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Asymptotic stability of a system of randomly
connected transformations on Polish spaces

by KATARZYNA HORBACZ (Katowice)

Abstract. We give sufficient conditions for the existence of a matrix of probabilities
[pik]ﬁ\szl such that a system of randomly chosen transformations ITy, k =1,..., N, with
probabilities p;; is asymptotically stable.

0. Introduction. We consider a system of randomly connected trans-
formations on a Polish space Y (see K. Horbacz [2]).

Let Y be a Polish space, i.e. a separable, complete metric space, which
is the phase space of some dynamical system. In the deterministic case the
dynamics can be described in terms of a function I : Ry x Y — Y so that
a point starting from zy € Y at time ¢y is in position II(t — to, o) at time
t > tg.

In this paper we consider a random dynamics. We assume that a point
can move according to one of the transformations I/, : Ry xY — Y from a
set {II1,...,IIn}. The choice of the initial transformations is random and
changes randomly at random moments ¢;. This system is called a system
of randomly connected transformations. The probabilities determining the
frequency with which the maps Il can be chosen are described by means of a
stochastic matrix [pik(:c)]gkzl. We give sufficient conditions for the existence
of a stochastic matrix as above such that the system II, k=1,..., N, with
probabilities p;i is asymptotically stable.

It should be underlined that our stability criterion is valid in a gen-
eral class of metric spaces (Polish spaces) which are not necessarily locally
compact. Thus these results are applicable to infinite-dimensional systems.

In the case when the transformation I1; does not depend on the variable
t and p;; = p; for j = 1,..., N, we obtain an Iterated Function System with
probabilities. In [4] A. Lasota and J. Myjak gave sufficient conditions for the
existence of probabilities {p; : i € I'}, p; : Y — (0, 1], such that an Iterated
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Function System on measures is asymptotically stable. Our method is based
on their ideas.

The organization of the paper is as follows. Section 1 contains some no-
tation and definitions from the theory of Markov operators. In Section 2
we specify the problem to be considered. Sufficient conditions for the exis-
tence of [pik]f\szl such that the corresponding system of randomly connected
trasformations is asymptotically stable are given in Section 3.

1. Preliminaries. Let (Y, g) be a Polish space. Throughout this paper,
K (x,r) stands for the closed ball in Y with center at z and radius r.

We denote by C.(Y), € > 0, the family of all sets C' C Y for which there
exists a finite set {z1,...,2,} C Y such that

C= O K(x;,¢€).

i=1

We denote by B(Y') the o-algebra of all Borel subsets of Y and by M(Y)
the family of all finite Borel measures (nonnegative, o-additive) on Y. By
M;(Y') we denote the subset of M(Y') such that p(Y) =1 for p € My (Y).
The elements of My (Y) will be called distributions. Further

Miig(Y) = {p1 — po  p1, p2 € M(Y)}

is the space of all finite signed measures.

Let © € My (Y). We call © tight if for every € > 0 there exists a compact
set K C Y such that u(K) >1—¢ forall up € 6.

As usual, B(Y') denotes the space of all bounded Borel measurable func-
tions f : Y — R, and C(Y) the subspace of all bounded continuous func-
tions. Both spaces are considered with the supremum norm || - |o.

For f € B(Y) and p € Mg (Y) we write

(fom) =\ f(2) p(da).

We say that a sequence {pin}n>1, pn € M1(Y), converges weakly to a
measure g € My (Y) if

Jim (f, pn) = (f ) for feCY).
In the space Mg (Y) we introduce the Fortet-Mourier norm (see [1, 5])
by setting
ull7 = sup{(f, ) : f € F},

where

F={feCY):|fllo<land |f(x) - f(y)| < o(w,y) for z,y € Y}.
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The space M1 (Y') with the distance ||p1 — p2|| £ is a complete metric space
and the convergence

nh_{%o lin — pll7 =0 for pin, p € Mi(Y)

is equivalent to the weak convergence of {j,}n>1 to p .

For A C Y we denote by diam, A the diameter of the set A, i.e. diam, A =
sup{o(z,y) : z,y € A}.

A linear mapping P : Mg (Y) — Mg (Y) is called a Markov operator
if PIM1(Y)) € My1(Y). A measure p, € M(Y) is called invariant or
stationary for P if Pu, = .. A stationary probability measure is called a
stationary distribution.

We define

wp) ={v e Mi(Y) : Ipn, 3,0, mk — 00, P™pu— v},
r= J ww.
peEM,(Y)

A Markov operator P : Mgig(Y) — Miig(Y) is called a Feller operator
if there is an operator U : B(Y) — B(Y) (dual to P) such that

(1.1) (Uf,pm) =(f,Pu) for f € B(Y), p€ Mgg(Y)
and

(1.2) UfeC(y) for feC(Y).

