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On locally bounded solutions
of Schilling’s problem

by Janusz Morawiec (Katowice)

Abstract. We prove that for some parameters q ∈ (0, 1) every solution f : R→ R of
the functional equation

f(qx) =
1
4q

[f(x− 1) + f(x+ 1) + 2f(x)]

which vanishes outside the interval [−q/(1− q), q/(1− q)] and is bounded in a neighbour-
hood of a point of that interval vanishes everywhere.

Introduction. Considering a physical problem R. Schilling [18] came
to the functional equation

f(qx) =
1
4q

[f(x− 1) + f(x+ 1) + 2f(x)],(1)

where q ∈ (0, 1) is a fixed number, and to its solutions f : R→ R satisfying
the boundary condition

f(x) = 0 for |x| > Q(2)

where
Q =

q

1− q .

The physical background of this problem can also be found in [9] by G.
Derfel and R. Schilling and in [11] by R. Girgensohn.

In what follows any solution f : R→ R of (1) satisfying (2) will be called
a solution of Schilling’s problem.

The first nontrivial continuous solution of Schilling’s problem was given
by R. Schilling himself for q = 1/2. This solution is defined by

f1(x) = max{1− |x|, 0} for x ∈ R.
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K. Baron, A. Simon and P. Volkmann [3] showed that if n is a positive
integer and q = 1/ n

√
2, then the convolution

f1(x) ? f1(qx) ? . . . ? f1(qn−1x)

is a nontrivial continuous solution of Schilling’s problem. They also proved
that if q ∈ (0, 1/2) and f is a nontrivial Lebesgue integrable solution of
Schilling’s problem, then

ε�

0

|f(x)|(log q)/ log(2q) dx = +∞

for every ε > 0. In particular, for every q ∈ (0, 1/2) every bounded Lebesgue
measurable solution of Schilling’s problem vanishes almost everywhere.
(Note that in [3] by K. Baron, A. Simon and P. Volkmann and in [19] by
A. Simon and P. Volkmann distributional solutions of Schilling’s problem are
considered.) The case q ∈ (1/2, 1) is quite different. Namely, from the paper
[9] by G. Derfel and R. Schilling it follows that for almost all q ∈ (1/2, 1)
there are nontrivial continuous solutions. However, if the inverse of q is a
Salem number [6], then such solutions do not exist (cf. also [15] where nonex-
istence of nontrivial continuous solutions of Schilling’s problem was proved
for the golden ratio q = (

√
5− 1)/2).

K. Baron and P. Volkmann [4] (see also [8] by I. Daubechies and J. C.
Lagarias) proved that for every q ∈ (0, 1) the vector space of Lebesgue in-
tegrable solutions of Schilling’s problem is at most one-dimensional. (The
same concerns Riemann integrable solutions; see [10] by W. Förg-Rob.) It is
known that the vector space of Lebesgue integrable solutions of Schilling’s
problem is zero-dimensional for q ∈ (0, 1/(2

√
2)) (see [16] by Y. Peres and

B. Solomyak) and also for those q 6= 1/2 for which the inverse of q is a
Pisot number (see [7] by J. M. Borwein and R. Girgensohn). However, it is
one-dimensional for almost all q ∈ (1/(2

√
2), 1) (see [16] by Y. Peres and

B. Solomyak). Up to now the only explicitly given q’s for which the vector
space of integrable solutions is one-dimensional are 1/ n

√
2 given by K. Baron,

A. Simon and P. Volkmann [3]. If the vector space of Lebesgue integrable
solutions of Schilling’s problem is one-dimensional, then every nonzero func-
tion from this space is either positive or negative (almost everywhere) on
its support (see [12]) and according to [5] by L. Bartłomiejczyk, Schilling’s
problem has also strange solutions; e.g. such that their graph meets every
Borel subset of [−Q,Q]× R with uncountable vertical projection.

Bounded solutions interesting from the physical point of view were first
examined by K. Baron [5]. His result says that for q ∈ (0,

√
2 − 1] the zero

function is the only solution of Schilling’s problem which is bounded in a
neighbourhood of the origin. Generalizations of this result can be found in
[14] and [13] where it is proved among other things that for q ≤ 1/3 the
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zero function is the only solution of Schilling’s problem which is bounded in
a neighbourhood of a point of the set

{
ε

n∑

i=1

qi : n ∈ N ∪ {0,+∞}, ε ∈ {−1, 1}
}

(3)

and no point outside (3) has this property. Note that for q = 1/3 the set (3)
coincides with the interval [−Q,Q].

