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Algebraic approximation of analytic
sets definable in an o-minimal structure

by Marcin Bilski and Kamil Rusek (Kraków)

Abstract. Let K, R be an algebraically closed field (of characteristic zero) and a real
closed field respectively with K = R(

√
−1). We show that every K-analytic set definable

in an o-minimal expansion of R can be locally approximated by a sequence of K-Nash
sets.

1. Introduction. Let K be an algebraically closed field (of character-
istic zero) and let R be a real closed field such that K = R(

√
−1). In [11],

[12] Y. Peterzil and S. Starchenko developed the idea of K-differentiable
functions definable in an o-minimal expansion of R, which allowed them to
extend the notion of classical C-analyticity to a non-standard context. It
turned out that many interesting properties of C-analytic functions remain
true in this new setting and some of these appear in stronger versions. The
methods used in [11] and [12] differ from the classical treatment of analytic
functions and are similar in spirit to the topological approach of Whyburn
(see [19]). This is because neither converging power series nor integrals can
be used in the non-standard context.

The notion of aK-analytic set (i.e. a set locally described by a finite num-
ber of K-differentiable functions) was first introduced in [12] and the theory
of such sets was developed in [13]. It became clear that, in the presence of an
o-minimal structure, the basic theorems of complex analytic geometry have
their non-standard counterparts which are often essentially stronger. For ex-
ample, every definableK-analytic subset ofKn isK-algebraic (extending the
classical Chow theorem) and the image of a definable K-analytic set under
a projection onto a definable K-manifold must be K-analytic if it is closed
(see [13]). The latter fact generalizes the Remmert proper mapping theo-
rem. In the standard setting, the existence of proper projections of analytic
sets along affine spaces is a local property (generally holding in some neigh-
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borhood of a given point). Definability helps to globalize it in some sense
(see [13, Theorem 2.13]). Similarly to the classical situation, every definable
pure-dimensional K-analytic set can be locally represented as an analytic
branched covering.

The aim of the present paper is to show that K-analytic sets definable
in an o-minimal expansion of R admit local approximation by K-Nash sets,
which extends some of recent results obtained for classical analytic sets (see
[2], [3], [4]). Since in the non-standard case the Taylor series do not generally
converge we cannot hope to obtain the local uniform algebraic approximation
of K-differentiable functions by analogy to the classical situation. However,
the sum of the first terms of the Taylor expansion approximates a given
function as a tangent polynomial with the prescribed order of tangency (see
Theorem 2.2). In this paper we show that for any K-analytic set definable
in an o-minimal expansion of R there exist higher order tangent K-Nash
sets. The o-minimal structure will be fixed throughout the article and by
“definable” we mean definable (possibly with parameters) in this structure.

Denote ‖(z1, . . . , zm)‖Km = maxi=1,...,m |zi| (in what follows, the sub-
script Km will often be omitted). For definable closed bounded subsets A,B
of Km we denote by dist(A,B) the Hausdorff distance between A,B.

Let X be a definable K-analytic subset of a definable open U ⊂ Km.
Assume that X is of pure K-dimension n and that 0 ∈ X. There exists a
K-linear subspace L of Km of dimension m − n such that the intersection
of L and X at 0 is isolated (follows immediately from Theorem 2.13 and
Corollary 5.2 of [13]). Take any such space and denote by L⊥ its orthogonal
complement. Then the projection of X onto L⊥ is a K-analytic branched
covering in some neighborhood of 0 (see Theorem 2.6 below). Let d be the
multiplicity of this projection at 0 (for a definition see Section 2.2).

Assuming the notation of Section 2 we prove

Theorem 1.1. There are open balls B′ ⊂ L⊥, B′′ ⊂ L and a sequence
{Xν} of K-Nash subsets of B′ × B′′ of pure K-dimension n such that 0 ∈
B′ ×B′′ and for every ν ∈ N the projections of Xν and X ∩ (B′ ×B′′) onto
B′ are d-sheeted K-analytic branched coverings. Moreover,

dist(X ∩ ({x} ×B′′), Xν ∩ ({x} ×B′′)) ≤ ‖x‖ν

for every x ∈ B′ and ν ∈ N.

In fact, we prove a slightly stronger Theorem 4.1 which immediately
implies the result above. As in standard analytic geometry, the basic obstacle
in the proof comes from the fact that there exist analytic sets for which the
number of describing functions is greater than the codimension. Obviously
one cannot approximate such sets by approximating the describing functions
arbitrarily because generic approximation of these functions yields sets of
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dimension smaller than required. For classical analytic sets this difficulty
can be overcome by using the Lempert theorem on approximation of analytic
solutions of Nash equations (see [8]). Here we shall formulate and prove a
local analogue of this theorem in the non-standard setting (see Theorem 3.1).

The organization of this paper is as follows. In Section 2 we give prelim-
inary material about K-Nash sets, K-analytic sets and symmetric powers.
In the next section we prove facts concerning approximation of K-analytic
mappings between singular spaces, which will be used in Section 4 where the
proofs of our main results are completed.

2. Preliminaries

2.1. K-differentiable functions, K-Nash functions. K-differen-
tiable functions were first introduced in [11] (the case of one variable) and in
[12] (several variables). Let us recall the definition. Let V ⊂ Kn be a defin-
able open set. Then a definable map F : V → K is called K-differentiable on
V if it is continuous on V and for every (z1, . . . , zn) ∈ V and i = 1, . . . , n the
function F (z1, . . . , zi−1, ·, zi+1, . . . , zn) is K-differentiable in the ith variable
at zi.