Setting p = d, in (1.1) we obtain

(1.3) Uf(z)=(f, Péy) for feB(Y), z€Y,

where 6, € M;(Y) is the point (Dirac) measure supported at .
A Markov operator P : Mg;e(Y) — My (Y) is called nonexpansive if

(1.4) [Py — Ppallr < |luy — p2llz - for p, po € My (Y);
semi-concentrating if for every € > 0 there exist C' € C. and « > 0 such that
(1.5) liminf P"u(C) > a  for p e My(Y);

and asymptotically stable if there exists a stationary measure pu, € M;(Y)
such that

(1.6) lim [|P"s— ]|z =0 for € My(Y).
n—oo

2. Formulation of the problem. Let (Y, o) be a Polish space. Suppose
we are given a sequence of continuous transformations II, : Ry x Y —
Y, k=1,...,N, and a sequence of random variables {t, },>1 such that the
increments

(21) Atl :tl —to, ey Atn :tn _tn—h (to :O)
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are independent and have the same density distribution function g¢(t) =
ae™ .
Assume moreover that Borel measurable functions p;,pix : Y — Ry

satisfy
N

pi(x) >0, Zp,;(a:) =1 forzeY
i=1

and
N
pij(x) >0, Zpij(:c)zl forxreY andi,j=1,...,N.
7=1

The action of randomly chosen transformations can be roughly described
as follows. We choose an initial point ¢ € Y. Next we randomly select an
integer ky from {1,..., N} with some probability pg, (z¢). We define

x1 = Hy, (t1, z0).
Next, we select ko with probability pg,x, (1) and define
wy = M, (ta — t1,71)
and so on. Thus
Tp = Hg(ty, —tp_1,Tn—1)
with probability prs(zn—1) if xp—1 = Hi(tn—1 — th-2,Tn—2).
The system of randomly chosen II; with probabilities p;; is denoted by

11, p].
Denote by p,, n=0,1,..., the distribution of z,, i.e.

(2.2) pn(A) = prob(z, € A) for AeB(Y), n=0,1,...

We will give sufficient conditions for the existence of a matrix of proba-
bilities [pix]N._,, pir : Y — (0,1], such that the sequence {ji,, },>1 is weakly
convergent to a unique measure fi..

We change the space Y in order to be able to describe the evolution of
measures under some Markov operator.

Let Y =Y x {1,..., N} with the metric g given by

o((z,1),(y,7)) = o(z,y) + 00(i,j) forx,y €Y, i,j€{l,...,N},

where g¢ is some metric in {1,..., N}.
We define a new sequence of transformations
II.,:Ry xY =Y fork=1,...,N
by

I (t, (z,s)) = (IIk(t, ), k).
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Now, for an initial point xy we randomly select an integer k£ with prob-
ability px(xo) and we define x1 = IIi(t1,20). Next we randomly select
s € {1,..., N} with probability pys(z1), and we define

(z2,8) = Hy(ty — t1, (x1,k))
and so on. Hence
(Tp,8) = II,(Aty, (v,_1,k)), n=23,...,
with probability prs(zn,—1)- _
The evolution of the distributions f,, on the space Y, where
fin(A x {s}) = prob(z,, € A and z,, = II,(Aty,xp—1)), n=12,...,
can be described by a Feller operator P, i.e. jin4+1 = Pli,. It is called the

transition operator for this system. To find the explicit form of P, we look
for the dual operator U. A straightforward calculation shows that

FUL(t, (2, k)))ae™ " prs() dt

NE

(2.3) Uf(x, k)=

©
Il
N

I
WE
@ oY

ULt ), s)ae~tpys() dt o f € B(T).
1
Thus (see [3]), we may find P by the formula

Pu(A) = (14, Pu) = ({Ula, ).

S

This gives

N [e'S)
(2.4) Pu(A) =\ { 1AL (t, (2, k)))ae ™™ dt prs(z) dp(x, k)
s=1y 0
for p € M(Y) and A € B(Y).
The weak convergence of the sequence {ip}n>1 will follow from the
asymptotic stability of the operator P.

To prove the latter we need the following three lemmas. The first was
proved by T. Szarek [6].

LEMMA 2.1. Let P : Mgg(Y) — Mg(Y) be a nonexpansive semi-
concentrating Markov operator. Then

(i) P has an invariant distribution,
(ii) w(p) # O for every p € My(Y),
In [5] A. Lasota and J. A. Yorke proved the following result.

LEMMA 2.2. Let P be a nonexpansive Markov operator. Assume that
for every e > 0 there is a A > 0 with the following property: for every
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pa, 2 € My(Y) there exists a Borel measurable set A with diamz(A) < ¢
and an integer ng such that

(2.5) P, (A) > A fori=1,2.
Then P satisfies
(26) nh—>néo ||PnM1 - PnMZH]: =0 fO’F JGRY LRSS Ml(?)