More details on Schilling’s problem can be found in [11] by R. Girgen-
sohn, in [2, Section 5] by K. Baron and W. Jarczyk and in [17].

In the present paper we are interested in finding parameters q∈(1/3, 1/2)
for which the zero function is the only solution of Schilling’s problem which
is bounded in a neighbourhood of a point of [−Q,Q]. We make the following
definition.

Definition. Let x ∈ [−Q,Q].
We say x ∈ Bq if the zero function is the only solution of Schilling’s

problem which is bounded in a neighbourhood of x.
We say x ∈ Cq if the zero function is the only solution of Schilling’s

problem which is continuous at x.
We say x ∈ Zq if the zero function is the only solution of Schilling’s

problem which vanishes in a neighbourhood of x.

It is easily seen that

Bq ⊂ Cq ⊂ Zq ⊂ [−Q,Q]

for every q ∈ (0, 1).

Main results. For the convenience of the reader we repeat four relevant
facts from [13] without proofs.

Remark 1. Assume f is a solution of Schilling’s problem. If q 6= 1/4,
then f(−Q) = f(Q) = 0. If q < 1/2, then f(0) = 0.

Remark 2. If f is a solution of Schilling’s problem, then so is the
function g : R→ R defined by g(x) = f(−x).

Lemma 1. Assume q ∈ (0, 1/2). If a solution of Schilling’s problem
vanishes either on (−q, 0) or on (0, q), then it vanishes everywhere.

Lemma 2. Assume q ∈ (0, 1/2). If f is a solution of Schilling’s problem,
then

f
(
qN+Mx+ ε

M∑

m=1

qm
)

=
(

1
2

)M( 1
2q

)N+M

f(x)

for every x ∈ (Q− 1, 1−Q) (for every x ∈ [Q− 1, 1−Q] if q 6= 1/4), every
ε ∈ {−1, 1}, and any nonnegative integers M and N .
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We first deal with the number q = (3−
√

5)/2.

Lemma 3. Let q = (3−
√

5)/2. If f is a solution of Schilling’s problem,
then

f(qNx− qN ) =
1
2

(
1
2q

)N
f(x)(4)

for every x ∈ [0, 1−Q] and every positive integer N .

Proof. Observe that q ∈ (1/3, 1/2),

q2 − 3q + 1 = 0 and Q = 1− q.(5)

Fix x0 ∈ [0, 1− Q] and put x = x0 − 1. Since x − 1 < x ≤ −Q, by (1),
(2) and Remark 1 we have

f(qx0 − q) = f(qx) =
1
4q

[f(x− 1) + f(x+ 1) + 2f(x)] =
1
4q
f(x0).

Fix now a positive integer N and assume that (4) holds for every x ∈
[0, 1 − Q]. Fixing x0 ∈ [0, 1 − Q] and putting x = qNx0 − qN we see that
x− 1 < −1 < −Q and x+ 1 ≥ −q + 1 = Q. Consequently,

f(qN+1x0 − qN+1) =
1
4q

[f(x− 1) + f(x+ 1) + 2f(x)]

=
1
2q
f(x) =

1
2q
f(qNx0 − qN ) =

1
2

(
1
2q

)N+1

f(x0).

Lemma 4. Let q = (3−
√

5)/2. If f is a solution of Schilling’s problem,
then for any nonnegative integers k and l satisfying

|k − lq| < Q(6)

there exist a positive real αk,l and a positive integer nk,l such that

f(qnx+ k − lq) = αk,l

(
1
2q

)n
f(x),(7)

f(qnx− qn − k + lq) =
1
2
αk,l

(
1
2q

)n
f(x),(8)

for every integer n ≥ nk,l and every x ∈ [0, 1−Q].

Proof. With the help of (5) we check at once that if nonnegative integers
k and l ≤ 4 satisfy (6), then

(k, l) ∈ {(0, 0), (0, 1), (1, 2), (1, 3), (1, 4), (2, 4)}.
Put

α0,0 = 1, α0,1 = α1,3 = 1/2, α1,2 = α1,4 = 1/4, α2,4 = 1/8,

n0,0 = n0,1 = n1,2 = n1,3 = n1,4 = n2,4 = 4.
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If x ∈ [0, 1 − Q], then using Lemma 2, (5), (1), (2), Remark 1 and
Lemma 3 we find that for every integer n ≥ 2 the following equalities hold:

f(qnx) =
(

1
2q

)n
f(x) = α0,0

(
1
2q

)n
f(x),

f(qnx− q) =
1
2

(
1
2q

)n
f(x) = α0,1

(
1
2q

)n
f(x),

f(qnx+ 1− 2q) = f(qnx− q2 + q)