The following facts from [12] will be useful:

Theorem 2.1. Let L ⊂ V be definable sets, where V is an open subset
of Kn and the o-minimal dimension of L is strictly smaller than 2n − 1.
Assume that F : V \ L → K is a definable K-differentiable function that is
bounded in a neighborhood of every u ∈ L. Then F can be extended uniquely
to a definable K-differentiable function on V.

Proof. See [12, Theorem 2.15].

Let us also recall that the Weierstrass preparation and division theorems
hold for the ring of germs of definable K-differentiable functions. (For proofs
see [12, Theorems 2.20 and 2.23].)

Finally, let T ka f denote the sum of the terms of the Taylor expansion of
the function f in a neighborhood of a of order not exceeding k.

Theorem 2.2. Let D be an open definable subset of Kn containing the
closed unit ball B centered at 0 ∈ Kn and let f : D → K be a definable
K-differentiable function. Assume also that |f(z)| ≤ 1 for all z ∈ B. Then

|f(z)− T k−1
0 f(z)| ≤ ‖2z‖k

for all k ≥ 1 and z ∈ B.

Proof. For the case n = 1 see [11, Theorem 2.50]. Assume n > 1, fix
k ∈ N and take any z ∈ Kn with ‖z‖ < 1. Then there are t0 ∈ K with
|t0| < 1 and z̃ ∈ Kn such that ‖z̃‖ = 1 and z = z̃ · t0. Now apply the
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theorem to the function f̃(t) = f(z̃ · t) for t from a closed unit disc in K. We
obtain

|f̃(t)− T k−1
0 f̃(t)| ≤ |2t|k.

Put t = t0. As |t0| = ‖z‖, f̃(t0) = f(z) and T k−1
0 f̃(t0) = T k−1

0 f(z) we get
our claim.

Let Ω be a definable open subset of Kn. Assume that Ω is definably
connected. Let f be a definable K-differentiable function on Ω. We say that
f is a K-Nash function if there exists a polynomial P : Kn×K → K, P 6= 0,
such that P (x, f(x)) = 0 for x ∈ Ω. A definable continuous mapping on Ω
with values in KN is said to be a K-Nash mapping if each of its components
is a K-Nash function.

Theorem 2.3. The set of all K-Nash functions on Ω is a ring.

Proof. Identical to the proof in the classical complex case (see [17]).

Finally, let us observe that the Weierstrass preparation and division the-
orems remain true in the class of K-Nash functions. As for the prepara-
tion theorem, in view of the existence of such a theorem for definable K-
differentiable functions, it suffices to check the following claim. Let f(z′, zn)
be a non-zero K-Nash function defined in some definably connected neigh-
borhood U×V of zero inKn−1×K such that f = HW, whereH is a definable
K-differentiable non-vanishing function and W (z′, zn) = zsn + zs−1

n a1(z′) +
· · ·+znas−1(z′)+as(z′), where a1, . . . , as are definable K-differentiable func-
tions and W−1(0) ⊂ U × V. Then a1, . . . , as, H are K-Nash functions.

To prove the claim, put z = (z′, zn) and take a non-zero polynomial
P (z, u) such that P (z, f(z)) = 0 in U ×V. Since f is a non-zero function, we
may assume that P (z, u) = urb0(z) + · · ·+ubr−1(z) + br(z), where b0, . . . , br
are polynomials and br 6= 0 (because if br = 0 we may replace P by P/u).

Now {f = 0} ⊂ {br = 0}. On the other hand, there is an open ball
B ⊂ U such that W |B×K = (zn−A1(z′)) · · · (zn−As(z′)), where A1, . . . , As
are definable K-differentiable functions. Since graph(Aj) ⊂ {br = 0}, the
function Aj is K-Nash for j = 1, . . . , s. This implies that a1|B, . . . , as|B are
K-Nash functions and hence so are a1, . . . , as by the identity principle, in
view of the fact that U is definably connected.

Let us turn to the division theorem. Let f(z′, zn) be a non-zero K-Nash
function defined in some definably connected neighborhood U ×V of zero in
Kn−1×K, and letW (z′, zn) = zsn+zs−1

n a1(z′)+· · ·+znas−1(z′)+as(z′), where
a1, . . . , as are K-Nash functions andW−1(0) ⊂ U×V.We need to show that
if H and r are a definable K-differentiable function and a polynomial with
definable K-differentiable coefficients, respectively, such that f = WH + r
and deg(r) < s, then both H and r are K-Nash functions. In fact, it is
sufficient to check that the coefficients of r are K-Nash functions. We argue
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by induction on deg(W ). If s = 1 then W (z′, zn) = zn −A(z′), where A is a
K-Nash function and r depends only on z′, therefore r(z′) = f(z′, A(z′)) is
a K-Nash function.

Suppose s > 1. Then there is an open ballB ⊂ U such thatW (z′, zn)|B×K
= (zn − A(z′))W̃ (z′, zn) and W̃ is a polynomial with K-Nash coefficients
and A(z′) is a K-Nash function. Applying the division theorem for K-
differentiable functions we obtain f = W̃ H̃ + r̃ and H̃ = (zn −A(z′))H̄ + r̄
on B×K where deg(r̃) < s−1 and deg(r̄) = 0. By the induction hypothesis
both r̃ and r̄ are K-Nash functions on B ×K. Moreover, r|B×K = W̃ r̄ + r̃,
so the coefficients of r̃ are K-Nash functions on B, hence (as above) on U.