We also need the following elementary lemma whose proof is left to the
reader.

LEMMA 2.3. Let ¢ : Ry — (5,00), 6 > 0, be a nonincreasing function
and let € > 0. Then there exists a nonincreasing function g : Ry — (0,0 +¢)
such that

d<q(t)<q(t) and |qt)—q(s)| <elt—s| fort,s>0.

3. Main result. We now formulate the main result of this paper.

THEOREM 3.1. Assume that the sequence of transformations Iy : Ry XY
— Y satisfies

(3.1) oI (t, @), Iy (t,y)) < Lre M o(z,y)

forx,ye A,t>0and k=1,...,N, on every bounded set A CY. Assume
moreover that the positive constants a, A and L1 satisfy

(3.2) Ly —Ma<1.
If in addition there is a point x,. € Y such that
(3.3) sup{o(I(t,xs),xs) : t >0} <oo for k=1,...,N,

then there exists a matriz of probabilities p;, : Y — (0, 1] satisfying

N
> pi(z) =1
k=1

forx €Y andi=1,...,N such that the sequence {fin}n>1 defined by (2.2)
1s weakly convergent to a distribution pi.

Proof. For x € Y set
|zl = o(z, 2.
Let 0<d < (1+Aa—Ly)/N.Forie{2,...,N} and r > 0 define
oi(r) = sup{o(IL;(t,x), z) : ||« <7, t >0},

Hi t? 7Hi t?
ri(r) :sup{g( (_)\f) ¢ y)) ) |yl <1 a:#yandtZO},
e Mo(z,y)
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. 5 5 -
qj(r):mm{1+m(r)’1+oi(r)}’ sup() = 0.

Fix € > 0 such that 6 + & < 1. Using Lemma 2.3 for ¢, choose a sequence of
functions g;, ¢ = 2,..., N. Define

N
pa(z)=1-Y g,(|xl) fori=1,...,N,

s=2
pik () = @ (||« fori=1,...,Nand k=2,...,N.

Consider now the resulting system [I1, p] and let P and U be given by (2.4)
and (2.3), respectively.

CLAIM 1. There exists a metric o on Y such that P is nonexpansive
with respect to ok .

Set
2(N —1)Ne

T 1-Lia/lat N

K

Define
for z,y € Y and i,j € {1,..., N}, where
. Jc for i#y,
90(17]) - {0 for i:j,

for ¢ such that cK > 2. Denote by ||- || x the Fortet-Mourier norm in M (Y)

given by |1 — p2|| k = sup{|(f, u1 — p2)| : f € Fk}, where Fg is the set of
functions f such that || f]lo < 1 and

|f(33‘,2) - f(y,y)\ < QK(($7i)a (y,]))

forx,y €Y, 4,5 € {1,...,N}. To prove the nonexpansiveness it is sufficient
to show that U(Fk) C Fk. Fix an f € Fg. Evidently ||U fllo < 1, so we
have to prove that

(3.4) U f(z,1) = Uf(y, )| < Ke((x,1), (y,4))
for x,y € Y and i,j € {1,..., N}. Since g¢(i,7) = c for i # j and K¢ > 2,
the condition (3.4) is satisfied for ¢ # j. For i = j we have

N oo

U f(x,i) = Uf(y, 1) V1T (t ), k) |ae™ |pin(x) — par (y)] dt

+ I
M= 11

0
S ’f(Hk(tvx)v k) - f(Hk(t’y)7 k)|pik:(y)a€_at dt.
0

=
Il

1
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Since f € Fk, we obtain

(3.5) [Uf(z,i) = Uf(y, 1)

N N
Z pzk: pzk: | + Z
k=1 =1

Without any loss of generality we may assume that |z|. < |y|.. For k > 2,
we have

Ko(IIj,(t, ), I (t,y))pix(y)ae”* dt.

OM8

oIk (t, ), i (t, ) < re(lyl)e M o(z,y)

and
_ )
pie(y) = @ (lyl+) < ar(lyls) < TF el
Thus
al I 17 Al 4 At
kZQpik(y)Q( k(tx), Hi(t,y)) < z:: W ri(lyl)e” Y o(z, y)
N
< 25 _/\tg(:c,y) = (N - 1)56_/\tg(az,y).
k=2
Moreover
pa(y) eIy (t, x), M (t,y)) < pir(y)Lie oz, y),
thus
N
> pin()o(ITk(t, x), Ti(t,y)) < (pir(y) L1 + (N — 1)8)e M o[, y)
k=1

< (L1 + (N = 1)8)e M o(x,y)
< Le Mp(x,y)

where L =1+ A/a— (1+ A/a—Ly)/N.
From (3.5) it now follows that

3.6) [Uf(z,i) = Uf(y, ')!