=
1
4q

[f(qn−1x− q) + f(qn−1x− q + 2)

+ 2f(qn−1x− q + 1)]

=
1
4q
f(qn−1x− q)

=
1
4q

1
2

(
1
2q

)n−1

f(x)

= α1,2

(
1
2q

)n
f(x),

f(qnx+ 1− 3q) = f(q2(qn−2x)− q2) =
1
2

(
1
2q

)2

f(qn−2x)

=
1
2

(
1
2q

)2( 1
2q

)n−2

f(x)

= α1,3

(
1
2q

)n
f(x),

f(qnx+ 1− 4q) = f(qnx− q2 − q) =
(

1
2

)2( 1
2q

)n
f(x)

= α1,4

(
1
2q

)n
f(x),

and if n ≥ 3, then using also the third of the above equalities we get

f(qnx+ 2− 4q) = f(qnx− 2q2 + 2q)

=
1
4q

[f(qn−1x− 2q + 1)

+ f(qn−1x− 2q + 3) + 2f(qn−1x− 2q + 2)]

=
1
4q
f(qn−1x+ 1− 2q)

=
1
4q
α1,2

(
1
2q

)n−1

f(x)

= α2,4

(
1
2q

)n
f(x);
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similarly we obtain equalities which correspond to (8):

f(qnx− qn) =
1
2

(
1
2q

)n
f(x) =

1
2
α0,0

(
1
2q

)n
f(x),

f(qnx− qn + q) =
1
4q

[f(qn−1x− qn−1)

+ f(qn−1x− qn−1 + 2) + 2f(qn−1x− qn−1 + 1)]

=
1
4q
f(qn−1x− qn−1) =

1
4q

1
2

(
1
2q

)n−1

f(x)

=
1
2
α0,1

(
1
2q

)n
f(x),

f(qnx− qn − 1 + 2q) = f(qnx− qn + q2 − q)

=
1
4q

[f(qn−1x− qn−1 + q − 2)

+ f(qn−1x− qn−1 + q)

+ 2f(qn−1x− qn−1 + q − 1)]

=
1
4q
f(qn−1x− qn−1 + q)

=
1
4q

1
2
α0,1

(
1
2q

)n−1

f(x)

=
1
2
α1,2

(
1
2q

)n
f(x),

f(qnx− qn − 1 + 3q) = f(qnx− qn + q2)

=
1
4q

[f(qn−1x− qn−1 + q − 1)

+ f(qn−1x− qn−1 + q + 1)

+ 2f(qn−1x− qn−1 + q)]

=
1
2q
f(qn−1x− qn−1 + q)

=
1
2q

1
2
α0,1

(
1
2q

)n−1

f(x)

=
1
2
α1,3

(
1
2q

)n
f(x),
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f(qnx− qn − 1 + 4q) = f(qnx− qn + q2 + q)

=
1
4q

[f(qn−1x− qn−1 + q)

+ f(qn−1x− qn−1 + q + 2)

+ 2f(qn−1x− qn−1 + q + 1)]

=
1
4q
f(qn−1x− qn−1 + q)

=
1
4q

1
2
α0,1

(
1
2q

)n−1

f(x)

=
1
2
α1,4

(
1
2q

)n
f(x),

f(qnx− qn − 2 + 4q) = f(qnx− qn + 2q2 − 2q)

=
1
4q

[f(qn−1x− qn−1 + 2q − 3)

+ f(qn−1x− qn−1 + 2q − 1)

+ 2f(qn−1x− qn−1 + 2q − 2)]

=
1
4q
f(qn−1x− qn−1 + 2q − 1)

=
1
4q

1
2
α1,2

(
1
2q

)n−1

f(x)

=
1
2
α2,4

(
1
2q

)n
f(x).

Fix now a nonnegative integer L ≥ 5 and assume that for any nonneg-
ative integers k and l < L satisfying (6) there exist a positive real αk,l and
a positive integer nk,l such that (7) and (8) hold for every integer n ≥ nk,l
and every x ∈ [0, 1−Q]. Let k be a nonnegative integer such that

|k − Lq| < Q.

Then

1 < k < L.(9)

Putting

y =
k − Lq
q
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and using (5) we see that |y| < Q/q = Q+ 1 and

y =
(3q − q2)k − Lq

q
= 3k − L− kq.

Applying (5) again we see that y belongs to one of the intervals

(−Q− 1,−Q), (−Q,Q− 1), (Q− 1, 1−Q), (1−Q,Q), (Q,Q+ 1).(10)

It follows that there exists a positive integer N such that for every integer
n ≥ N and x ∈ [0, 1−Q] the number y belongs to one of the intervals (10)
together with the numbers

y + qn−1x, y − qn−1x+ qn−1.