2.2. K-analytic sets, K-Nash sets. We recall the basic notions of
K-analytic geometry. Its main objects, K-analytic sets, were introduced in
[12] as subsets of definable manifolds. Here we restrict our attention to the
case of subsets of Kn.

Let Y ⊂ V be definable subsets of Kn, with V open in Kn, and Y
closed in V. We say that Y is a K-analytic [K-Nash] subset of V if for every
y0 ∈ Y there is a definable open neighborhood U of y0 and a K-differentiable
[K-Nash] mapping f : U → Km for some m ∈ N such that Y ∩U = f−1(0).
Then RegK(Y ) denotes the set of all points in Y in some neighborhood of
which Y is a K-differentiable manifold.

In the following, for any definableK-analytic set Y we denote by dimK(Y )
the K-dimension of Y, whereas for any definable set Y, dimR(Y ) denotes the
o-minimal dimension of Y. Clearly, dimR(Y ) = 2 dimK(Y ) for any definable
K-analytic set.

The following definition will be useful. Let X ⊂ Rm and Y ⊂ Rn be
definable sets and let f : X → Y be a definable continuous mapping. We
say that f is definably proper if for every y ∈ Y and every definable curve
γ : (0, 1) → X such that f(γ(t)) → y as t → 0, γ(t) has a limit in X for
t→ 0. This could be equivalently restated as: for each definable set K ⊂ Y ,
if K is closed and bounded in Rn then f−1(K) is closed and bounded in Rm
(see [7, p. 104]).

The following theorem contains a definable analogue of the classical
Remmert theorem which is an immediate consequence of its more general
version (see [13, Theorem 7.4]). Let π : V × Kk → V denote the natural
projection, where V is open and definable in an o-minimal expansion of R.

Theorem 2.4. Let X be a definable K-analytic [K-Nash] subset of
V ×Kk such that π|X : X → V is a definably proper mapping. Then π(X) is
a definable K-analytic [K-Nash] subset of V and dimK(X) = dimK(π(X)).

Proof. Definable properness ensures uniform finiteness of the projec-
tion π|X . Indeed, for every y ∈ V the set π−1({y}) is finite (because it is
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definable bounded and K-analytic, see [13]). Then definability implies uni-
form finiteness (see [7, p. 60]). Thus by the definition of o-minimal dimension
we immediately have dimR(X) = dimR(π(X)), so dimK(X) = dimK(π(X)).

One easily checks that π(X) is a definable closed subset of V , hence by
Theorem 7.4 from [13], π(X) is a definable K-analytic subset of V.

Recall that the classical proof of the Remmert theorem for complex ana-
lytic sets involves only the Weierstrass preparation and division theorems
and the computation of the resultants of polynomials obtained by applying
these theorems. Therefore to repeat this proof in the case where X is a K-
Nash set it is sufficient to know that the Weierstrass theorems remain true
in the class of K-Nash functions, which has been checked in the previous
subsection. (Clearly, the Remmert theorem for K-analytic sets can also be
obtained in this way.)

The following fact explains the relation between Nash and algebraic sets.

Theorem 2.5. Let X be an irreducible K-Nash subset of a definable
open Ω ⊂ Kn. Then there exists an algebraic subset Y of Kn such that X is
a K-analytic irreducible component of Y ∩Ω. Conversely, every K-analytic
irreducible component of Y ∩Ω is an irreducible K-Nash subset of Ω.

Proof. Identical to the proof in the classical complex case (see [17, Section
2.B]).

Purely m-dimensional K-analytic sets with definably proper projection
onto a subdomain of Km are branched coverings:

Theorem 2.6. Let U be an open definably connected subset of Km and
let X be a definable K-analytic subset of U × Kk of pure K-dimension m
such that the projection π|X : X → U is definably proper. Then the mapping
π|X : X → U is surjective and open. There exist an integer s = s(X) and a
definable subset S = S(X) of U with dimR(S) ≤ 2m− 2 such that

](π|X)−1(x)
{

= s for x ∈ U \ S,
< s for x ∈ S.

Moreover, for every x ∈ U \ S there is a neighborhood V ⊂ U \ S of x and
definable K-analytic mappings f1, . . . , fs : V → Kk such that fi ∩ fj = ∅ for
i 6= j, and X ∩ (V ×Kk) = f1 ∪ · · · ∪ fs.

Proof. Immediate consequence of Lemmas 3.5, 4.5 and 4.7 of [13].

Theorem 2.7. Let A be a purely n-dimensionalK-analytic subset ofKm,
and let a ∈ A, n < m. Then there is an (m − n)-dimensional K-affine
subspace L of Km such that a is an isolated point of L ∩ A. For every
affine subspace L of Km such that dimK(L) > m − n and a ∈ L we have
dimK(L ∩X) > 0.
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Proof. Since n < m, there is a one-dimensional K-space L′ passing
through a not contained in X, hence intersecting X in isolated points. If
m− n = 1 the proof of the first claim is complete. Otherwise, pick e1 ∈ L′,
e1 6= 0. Then there is a neighborhood V of a in Km in which the projection
πL′ of X along L′ onto L′⊥ is definably proper, where L′⊥ denotes the or-
thogonal complement of L′ inKm. By Theorem 2.4, πL′(V ∩X) is a definable
K-analytic subset of some open set in L′⊥ of pure dimension n. By an induc-
tive argument (onm) we may assume that there is an (m−n−1)-dimensional
K-affine subspaceM ⊂ L′⊥ intersecting πL′(X) at the isolated point πL′(a).
The space spanned by M and e1 satisfies the first claim of the theorem.

