.

Note that Der® A = R and Der! A = Der A.
Consider the tensor product @” Der A of the vector spaces Der A. We
have the linear map I? : @” Der A — Der” A such that

I"(D1 ®---® Dp)(ar,...,ap) = Di(a1) ® - - - ® Dp(ap)
for all Dq,...,D, € Der A and aq,...,a, € A.
LEMMA. P : Q" Der A — Der? A is an isomorphism of vector spaces.

Proof. The proof is by induction on p. For p = 0 and p = 1 there is
nothing to prove. Suppose p > 2 and the assertion of the Lemma is true for
p—1. Let D € Der? A.

Fix a basis €1,...,¢, of the vector space A. For any a1,...,a,-1,b € A
there are unique Ej(a1,...,ap_1) € QP! A indexed by i € {1,...,a} such
that

a
D(al, .. .,ap_l,b) = ZEZ(CLL L ,a,p_l) X €;.
=1

From the uniqueness of Eg(al, ..., ap—1) we easily deduce that EZ € DerP' A
for every i € {1,...,a} and every b € A.

Fix a basis 0, ..., 0,4 of the vector space Der A. By assumption, 17! is
an isomorphism, and so I?"}(9, ® -+ ® a,_,) for ly,... .l 1 € {1,...,d}
form a basis of the vector space Der?~! A. Therefore for every i € {1,...,a}
and every b € A there are unique F''"»-1%(b) € R indexed by I1,. .. Jp—1 €
{1,...,d} such that

d d
By=> ... > Frlbhimrlio,e---20,.,),
h=1 lp_1=1

which is equivalent to

d d
Bi(ay,....ap1) = > ... > Frb(0)o), (a) @ - @9, (ap-1)

lp_1=1

=1
for all a1,...,a,-1 € A.
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Taking, for every b € A,
a
Gll--~lp—1(b) _ ZFZI...lp—li(b)gi’
i=1

we get a family of elements of A indexed by l1,...,l,—1 € {1,...,d} such
that

d d
D(al;-.-7ap—lyb) = Z... Z 8l1<a1)®...®alp_1(a/p—l)®Glllp_l(b)
=1 lp—1=1

for all ay,...,a,—1 € A. Moreover, G!'»+!r=1(b) in this formula are uniquely
determined, because of the uniqueness of E};(al, ...,ap—1) and Fhlp—1i(p),
From the uniqueness of G'»-1(b) we easily deduce that G"'»=1 € Der A
for all 1y,...,l,—1 € {1,...,d}.

For any ly,...,l,—1 € {1,...,d} there are unique HU-l—1m ¢ R indexed
by m € {1,...,d} such that

d
Gh...lp_l — § Hll"'lp_lmam.
m=1

Hence
d d
(4) D(ay,...,ap) =Y ... Y H"" (a1) @0, (ap)
Lh=1 l,=1
for all a1, ...,a, € A, which is equivalent to
d d
D=>) .. HvbIP0,®---2d,).
Lh=1 l,=1

Moreover, H''» in these formulas are uniquely determined, because of
the uniqueness of GH'r=1(b) and H''~/»-1" in the previous formulas. This
means that [7(0), ®---®0d,,) for l1,...,1, € {1,...,d} form a basis of Der? 4,
which implies that I? is an isomorphism. This completes the proof.

Let eq,..., e, denote the standard basis of R™. We will identify A™ with
A ® R"™, and consequently @” A" with ®” A ® Q”R"™. Hence (2) may be
written as

Dgn(X) =Y D(X*) ® e,
s=1

for every D € Der A and every X € A™.
We can now formulate our main result.

THEOREM. If n > p, then there is a one-to-one correspondence between
the canonical tensor fields of type (p,0) on T4 and the elements of DerP A.
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Namely, every D € Der? A induces a unique canonical tensor field D of type
(p,0) on T4 such that

n n
(5) Dpn(X)=> ...) D(X*,...,X7)@e, @ Ve,
s1=1 sp=1
for every X € A", and conversely, for every canonical tensor field V' of type
(p,0) on T4 there is a unique D € Der? A such that V = D.