Moreover, making also use of (9) we have: if y > −Q− 1, then

3k − L+ 1 = y + kq + 1 > −Q+ kq = −1 + (k + 1)q ≥ −1 + 3q > 0;

if y > −Q, then

3k − L = y + kq > −Q+ kq > 0;

and if y > 1−Q, then

3k − L− 1 = y + kq − 1 > −Q+ kq > 0.

This allows us to define αk,L and nk,L by

αk,L =





1
2α3k−L+1,k if −Q− 1 < y < −Q,
1
2 [α3k−L+1,k + 2α3k−L,k] if −Q < y < Q− 1,
α3k−L,k if Q− 1 < y < 1−Q,
1
2 [α3k−L−1,k + 2α3k−L,k] if 1−Q < y < Q,
1
2α3k−L−1,k if Q < y < Q+ 1,

nk,L =





max{n3k−L+1,k + 1, N} if −Q− 1 < y < −Q,
max{n3k−L+1,k + 1, n3k−L,k + 1, N} if −Q < y < Q− 1,
max{n3k−L,k + 1, N} if Q− 1 < y < 1−Q,
max{n3k−L−1,k + 1, n3k−L,k + 1, N} if 1−Q < y < Q,
max{n3k−L−1,k + 1, N} if Q < y < Q+ 1.

If n ≥ nk,L is an integer and x ∈ [0, 1−Q], then putting

w = y + qn−1x, z = y − qn−1x+ qn−1,

we have

qw = qnx+ qy = qnx+ k − Lq, qz = −(qnx− qn − k + Lq)



Schilling’s problem 177

and, in consequence,

f(qnx+ k − Lq) = f(qw) =
1
4q

[f(w − 1) + f(w + 1) + 2f(w)]

=





1
4qf(w + 1) if −Q− 1 < w < −Q,
1
4q [f(w + 1) + 2f(w)] if −Q < w < Q− 1,
1
2qf(w) if Q− 1 < w < 1−Q,
1
4q [f(w − 1) + 2f(w)] if 1−Q < w < Q,
1
4qf(w − 1) if Q < w < Q+ 1,

=





1
4qf(w + 1) if −Q− 1 < y < −Q,
1
4q [f(w + 1) + 2f(w)] if −Q < y < Q− 1,
1
2qf(w) if Q− 1 < y < 1−Q,
1
4q [f(w − 1) + 2f(w)] if 1−Q < y < Q,
1
4qf(w − 1) if Q < y < Q+ 1,

= αk,L

(
1
2q

)n
f(x),

and

f(qnx− qn − k + Lq) = f(−qz) =
1
4q

[f(−z − 1) + f(−z + 1) + 2f(−z)]

=





1
4qf(−z − 1) if −Q− 1 < y < −Q,
1
4q [f(−z − 1) + 2f(−z)] if −Q < y < Q− 1,
1
2qf(−z) if Q− 1 < y < 1−Q,
1
4q [f(−z + 1) + 2f(−z)] if 1−Q < y < Q,
1
4qf(−z + 1) if Q < y < Q+ 1,

=
1
2
αk,L

(
1
2q

)n
f(x).

Theorem 1. If q = (3−
√

5)/2, then

Bq = Cq = Zq = [−Q,Q].(11)

Proof. Assume f is a solution of Schilling’s problem which is bounded
in a neighbourhood of x0 ∈ [−Q,Q]. Since Z + qZ is a dense subset of the
real line, we may (and do) assume that x0 is of the form k− lq, where k and
l are integers satisfying (6). This jointly with (5) implies that k · l ≥ 0.

If x ∈ [0, 1 − Q], then either the left-hand side of (7) or the left-hand
side of (8) is bounded with respect to n. From Lemma 4 we then infer that
f vanishes on [0, 1 − Q]. Now by the second part of (5) and Lemma 1 it is
obvious that f vanishes everywhere.
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Putting x = 0 in (7) and using Remarks 1 and 2 we get one of the main
results of [15].

Corollary 1. If q = (3 −
√

5)/2, then every solution of Schilling’s
problem vanishes on Z+ qZ.