If there were a K-affine space L of Km of dimension larger than m − n
with an isolated intersection of X at a, the projection of X along L onto
L⊥ would be definably proper in some neighborhood of a. Then the fact
that X is n-dimensional contradicts Theorem 2.4, as L′⊥ is at most (n− 1)-
dimensional.

Let A be a purely n-dimensional K-analytic subset of Km and let L be
an (m− n)-dimensional K-affine subspace of Km such that a is an isolated
point of L∩A. Then there is a domain U ⊂ Km such that U ∩A∩L = {a}
and the projection πL : U ∩ A → πL(U) ⊂ L⊥ along L is a k-sheeted K-
analytic branched covering (see Theorem 2.6). The number k will be called
the multiplicity of πL at a and denoted by µa(πL|A) (cf. [5, pp. 102, 120],
for the classical counterpart).

2.3. Symmetric powers. Let (Kk)dsym and 〈x1, . . . , xd〉 denote (Kk)d/∼
and the equivalence class of (x1, . . . , xd) ∈ (Kk)d respectively, where
(x′1, . . . , x

′
d) ∼ (x1, . . . , xd) if and only if (x′1, . . . , x

′
d) = (xp(1), . . . , xp(d))

for some permutation p. We endow (Kk)dsym with a metric ρk given by

ρk(〈x1, . . . , xd〉, 〈y1, . . . yd〉) = inf
p

sup
i
‖xi − yp(i)‖Kk ,

where ‖(z1, . . . , zk)‖Kk = maxi=1,...,k |zi|, whereas p is any permutation of
(1, . . . , d) (the subscript k in ρk will often be omitted).

Then there exist an integer N and a mapping φ : (Kk)dsym → KN with
the following properties:

(a) φ is injective and φ, φ−1 are continuous,
(b) φ ◦ πsym : (Kk)d → KN is a definably proper polynomial mapping,

where πsym(x1, . . . , xd) = 〈x1, . . . , xd〉,
(c) φ((Kk)dsym) is an algebraic subset of KN .

The proofs of (a) and (b) are the same as in the classical case (cf. [18, pp.
366–368, 152–154]). As for (c), in view of (b), by the Remmert theorem (see
Theorem 2.4) φ((Kk)dsym) is a definable global K-analytic subset of KN ,
hence algebraic (see [13, Theorem 5.1]).
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3. Algebraic approximation of K-differentiable mappings. The
aim of this section is to obtain the definable analogue of the Lempert theo-
rem on approximation of holomorphic solutions of Nash equations by Nash
solutions (see [8, Theorem 3.2]). In the real case such a result is due to
M. Coste, J. Ruiz and M. Shiota ([6, Theorem 1.1]).

Let Bn(r) = {x ∈ Kn : ‖x‖ < r}. We prove

Theorem 3.1. Let f : Bn(r) → Km be a definable K-differentiable
mapping which satisfies a system of equations

Q(z, f(z)) = 0 for every z ∈ Bn(r).

Here Q is a K-Nash mapping from a neighborhood of the graph of f into
some Kq. Then there are 0 < s ≤ r and a sequence fν : Bn(s) → Km of
K-Nash mappings such that

Q(z, fν(z)) = 0 and ‖fν(z)− f(z)‖ ≤ ‖z‖ν

for every z ∈ Bn(s) and ν ∈ N.
Proof of Theorem 3.1. Similarly to [6] and [8] the main ingredient of the

proof is an application of the following

Theorem 3.2. LetW be an algebraic subset ofKm and let h : Bn(r)→W
be a K-differentiable mapping. Then there are 0 < s ≤ r, a non-singular al-
gebraic subset V of Kp, a K-differentiable mapping f : Bn(s) → V and a
polynomial mapping g : V →W such that h|Bn(s) = g ◦ f.

Proof of Theorem 3.2. Let On denote the ring of germs of K-different-
iable functions (defined in some neighborhood of 0 ∈ Kn) at 0 ∈ Kn. Func-
tions and their germs will be denoted by the same letters.

First we recall the basic properties of the ring On from [12]:

Proposition 3.3.

(1) On is an integral domain,
(2) u is a unit of On if and only if u(0) 6= 0,
(3) On has a unique maximal ideal In, which is the set of all germs f

such that f(0) = 0,
(4) the map which associates to every f ∈ On the formal power series of

its partial derivatives at 0 is an embedding of On into the ring of all
formal power series in the variables x1, . . . , xn over K,

(5) On is Noetherian.

Now observe that (On, In) is a regular local ring. Indeed, by Proposi-
tion 3.3(4), and since On contains the germs of polynomials in x1, . . . , xn
over K, it follows that the In-adic completion Ôn equals K[[x1, . . . , xn]].
Hence Ôn is regular and so is On. Consequently, the inclusion e : K ↪→ On
is a regular homomorphism (for the definition see [9, p. 249]).
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Here we invoke a theorem of D. Popescu ([14], [15]; see also [16], [1], [10]):

Theorem 3.4. Let σ : A→ B be a homomorphism of Noetherian rings.
Then the following conditions are equivalent:

(1) σ is regular,
(2) for every A-algebra C of finite type and for every A-homomorphism

s : C → B there are an A-homomorphism λ : C → D, where D is a
smooth A-algebra of finite type, and an A-homomorphism χ : D → B
such that χ ◦ λ = s. (Here the ring B is treated as an A-algebra via
the homomorphism σ.)