Proof. Let D € Der? A. Our first task is to construct D. Since we can
use any chart on an n-dimensional manifold as f in (1), we see that if V, W
are two canonical tensor fields of type (p,0) on T4 such that Vgn = Wgn,
then V' = W. Hence (5) guarantees the uniqueness of D. Let 01,...,0q be
a basis of the vector space Der A. By the lemma, there are H''%» € R for
li,...,l, € {1,...,d} such that (4) holds. Put

d d
Dy = Z ZHll'“lpahM ®"'®81PM
=1 =1

for every n-dimensional manifold M. It is evident that this D is a canonical
tensor field of type (p,0) on T. From (4) we conclude that it satisfies (5),

and the construction of D is complete.

We now turn to the second part of the theorem. Fix a canonical tensor
field V' of type (p,0) on T4.

Since for every X € A™ we have Vgn(X) € Q" A ® QP R", there are
unique smooth B*1% : A" — Q¥ A for s1,...,sp, € {1,...,n} such that

(6) Ve (X) = Z Z B0 (X) ® €5, @ e ®es,

s1=1 sp=1

for every X € A™. Hence for every open subset U of R™ and every embedding
f:U — R™ we can write (1) in the form

! ceio P trot
(7) Z"'Z(ZTAﬁ(X)O OZTAng—Z(X))(Bl (X))

ti=1  tp=1 ox'1
= B (T (X))

for all s1,...,5, € {1,...,n} and every X € TAU.
From (7) with

fiR" 3z — Mz, ... Az") e R,
where Al,... A" € R\ {0}, we have
AL )\sszl...sp(X) — BSI"'SP()\le, » 7)\11)(71)
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for all s1,...,s, € {1,...,n} and every X € A". By continuity, the same
is true for all A!,... A" € R. The homogeneous function theorem (see [2])
now shows that for any si,...,s, € {1,...,n} there is a p-linear C*1-*r :
Ax---x A— Q" A such that

BS15p (X) — (O515p (XSI, o Xsp)
for every X € A"™.
From now on we use the assumption n > p. Put
D=7,
Let r € {1,...,p}. From (7) with sy =1,...,s, =p, U ={x € R" : 2" > 0}
and
f:Usx— (... 2"t (272, 2", .. 2") e R”
we have
27%. (B P(X)) = BP(Xx!, .. X"l (XT)2, XL L X
for every X € TAU. This may be written as
(8) 27% (D(X',...,XP))=D(X" ... . X771 (X")% X" . XP).
In the same manner, with U replaced by {x € R" : 2" < 0}, we can see
that (8) also holds for X € T4{x € R" : 2" < 0}, and so, by continuity, for
every X € A™. Now the polarization of (8) with respect to X" shows that D
satisfies (3), and consequently D € Der? A.
Our next goal is to show that
9) Cu-tn (XU XY = D(X™, ..., X")
for all uy,...,up, € {1,...,n} and every X € A". We will identify any
sequence ui,...,up € {1,...,n} with w : {1,...,p} — {1,...,n} given by
u(l) =wuq,...,u(p) = up and denote by N(u) the number of elements of the
set u({1,...,p}) for every such function u. The proof of (9) is by induction
on N(u). Fix v : {1,...,p} — {1,...,n} and suppose (9) holds whenever
N(u) € {N(v)+1,...,p}. Choose a subset R of {1,...,p} such that for each
r€v({l,...,p}) the set v=1({r}) N R has one element. There is a bijective
w:{l,...,n} — {1,...,n} such that w|R = v|R. Put
S_{{wr} ifre RU{p+1,...,n},
" e we} ifre{l,...,p}\ R
From (7) with s; =1,...,s, =p and

f:R"Bam—>< Z ™., Z x“")eR”

ul esl unesn
we have

S B ) = (30 XML Y X

u1 €51 up€Sp u1 €51 UnE€Sn
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for every X € A™. This may be written as

(10) > DD Cmet (XL X
u1 €51 up€Sy
= > ... ) DX™M,. X"

u1€S51 up €Sy
But if u; € Si,...,u, € Sy are such that there is r € {1,...,p} \ R with the
property that w, = w,, then C*1%r (X" . . X¥%)=D(X" ... X") on
account of our assumption, because N(u) € {N(v) 4+ 1,...,p} in this case.
Subtracting all terms with such indices u1,...,u, from each side of (10)
gives CV1-p (XY ... X"%) = D(X",...,X"), which is due to the fact
that w|R = v|R. This completes the proof of (9).
Applying (9) we can rewrite (6) as

n n
Van(X) =Y ... D(X*,... X)) @e,, @ De,

s1=1 sp=1

for every X € A™. Hence Vgn = 5Rn, which yields V = D on account of the
above remark. The uniqueness of D is obvious. This completes the proof.