In the second part of this paper we will show that in Theorem 1 the
number (3−

√
5)/2 may be replaced by any q ∈ (1/3, 1/2) satisfying

2
K∑

k=1

qk + λqK+1 = 1(12)

with a positive integer K and a λ ∈ {1, 2}.
Lemma 5. If there exist K ∈ N and λ ∈ {1, 2} satisfying (12), then

1−Q 6=
N∑

n=0

εnq
n

for all N ∈ N ∪ {0} and ε0, . . . , εN ∈ {−1, 0, 1}.
Proof. Suppose that there exist N ∈ N∪{0} and ε0, . . . , εN ∈ {−1, 0, 1}

such that

1−Q =
N∑

n=0

εnq
n(13)

and put

x0 =
N∑

n=0

εnq
n.(14)

We conclude from (12) that

1−Q = 2
K∑

n=1

qn + λqK+1 −
∞∑

n=1

qn,

hence

x0 =
K∑

n=1

qn + (λ− 1)qK+1 −
∞∑

n=K+2

qn.(15)

Moreover, q < 1/2 implies
∞∑

n=K+2

qn < qK+1 < qK ,

which jointly with (15) gives
K−1∑

n=1

qn <

K∑

n=1

qn −
∞∑

n=K+2

qn ≤ x0.(16)
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We are now in a position to show

ε0 = 0, N ≥ K, εn = 1 for n ∈ {1, . . . ,K − 1}.(17)

In fact, if ε0 6= 0, then using (13) and (14) we have x0 − ε0 = 1−Q− ε0 ∈
{−Q, 2−Q} which contradicts x0− ε0 ∈ (−Q,Q) resulting from (14). Thus
ε0 = 0. Hence (14) yields

x0 =
N∑

n=1

εnq
n ≤

N∑

n=1

qn.

By (16) we therefore get N ≥ K. Suppose now that εi 6= 1 for some i ∈
{1, . . . ,K − 1}. Then

x0 =
N∑

n=1

εnq
n ≤

i−1∑

n=1

qn +
N∑

n=i+1

qn ≤
K−2∑

n=1

qn +
N∑

n=K

qn <

K−1∑

n=1

qn,

contrary to (16).
From (14) and (17) we have

x0 =
K−1∑

n=1

qn +
N∑

n=K

εnq
n,

which jointly with (15) gives

N−K∑

n=0

εK+nq
n = 1 + (λ− 1)q −

∞∑

n=2

qn.(18)

Consider first the case λ = 2. Then (18) reads

N−K∑

n=0

εK+nq
n = 1 + q −

∞∑

n=2

qn.(19)

If εK 6= 1, then
N−K∑

n=0

εK+nq
n ≤

N−K∑

n=1

εK+nq
n < Q < 1 < 1 + q −

∞∑

n=2

qn.

This contradicts (19), so εK = 1. Thus (19) leads to

N−K−1∑

n=0

εK+1+nq
n = 1−

∞∑

n=1

qn = 1−Q,

i.e.,

1−Q =
N−K∑

n=0

ε′nq
n,(20)
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where ε′n = εK+1+n for n ∈ {0, . . . , N −K − 1} and ε′N−K = 0. Of course

ε′n ∈ {−1, 0, 1} for n ∈ {0, . . . , N −K}.(21)

Assume now that λ = 1. Then (18) reduces to

N−K∑

n=0

εK+nq
n = 1−

∞∑

n=2

qn.(22)

In particular, N 6= K. This and (17) give N ≥ K + 1.
If εK+1 6= −1, then εK+1 − 1 ∈ {−1, 0} and (22) can be written in the

form

εK + (εK+1 − 1)q +
N−K∑

n=2

εK+nq
n = 1−Q,

i.e., in the form (20), where now ε′0 = εK , ε′1 = εK+1− 1 and ε′n = εK+n for
n ∈ {2, . . . , N −K}. Moreover, (21) holds as well.

Finally assume that εK+1 = −1. From (22) we have

εK − q +
N−K∑

n=2

εK+nq
n = 1−

∞∑

n=2

qn > 1− q.

Hence

1 < εK +
N−K∑

n=2

εK+nq
n < εK + 1.

Therefore εK = 1 and equality (22) can also be written in the form

N−K−1∑

n=1

εK+1+nq
n = 1−Q.

In each of the cases considered we have represented 1 − Q in the form
(20) with (21). Consequently, we have shown that if 1−Q is of the form (13),
then N ≥ K and 1−Q is of the form (20) as well. Consequently, N ≥ mK
for every positive integer m, a contradiction.

Lemma 6. Assume that (12) holds for some K ∈ N and λ ∈ {1, 2}. If N
is a positive integer , ε0 ∈ {−1, 1}, ε1, . . . , εN ∈ {−1, 0, 1}, and the number
x0 defined by (14) belongs to [−Q,Q], then N ≥ K and εn = −ε0 for all
n ∈ {1, . . . ,K}. Moreover , if λ = 2, then N ≥ K + 1 and εK+1 6= ε0.