We apply this theorem in the following setting. Take σ to be our regular
homomorphism e : K ↪→ On and define s : K[W ]→ On by s(u) = u◦h. Then
there is a non-singular algebraic subset V of Kp and K-homomorphisms
Φ : K[W ] → K[V ], Ψ : K[V ] → On such that s = Ψ ◦ Φ. Clearly, Φ and
Ψ are induced by a polynomial mapping g : V → W and a K-differentiable
mapping f : Bn(s) → V respectively so the germ of g ◦ f equals the germ
of h.

Proof of Theorem 3.1 (continuation). Denote byW a K-algebraic subset
of Kn+m such that in a neighborhood of (0, f(0)) the set {(x, y) ∈ Kn+m :
Q(x, y) = 0} is the union of some K-analytic irreducible components of W.
(The existence of W follows from Theorem 2.5.) Consider the mapping

F : Bn(r) 3 z 7→ (z, f(z)) ∈W ⊂ Kn+m.

Next apply Theorem 3.2 to obtain a K-algebraic subset Z of Kp, a poly-
nomial mapping G : Z → W and a definable K-differentiable mapping
H : Bn(s)→ Z such that imH ⊂ RegK(Z) and F |Bn(s) = G ◦H.

Observe that without loss of generality we may assume that Z = Kp,
H(Bn(s)) ⊂ Bp(s̄), s̄ > 0 and G : Bp(s̄) → W is a Nash mapping (this is a
simple consequence of the fact that RegK(Z) is locally K-Nash equivalent
to a germ of an affine space).

Now by Theorem 2.2 we have a sequence Hν : Bn(s) → Kp of K-poly-
nomial mappings such that ‖Hν(z) − H(z)‖ ≤ ‖z‖ν for every z ∈ Bn(s),
ν ∈ N (decreasing s if necessary). It is easy to see that K-differentiability
and definability of G give

‖(G ◦H)(z)− (G ◦Hν)(z)‖ ≤ ‖z‖ν

(after renumbering the sequence Hν and again decreasing s if necessary).
Since the first n components of G ◦H is the identity mapping, we may

assume, by the Inverse Function Theorem, that the first n components of
G◦Hν is also the identity mapping (otherwise we compose it with its inverse).
Finally, one observes that if ν is large enough then

im(G ◦Hν) ⊂ {(x, y) ∈ Kn+m : Q(x, y) = 0}.
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This follows from the fact that K-analytic irreducible components ofW ∩Ω,
where Ω ⊂ Kn+m is an open ball, are semialgebraic, hence their order of
tangency is bounded.

Now it is sufficient to take fν to be the last m components of G ◦Hν .

4. Approximation of K-analytic sets by K-Nash sets. In what fol-
lows, “dimension” always means K-dimension. Let A,B be finite subsets of
Kk and let d be a fixed positive integer. Suppose that for all a ∈ A and b ∈ B
there are positive integers na,A, nb,B such that

∑
a∈A na,A =

∑
b∈B nb,B = d.

Then the set A can be treated as a tuple from (Kk)dsym (see Section 2.3
for definition), where every a appears in the tuple na,A times (the same
holds true for B). We denote by ρ(A,B) the distance between the sets
A,B ∈ (Kk)dsym as defined in Section 2.3. In Theorem 4.1 below, A,B will be
the fibers of proper projections of K-analytic subsets of Bm(t)×Kk of pure
K-dimension m onto Bm(t), where Bm(t) = {z ∈ Km : ‖z‖Km < t}. Then
the numbers na,A, nb,B will be, by definition, the multiplicities of these pro-
jections at a, b respectively (for the notion of the multiplicity of a projection
see Section 2.2).

Assuming the notation of Section 2 we prove

Theorem 4.1. Let X be a definable K-analytic subset of Bm(1) × Kk

of pure K-dimension m with definably proper projection onto Bm(1). Let d
denote the cardinality of the generic fiber of X over Bm(1). Then there are
0 < t ≤ 1 and a sequence {Xν} of K-Nash subsets of Bm(t) ×Kk of pure
K-dimension m such that for every ν ∈ N the generic fiber of Xν over Bm(t)
has d elements. Moreover,

ρ(({x} ×Kk) ∩X, ({x} ×Kk) ∩Xν) ≤ ‖x‖νKm

for every x ∈ Bm(t) and ν ∈ N.

Observe that Theorem 1.1 is (by the local structure of K-analytic sets,
Theorem 2.6) an immediate consequence of Theorem 4.1.

Proof of Theorem 4.1. We follow the idea of the proof of Theorem 4 from
[3] where higher order approximation for classical analytic sets is considered.

Let ψ : Bm(1) → E, where E = φ((Kk)dsym), be a definable K-differ-
entiable map (for the definitions of φ and (Kk)dsym see Section 2.3). Next
put r = kd and identify the space ((K)k)d with Kr. Let W (z1, . . . , zr) =
φ ◦ πsym(z1, . . . , zr) for zi ∈ K, i = 1, . . . , r. (πsym is introduced in Section
2.3; here πsym is treated, via the identification above, as a mapping defined
on Kr. Recall that W is a polynomial mapping.) Now define

X(ψ, t) = {(x, z1, . . . , zr) ∈ Bm(t)×Kr : ψ(x) = W (z1, . . . , zr)}.
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Observe that the fact that the image of ψ is contained in E, and the proper-
ties of φ imply that for 0 < t ≤ 1 the setX(ψ, t) is a purelym-dimensionalK-
analytic subset of Bm(t)×Kr with definably proper projection onto Bm(t).