Combining the lemma with the theorem we obtain the following corollary.

COROLLARY. If n > p, then every canonical tensor field of type (p,0)
on TA is a sum of tensor products of canonical vector fields on TA. More
precisely, if O1,...,0q4 1is a basis of the vector space Der A, then for every
canonical tensor field V of type (p,0) on T there are unique H"' % € R for
li,...,lp € {1,...,d} such that

d d
VM:Z...ZHII”'lpallM@"'@alpM

I1=1 lp=1
for every n-dimensional manifold M.
The remainder of the paper is devoted to the following example.

ExAMPLE. Consider the Weil algebra D, of r-jets at 0 of smooth func-
tions R¥ — R, where r and k are non-negative integers.

We will denote by x? for i € {1,...,k} the r-jet at 0 of the ith projection
RF — R and write z® = (z1)®" - (xk)ak and |a| = o' +---+aF for a € NF,
where N stands for the set of non-negative integers. In addition, let ey, ..., ex
denote the standard basis of the module ZF.

Let D € DerDj,. For every o € NF,

(11) D(z%) = > o'z D (2,

ie{le{l,....k} : a!>0}
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as is easy to check by induction on |«a|. Of course, for every i € {1,...,k}
there are unique K’ € R indexed by o € N¥ such that |a| < r, for which

(12) D(z') = > K™,
ac{BeNF:|g|<r}
Since (z°)"*! = 0, from (11) it follows that 0 = (r+1)(m’)’"D(m’) Combining
this with (12) yields (r + 1)K{§(z")" = 0, and so K§j = 0. Hence (12) can be
rewritten as
(13) D(z') = > Klz®.
ac{feNt: 1<|p|<r}

Conversely, let K € R for (i,a) € {1,...,k} x {3 e NF:1 < |B] <r}.
We prove that 'there is a unique D € Der D} such that (13) holds. Obviously,
we define D(z?) for i € {1,...,k} by (13), and next D(z®) for o € N* such
that |a| < r by (11). Thus we have defined a linear D : D} — DJ, because

the 2 for a € N* such that |a| < r form a basis of the vector space Dy. We
only need to show that

(14) D(z72?) = 27D (2°) + 2° D(x7)
for all 7,6 € NF such that |y| < r, |6] <r. If |y + 6| < r, then 2720 = 27F9
is an element of the basis in question, so we may use (11) three times to
verify (14) in this case. Clearly, the left hand side of (14) vanishes whenever
v+ > r+ 1. If |y + 3| > r+ 2, then the right hand side vanishes on
account of (11). If |v + | = r + 1, then the right hand side also vanishes
on account of (11) and the fact that the term K is excluded from (13) for
every i € {1,...,k}. This completes the proof.

Summing up, the map J : DerDf, — R{L--kP{BEN":1<IBI<r} defined by
the requirement that

D(z') = > J(D)(i, )z
ae{BeNF1<|B|<r}

for all D € DerDj, and 7 € {1,...,k} is an isomorphism of vector spaces.
Counting elements of the set {1,...,k} x {3 € N¥:1 < |3] <r} we obtain

dim Der D}, = k((“k‘k> - 1>.

The above corollary now asserts that if n > p, then the dimension of the
vector space of canonical tensor fields of type (p,0) on TPk equals

((C0-1)

Of course, a canonical tensor field V of type (p,0) on T4 is called symmetric
or skew-symmetric if the tensor field V), is symmetric or skew-symmetric
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for every n-dimensional manifold. Therefore if n > p, then the dimensions of
the vector spaces of symmetric and skew-symmetric canonical tensor fields
of type (p,0) on TPk equal

(=001 g (M) -0
respectively.
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