Proof. Combining (14) with (12) we obtain

|x0| =
∣∣∣ε0 +

N∑

n=1

ε0q
n
∣∣∣ ≥ 1−

N∑

n=1

qn = 2
K∑

n=1

qn + λqK+1 −
N∑

n=1

qn.(23)
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Suppose that N < K. Then

|x0| ≥
K∑

n=1

qn +
K∑

n=N+1

qn + λqK+1 >

K∑

n=1

qn + qK > Q,

a contradiction.

Suppose now that εi 6= −ε0 for some i ∈ {1, . . . ,K}. Then

|x0| =
∣∣∣ε0 +

i−1∑

n=1

εnq
n + εiq

i +
N∑

n=i+1

εnq
n
∣∣∣

≥ 1−
i−1∑

n=1

qn −
N∑

n=i+1

qn

= 2
K∑

n=1

qn + λqK+1 −
N∑

n=1, n6=i
qn

≥ 2
K∑

n=1

qn + λqK+1 −
N∑

n=1, n6=K
qn

=
K∑

n=1

qn + λqK+1 + qK −
N∑

n=K+1

qn

>

K∑

n=1

qn + qK+1 + qK −
∞∑

n=K+1

qn

= Q− 2
∞∑

n=K+1

qn + qK+1 + qK .

Moreover, since (12) implies 2q + q2 ≤ 1, we have

2
∞∑

n=K+1

qn = 2
qK+1

1− q ≤ q
K + qK+1.

Hence |x0| > Q, which contradicts our assumption.

Assume now λ = 2. If N = K, then from (23) we get

|x0| ≥
K∑

n=1

qn + 2qK+1 =
K+1∑

n=1

qn + qK+1 > Q,

a contradiction which shows that N ≥ K + 1. It remains to show that
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εK+1 6= ε0. Indeed, if εK+1 = ε0, then

|x0| =
∣∣∣ε0 +

K∑

n=1

εnq
n + ε0q

K+1 +
N∑

n=K+2

εnq
n
∣∣∣

≥ 1−
K∑

n=1

qn + qK+1 −
N∑

n=K+2

qn

= 2
K∑

n=1

qn + 2qK+1 −
K∑

n=1

qn + qK+1 −
N∑

n=K+2

qn

>

K+1∑

n=1

qn + 2qK+1 −
∞∑

n=K+2

qn

>

K+1∑

n=1

qn + qK+1 > Q,

contrary to the assumption.

Lemma 7. Assume q ∈ (0, 1/2). If f is a solution of Schilling’s problem,
then

f
(
qN+1y + 2εqN+1 + ε

N∑

n=1

qn
)

=
(

1
4q

)N+1

f(y + ε)(24)

for all N ∈ N ∪ {0}, ε ∈ {−1, 1}, and |y| ≤ 1.

Proof. Notice that if ε = −1, then y + 2ε ≤ −1, and if ε = 1, then
y + 2ε ≥ 1. This gives

f(qy + 2εq) =
1
4q

[f(y + 2ε− 1) + f(y + 2ε+ 1) + 2f(y + 2ε)]

=
1
4q
f(y + ε)

and (24) remains true for N = 0.
Assuming (24) to hold for a nonnegative integer N , put

z = qN+1y + 2εqN+1 + ε

N∑

n=1

qn

and observe that if ε = −1, then

z = qN+1y − 2qN+1 −
N∑

n=1

qn ≤ −
N+1∑

n=1

qn < 0 < 1−Q,

while if ε = 1, then
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z = qN+1y + 2qN+1 +
N∑

n=1

qn ≥
N+1∑

n=1

qn > 0 > Q− 1.

It follows that

f
(
qN+2y + 2εqN+2 + ε

N+1∑

n=1

qn
)

= f(qz + qε)

=
1
4q

[f(z + ε− 1) + f(z + ε+ 1) + f(z + ε)] =
1
4q
f(z)

=
1
4q
f
(
qN+1y + 2εqN+1 + ε

N∑

n=1

qn
)

=
(

1
4q

)N+2

f(y + ε).

Lemma 8. Assume that (12) holds for some K ∈ N and λ ∈ {1, 2}, n is
a nonnegative integer , ε0, . . . , εN ∈ {−1, 0, 1} and the number x0 defined by
(14) belongs to [−Q,Q]. If f is a solution of Schilling’s problem, then there
exist αε0,...,εN > 0 and a positive integer nε0,...,εN such that

f(qN+nx+ x0) = αε0,...,εN

(
1
2q

)N+n

f(x)(25)

for every integer n ≥ nε0,...,εN and x ∈ [Q− 1, 1−Q].