Let Y be any purelym-dimensionalK-analytic subset of Bm(t)×Kk with
definably proper projection onto Bm(t) such that the generic cardinality of
the fiber of Y over Bm(t) equals d, and let pr : Km×Kk×Kr−k → Km×Kk

be the natural projection. Then there exists a K-differentiable mapping ψ :
Bm(t)→ E such that Y = pr(X(ψ, t)) (cf. [2] for the case K = C). Indeed,
let S denote the set

{x ∈ Bm(t) : ](({x} ×Kk) ∩ Y ) < d},

which is definable and has dimR(S) ≤ 2m − 2 (see Theorem 2.6). Next let
a1(x), . . . , ad(x), for every x ∈ Bm(t) \ S, be the points from Y over x.
By Theorem 2.6, every such x has a neighborhood U in Bm(t) in which
a1, . . . , ad are K-differentiable mappings. Let ψ : Bm(t) \ S → E be given
by ψ(x) = (〈a1(x), . . . , ad(x)〉). The Riemann theorem (see Theorem 2.1)
implies that ψ can be extended to a K-differentiable mapping defined on the
whole Bm(t). Clearly Y = pr(X(ψ, t)).

The idea of the proof of Theorem 4.1 is to approximate the K-differ-
entiable mapping ψ such that X = pr(X(ψ, 1)) by K-Nash mappings ψν
on Bm(t). As we shall show, pr(X(ψν , t)) will be an approximation of X ∩
(Bm(t) × Kk) we look for. (Note that if ψν are K-Nash mappings then,
by Theorem 2.4, pr(X(ψν , t)) are K-Nash sets of pure K-dimension m.)
More precisely, let ψ : Bm(1) → E be a K-differentiable mapping such
that X = pr(X(ψ, 1)). We shall prove that there are t < 1 and a sequence
ψν : Bm(t)→ E of Nash mappings such that

ρ(({x} ×Kk) ∩ pr(X(ψ, t)), ({x} ×Kk) ∩ pr(X(ψν , t))) ≤ ‖x‖νKm

for every x ∈ Bm(t) and ν ∈ N.
To do this we reduce the problem to the case of analytic sets of codimen-

sion one. We shall need the following lemma and proposition (whose proofs
are very similar to those in the classical situation (see [3]) and are recalled
for completeness).

Lemma 4.2. Fix, n, r∈N. There exist K-linear forms L1, . . . , Ls :Kr→K
and a constant C ∈ R, C > 0, such that for every x1, . . . , xn, y1, . . . , yn ∈ Kr

there is i ∈ {1, . . . , s} such that

ρr(〈x1, . . . , xn〉, 〈y1, . . . yn〉)
≤ Cρ1(〈Li(x1), . . . , Li(xn)〉, 〈Li(y1), . . . , Li(yn)〉).

Proof of Lemma 4.2. The case r = 1 is obvious, so assume r > 1. We
shall show the following condition:



196 M. Bilski and K. Rusek

(a) ∃L1, . . . , Ls ∃C > 0 ∀X,Y ⊂ Kr, ]X, ]Y ≤ n
∃i ∈ {1, . . . , s} ∀x ∈ X, y ∈ Y : ‖x− y‖ ≤ C|Li(x)− Li(y)|.

First let us check that once (a) is proved, the L1, . . . , Ls, C obtained
satisfy the assertion of the lemma. Suppose otherwise: there are 〈x1, . . . , xn〉
and 〈y1, . . . , yn〉 such that for every i ∈ {1, . . . , s},

ρr(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)
> Cρ1(〈Li(x1), . . . , Li(xn)〉, 〈Li(y1), . . . , Li(yn)〉).

This implies that for every i ∈ {1, . . . , s} and every permutation p there is a
permutation q such that

C max
j
|Li(xj)− Li(yq(j))| < max

j
‖xj − yp(j)‖.

For every i, let qi be a permutation such that maxj |Li(xj)−Li(yqi(j))| takes
the smallest possible value. Then obviously, for every i ∈ {1, . . . , s},

C max
j
|Li(xj)− Li(yqi(j))| < max

j
‖xj − yqi(j)‖.

Now, for every i, let ji be such that ‖xji − yqi(ji)‖ takes the greatest possible
value. Then for every i ∈ {1, . . . , s},

C|Li(xji)− Li(yqi(ji))| < ‖xji − yqi(ji)‖.
It follows that for X = {x1, . . . , xn}, Y = {y1, . . . , yn} and for every i ∈
{1, . . . , s} there is (x, y) ∈ X × Y such that

C|Li(x)− Li(y)| < ‖x− y‖,
contrary to (a).

Now let us prove (a). It is easy to check that, since r > 1, there exists a
finite set S of (r − 1)-dimensional K-linear spaces l1, . . . , ls ⊂ Kr and there
exists α ∈ R, α > 0, with the following property:

(b) for all X,Y ⊂ Kr with ]X = ]Y = n there is l ∈ S such that for all
(k,m) ∈ X × Y with m 6= k,

dist
(

m− k
‖m− k‖

, l

)
> α.