Proof. If N = 0, then |ε0| = |x0| ≤ Q < 1. Consequently, ε0 = 0 and
x0 = 0. Hence for N = 0 it is enough to put αε0 = 1, nε0 = 1 and use
Lemma 2.

Fix now a nonnegative integer M and assume that for every nonnegative
integer N ≤ M and every ε0, . . . , εN ∈ {−1, 0, 1} such that x0 belongs to
[−Q,Q] there exist αε0,...,εN > 0 and a positive integer nε0,...,εN such that
(25) holds for all n ≥ nε0,...,εN and x ∈ [Q− 1, 1−Q].

Fix ε0, . . . , εM+1 ∈ {−1, 0, 1} and assume that

y0 =
M+1∑

m=0

εmq
m ∈ [−Q,Q].

Consider the following three cases:

(i) ε0 = 0,
(ii) |ε0| = 1 and λ = 1,

(iii) |ε0| = 1 and λ = 2.

In case (i) from Lemma 5 we see that y = q−1y0 belongs to one of the
intervals (10). Then there exists a positive integer L such that for every
n ≥ L and every x ∈ [Q − 1, 1 − Q] the number y belongs to one of the
intervals (10) together with qM+nx+y. Observe also that if y < Q−1, then
ε1 6= 1, and if y > 1−Q, then ε1 6= −1. In particular, we can define
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αε0,...,εM+1 =





1
2αε1+1,ε2,...,εM+1 if −Q− 1 < y < −Q,
1
2 [αε1+1,ε2,...,εM+1 + 2αε1,ε2,...,εM+1 ] if −Q < y < Q− 1,
αε1,...,εM+1 if Q− 1 < y < 1−Q,
1
2 [αε1−1,ε2,...,εM+1 + 2αε1,ε2,...,εM+1 ] if 1−Q < y < Q,
1
2αε1−1,ε2,...,εM+1 if Q < y < Q+ 1,

nε0,...,εM+1 =





max{nε1+1,ε2,...,εM+1 , L} if −Q− 1 < y < −Q,
max{nε1+1,ε2,...,εM+1 , nε1,...,εM+1 , L} if −Q < y < Q− 1,
max{nε1,...,εM+1 , L} if Q− 1 < y < 1−Q,
max{nε1−1,ε2,...,εM+1 , nε1,...,εM+1 , L} if 1−Q < y < Q,
max{nε1−1,ε2,...,εM+1 , L} if Q < y < Q+ 1.

If n ≥ nε0,...,εM+1 and x ∈ [Q − 1, 1 − Q], then putting w = qM+nx + y
we have

f(qM+1+nx+ y0) = f(qw) =
1
4q

[f(w − 1) + f(w + 1) + 2f(w)]

=





1
4qf(w + 1) if −Q− 1 < y < −Q,
1
4q [f(w + 1) + 2f(w)] if −Q < y < Q− 1,
1
2qf(w) if Q− 1 < y < 1−Q,
1
4q [f(w − 1) + 2f(w)] if 1−Q < y < Q,
1
4qf(w − 1) if Q < y < Q+ 1,

= αε0,...,εM+1

(
1
2q

)M+1+n

f(x).

Consider now case (ii). According to Lemma 6,M+1 ≥ K, and εm = −ε0
for m ∈ {1, . . . ,K}. Applying now (12) we see that

y0 = ε0 −
K∑

m=1

ε0q
m +

M+1∑

m=K+1

εmq
m =

K+1∑

m=1

ε0q
m +

M+1∑

m=K+1

εmq
m.(26)

Put

αε0,...,εM+1 =





(1
2

)K+1 if M + 1 = K,
α0,ε0,...,ε0︸ ︷︷ ︸

K

,εK+1+ε0,εK+2,...,εM+1 if M + 1 > K,
εK+1 ∈ {0,−ε0},

(1
2

)K+1
αε0,εK+2,...,εM+1 if M + 1 > K, εK+1 = ε0,

nε0,...,εM+1 =





1 if M + 1 = K,
n0,ε0,...,ε0︸ ︷︷ ︸

K

,εK+1+ε0,εK+2,...,εM+1 if M + 1 > K,
εK+1 ∈ {0,−ε0},

nε0,εK+2,...,εM+1 if M + 1 > K, εK+1 = ε0,

and fix n ≥ nε0,...,εM+1 and x ∈ [Q− 1, 1−Q].



Schilling’s problem 185

If M + 1 = K, then by (26) and Lemma 2 we get

f(qM+1+nx+ y0) = f
(
qK+nx+ ε0

K+1∑

m=1

qm
)

=
(

1
2

)K+1( 1
2q

)K+n

f(x)

= αε0,...,εM+1

(
1
2q

)M+1+n

f(x).

If M+1 > K and εK+1 ∈ {0,−ε0}, then by (26) and the proof of case (i)
we have

f(qM+1+nx+ y0) = α0,ε0,...,ε0,εK+1+ε0,εK+2,...,εM+1

(
1
2q

)M+1+n

f(x)

= αε0,...,εM+1

(
1
2q

)M+1+n

f(x).

If M + 1 > K and εK+1 = ε0, then (26) takes the form

y0 =
K∑

m=1

ε0q
m + 2ε0q

K+1 +
M+1∑

m=K+2

εmq
m,(27)

and, since y0 ∈ [−Q,Q] and Q = qK+1(Q+ 1) +
∑K

m=1 q
m, we have

2ε0 +
M−K∑

m=1

εK+1+mq
m ∈ [−Q− 1, Q+ 1].

Hence, because |ε0| = 1 and the remaining ε’s are from {−1, 0, 1}, we get

ε0 +
M−K∑

m=1

εK+1+mq
m ∈ [−Q,Q].

Applying (27), Lemma 7 and the induction hypothesis for x ∈ [Q−1, 1−Q]
we obtain

f(qM+1+nx+ y0) = f
(
qK+1

(
qM−K+nx+

M−K∑

m=1

εK+1+mq
m
)

(28)

+ 2ε0q
K+1 + ε0

K∑

m=1

qm
)

=
(

1
4q

)K+1

f
(
qM−K+nx+

M−K∑

m=1

εK+1+mq
m + ε0

)

=
(

1
4q

)K+1

αε0,εK+2,...,εM+1

(
1
2q

)M−K+n

f(x)

= αε0,...,εM+1

(
1
2q

)M+1+n

f(x).
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Finally assume (iii) holds. Now Lemma 6 says that M + 1 ≥ K + 1,
εm = −ε0 for all m ∈ {1, . . . ,K} and εK+1 ∈ {0,−ε0}. Applying (12) again,
we obtain

y0 = ε0 −
K∑

m=1

ε0q
m + εK+1q

K+1 +
M+1∑

m=K+2

εmq
m(29)

=
K∑

m=1

ε0q
m + (2ε0 + εK+1)qK+1 +

M+1∑

m=K+2

εmq
m.

Put

αε0,...,εM+1 =





(1
2

)K+1
αε0,εK+2,...,εM+1 if εK+1 = 0,

α0,ε0,...,ε0︸ ︷︷ ︸
K+1

,εK+2,...,εM+1 if εK+1 = −ε0,

nε0,...,εM+1 =





nε0,εK+2,...,εM+1 if εK+1 = 0,
n0,ε0,...,ε0︸ ︷︷ ︸

K+1

,εK+2,...,εM+1 if εK+1 = −ε0,

and fix n ≥ nε0,...,εM+1 and x ∈ [Q− 1, 1−Q].
If εK+1 = 0, then (29) implies (27) and hence also (28).
If εK+1 = −ε0, then using (29) and part (i) we get

f(qM+1+nx+ y0) = α0,ε0,...,ε0,εK+2,...,εM+1

(
1
2q

)M+1+n

f(x)

= αε0,...,εM+1

(
1
2q

)M+1+n

f(x).

Theorem 2. If there exist K ∈ N and λ ∈ {1, 2} satisfying (12), then
(11) holds.

Proof. Assume f is a solution of Schilling’s problem which is bounded
in a neighbourhood of x0 ∈ [−Q,Q]. Since

{ N∑

n=0

εnq
n : ε0, . . . , εN ∈ {−1, 0, 1}, N ∈ N

}
(30)

is dense in [−Q,Q], applying Lemma 8 and arguing as in Theorem 1 we see
that f vanishes on [Q − 1, 1 − Q]. We will show that f vanishes on [0, q),
which jointly with Lemma 1 will complete the proof.

From (12) we get 2q+ q2 ≤ 1, so q−1(1−Q) ≥ Q. If x ∈ (1−Q, q), then
Q ≤ q−1(1−Q) < q−1x and Q− 1 < q−1x− 1 < 0 < 1−Q, whence

f(x) =
1
4q

[f(q−1x− 1) + f(q−1x+ 1) + f(q−1x)] = 0.
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We conclude with the following simple consequence of Lemma 8 and
Remark 1.

Corollary 2. If there exist K ∈ N and λ ∈ {1, 2} satisfying (12), then
every solution of Schilling’s problem vanishes on the set (30).
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