The set S will be interpreted as the set of K-linear forms L1, . . . , Ls
which are defined as the projections ofKr along l1, . . . , ls onto the orthogonal
complements of l1, . . . , ls, respectively. Then (b) easily implies that for such
L1, . . . , Ls there is C = α such that (a) is satisfied. Thus the proof of the
lemma is complete.

For any K-linear form L : Kr → K define ΦL : Km × Kr → Km × K
by ΦL(x, z1, . . . , zr) = (x, L(z1, . . . , zr)). Note that for every definable K-
differentiable mapping ψ̃ : Bm(t) → E, the set ΦL(X(ψ̃, t)) is a K-analytic



Algebraic approximation of analytic sets 197

subset of Bm(t)×K of codimension one with proper projection onto Bm(t)
(an immediate consequence of Theorem 2.4).

The following proposition will be useful.

Proposition 4.3. Let ψ : Bm(1) → E be a definable K-differentiable
mapping. For every finite collection L1, . . . , Ls : Kr → K of K-linear forms
there exist t ∈ R, t > 0, and a sequence {ψν : Bm(t) → E} of K-Nash
mappings such that for every x ∈ Bm(t), i ∈ {1, . . . , s} and every ν ∈ N,

ρ(({x} ×K) ∩ ΦLi(X(ψν , t)), ({x} ×K) ∩ ΦLi(X(ψ, t))) ≤ ‖x‖νKm .

Proof of Proposition 4.3. We shall need the following two lemmas.

Lemma 4.4. Let p(x, z) = zk + a1(x)zk−1 + · · · + ak(x) and q(x, z) =
zk + b1(x)zk−1 + · · ·+ bk(x) be polynomials with definable coefficients which
are K-differentiable on Bm(s), s > 0. Assume ai(0) = 0 for i = 1, . . . , k and
there exists ν ∈ N such that |ai(x) − bi(x)| ≤ ‖x‖νKm for all i ∈ {1, . . . , k}
and x ∈ Bm(s). Let w1(x), . . . , wk(x) and v1(x), . . . , vk(x) denote the roots
of p(x, z) and q(x, z) respectively. Then there is 0 < t ≤ s such that for every
integer µ there is ν0 such that if ν > ν0 then

ρ(〈w1(x), . . . , wk(x)〉, 〈v1(x), . . . , vk(x)〉) ≤ ‖x‖µKm

for every x ∈ Bm(t).

Proof of Lemma 4.4. Let 0 < t ≤ s be such that |wi(x)| < 1 for all
i ∈ {1, . . . , k} and x ∈ Bm(t). Fix µ ∈ N and for every x ∈ Bm(t) put
Ex =

⋃k
j=1K(wj(x), ‖x‖µ/4k), where K(a, r) = {z ∈ K : |z−a| < r}. Then

Ex = E1
x ∪ · · · ∪ E

s(x)
x , where Eix is a definably connected component of Ex

for i ∈ {1, . . . , s(x)}. Moreover, for i ∈ {1, . . . , s(x)} and j ∈ {1, . . . , k},
(x) dist(wj(x), ∂Eix) ≥ ‖x‖µ/4k,

(xx) diamEix ≤ ‖x‖µ/2.
By (x) we have inf∂Ei

x
|p(x, ·)| ≥ (‖x‖µ/4k)k. Now, by the choice of t, we

can take ν0 so large that if ν > ν0 then sup∂Ei
x
|p(x, ·)−q(x, ·)| < (‖x‖µ/4k)k.

Then, by a definable version of the Rouché theorem (see [11, p. 435]), for
every x ∈ Bm(t) and i ∈ {1, . . . , s(x)}, the numbers of the roots of p(x, z)
and q(x, z) (counted with multiplicities) in Eix are equal. In view of (xx) we
are done.

Lemma 4.5. For every K-linear form L : Kr → K there are poly-
nomials PL,1, . . . , PL,nL

∈ K[y1, . . . , yN , z] such that for any definable K-
differentiable mapping ψ : Bm(1)→ E ⊂ KN ,

ΦL(X(ψ, t))
= {(x, z) ∈ Bm(t)×K : PL,1(ψ(x), z) = · · · = PL,nL

(ψ(x), z) = 0}
for t < 1.
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Proof of Lemma 4.5. The mapping ψ is of the form ψ = (ψ1, . . . , ψN ).
Put y = (y1, . . . , yN ) and define

V = {(y, z1, . . . , zr) ∈ KN ×Kr : y = W (z1, . . . , zr)}.
Then ΦL(V ) is an algebraic subset of KN ×K (because it is the image of an
algebraic subset of KN×Kr under a definably proper polynomial mapping).
Let PL,1, . . . , PL,nL

∈ K[y1, . . . , yN , z] be polynomials describing ΦL(V ). It
is easy to see that these polynomials satisfy the assertion of the lemma.

Proof of Proposition 4.3 (continuation). Fix K-linear forms L1, . . . , Ls.
For these forms, we shall construct a system of polynomial equations and a
system of definable K-differentiable (in our o-minimal structure) functions
satisfying the equations. (Among the functions there will be the components
of ψ.) Next the solutions to the system will be approximated by K-Nash
functions (by means of Theorem 3.1). It will turn out that the resulting
approximations of ψ satisfy the assertion of the proposition.

First, there exists Q=(Q1, . . . , Qd̃), Qj∈K[y1, . . . , yN ] for j ∈ {1, . . . , d̃},
such that E = {Q = 0}. Then ψ : Bm(1) → E ⊂ KN satisfies Q(ψ(x)) = 0
for x ∈ Bm(1).

Next for every L ∈ {L1, . . . , Ls}, there are PL,i ∈ K[y1, . . . , yN , z] as in
Lemma 4.5. Then by the Weierstrass preparation theorem we can write

PL,i(ψ(x), z) = HL,i(x, z)(WL(x, z))kL,i for i = 1, . . . , nL.

Here WL is the optimal polynomial for ΦL(X(ψ, 1)) in z (i.e. the unitary
polynomial in z with definable K-differentiable coefficients and non-zero
discriminant, describing ΦL(X(ψ, 1))), HL,i is a polynomial in z such that
{WL = 0} is not contained in {HL,i = 0}, and kL,i is an integer. (The
existence of WL(x, z) follows from the fact that ΦL(X(ψ, 1)) is of codi-
mension one with definably proper projection onto Bm(1), which is a con-
sequence of Theorem 2.4. Indeed, let p1(x), . . . , pd(x) ∈ K be such that
{(x, pj(x)) : j = 1, . . . , d} = ΦL(X(ψ, 1))∩({x}×Kk) and defineWL(x, z) =
(z − p1(x)) · · · (z − pd(x)). By Theorem 2.6 the coefficients of WL(x, z) =
zd + zd−1cL,1(x) + · · · + cL,d(x) are K-differentiable functions in a neigh-
borhood of every x ∈ Bm(1) such that pj(x) 6= pi(x) for i 6= j. Then by
Theorem 2.1 the coefficients are K-differentiable on Bm(1).)

Consider the system of polynomial equations
Q(ψ(x)) = 0,

PLj ,i(ψ(x), z) = HLj ,i(x, z)(z
d + zd−1cLj ,1(x) + · · ·+ cLj ,d(x))kLj,i

(P)

for j ∈ {1, . . . , s} and i ∈ {1, . . . , nLj}, satisfied by the (definable K-
differentiable) mappings ψ and coefficients of WLj , HLj ,i.

By Theorem 3.1 there are 0 < t < 1 and K-Nash mappings ψν , cLj ,1,ν ,
. . . , cLj ,d,ν sufficiently close to ψ, cLj ,1, . . . , cLj ,d on Bm(t), satisfying the
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system (P). (Formally, we should get rid of the variable z before we use the
approximation theorem. Yet, since PLj ,i, HLj ,i,WLj are polynomials in z,

each equation PLj ,i = HLj ,i · (WLj )kLj,i is equivalent to a finite number of
polynomial equations in which z does not appear, obtained by comparing
the coefficients of PLj ,i and HLj ,i · (WLj )kLj,i .)

One easily observes that the polynomials WL,ν defined by replacing
cL,1, . . . , cL,d in WL by cL,1,ν , . . . , cL,d,ν are the optimal polynomials for
ΦL(X(ψν , t)), where L ∈ {L1, . . . , Ls}. Choosing the K-Nash solutions to
the system (P) sufficiently close to the original K-differentiable solutions, by
Lemma 4.4 applied to WL,ν and WL, we see that the mappings ψν satisfy
the assertion of the proposition.

Proof of Theorem 4.1 (end). Without loss of generality we may assume
X∩({0}m×Kk) = {0}m+k. Recall that ψ : Bm(1)→ E is a K-differentiable
mapping such that pr(X(ψ, 1)) = X whereas d is the generic cardinality of
the fiber of X over Bm(1). Next apply Lemma 4.2 with n = d and r = k to
obtain K-linear forms L1, . . . , Ls : Kk → K satisfying the assertion of that
lemma.

Note that for every i ∈ {1, . . . , s} there is a K-linear form L̃i : (Kk)d →
K such that ΦL̃i

= ΦLi ◦ pr. Using Proposition 4.3 we obtain a sequence of
K-Nash mappings ψν : Bm(t)→ E such that for all x ∈ Bm(t), i ∈ {1, . . . , s}
and ν ∈ N,

ρ(({x} ×K) ∩ ΦL̃i
(X(ψν , t)), ({x} ×K) ∩ ΦL̃i

(X(ψ, t))) ≤ ‖x‖νKm .

First let us check that Xν = pr(X(ψν , t)) has d elements in the generic
fiber over Bm(t) for almost all ν. Since ψν(Bm(t)) ⊂ E, every fiber may have
at most d elements. This number equals d precisely because ΦLi(pr(X(ψν , t)))
have d elements in the generic fibers over Bm(t) for almost all ν as they are
described by polynomials of degree d with non-zero discriminants.

Let us prove that the required bound holds. By Lemma 4.2, for every
x ∈ Bm(t) and ν ∈ N there is i ∈ {1, . . . , s} such that

ρ(({x} ×Kk) ∩ pr(X(ψ, t)), ({x} ×Kk) ∩ pr(X(ψν , t)))
≤ C · ρ(({x} ×K) ∩ ΦL̃i

(X(ψν , t)), ({x} ×K) ∩ ΦL̃i
(X(ψ, t))),

where C is a positive constant. Now, replacing ψν by ψν+1 and decreasing t if
necessary so that ‖x‖ν+1 ≤ C‖x‖ν for every x ∈ Bm(t), we get the required
inequality.
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