< Z i (@) = pir ()| + K | Lae™ TV o(a,y) dt
0

< Z ’pzk pzk )| + KT’Q(-’E, y)

where r = aL/(a + \). Moreover from Lemma 2.3 we obtain

Ipix(z) — pie (Y)| = [T (|2]+) — @.(Jyl)| < eo(w,y) for k=2,...,N.
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Thus

N
Z |pzk pzk )‘ < |pi1( pzl ‘ + Z |pzk pzk )‘

<23 |a(|z]) = @(lyl)] < 2(N = Deo(z,y).
k=2

From (3.6) we finally obtain
Uf(x,i) =Uf(y, i) <2(N —1eo(z,y) + Kro(z, y),
which reduces to
U f(z,1) = Uf(y,i)| < Ko(z,y)
by the definition of K, and completes the proof of the nonexpansiveness.

Cra II. The operator P is semi-concentrating.

Fix v > 0. Consider the function
V(z,k)=o(x,z.) forzeY andk=1,...,N.

By (2.3) and the definition of V, p;; and o; we have

N oo
Uv Z S o(IT r.)ae” “pps(x) dt

s=10

o) N 5
< I (t " x)dt s _
S SQ(Hl(tax)anl<t7$*))a’eiatpkl(x) dt

0

+ | oIy (t,2.), 2.)ae™ " pra (z) dt + (N — 1)6

0
a
< _
< Ll)\+ ag(a:,a:*) + M + (N —1)6,
where

M = Iy (t, 4), T4 ).
(2 Sup ot ) )

Setting b= M + (N —1)0 and = Lia/(\+ a) , we have

(3.7) UV (z, k) < BV (z, k) +b.
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Now define
my, = (V,l,), n=0,1,...

Consider first the case my < co. Using the recurrence formula fi,+1 = P,
and (3.7) we have

By an induction argument this gives

b
(38) Mp+1 S ﬂ”mg + m
Define
2b
R=———.
(1 =5)

Using the Chebyshev inequality we get
(3.9) P"lig(B) = in(B) >1—~ for n>ng and Jig € M1(Y)

where B = K(z, R) x{1,..., N}. The general case my < oo can be reduced
to the previous one as follows. For given 6 > 0 we choose a bounded Borel
set A C Y such that fig(A) > 1 — 4. Setting

_ m(AND)
vo(D) = Fo(A)

we define a probability measure vy supported on A for which the initial
moment my = (V,1p) is finite. Thus

P"yy(B) >1—~ forn>nyg.
Since fig(D) > fo(D N A), we have
P"1o(B) = fio(A)P"vo(B) = (1= 6)(1 — ).
Choosing ¢ sufficiently small we obtain
P"ip(B) >1—7% for n > ng.

Now we define the families of functions I7 ,’;L '.‘.‘.211 Y - Y and IT Zn '.‘.'.tlél :

Y - Y (t; € Ry, k; € {1,...,N} for i = 1,...,n) by the recurrence
relations
Hlf;ll (y) = Hk1 (t17y)a
4 (y) = I, (ta, 07070 () fory €Y
and
]7211 (ya S) = (Hltgll (y)a kl)a
I (y,s) = (I3 (y), k) for (y,8) €Y.
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Using equation (2.3) n times, we obtain

(3.10) U"f(y,1)

tn—1...t
= > VoV ok WPk UTE ) i, (72750 (1)
Ki,eeey kn R+ R+

x T8 (y,i))ae *Mttind qty dt,,.

By (3_9) there exists a bounded Borel set ' C Y such that for every u €
M (Y) there exists an integer ny = ni(p) for which

(3.11) P"uw(F)>1/2 forn>n;.

Let £ > 0 be such that

(3.12) ro= sup Lpe M <1.
1<k<N

Fix a > 0. We can find an integer m such that
(3.13) ro' diamg F' < a/2.
Fix (y,s) € F and set

N
c= |J K@ ;W) ).

jlw"vjm:]-

Obviously C € C,. By continuity there exists a constant 7, 0 < 7 < ¢, such
that

(3.14) oI5,y (s ), I 25y, 9)) < /2

for all sequences (j1,...,Jm) € {1,..., N} and ty,...,t, € [¢, ¢+ 7]. Set
o=inf{p;j(z):z €Y, i,je{l,...,N}}.

From Lemma 2.3 it follows that ¢ > 0.

We now prove that

1 _ m
(3.15) liminf P"u(C) > = <£7.aea(t+7))
n—00 2\ N
for all p € My(Y). To do this fix u € M;(Y). There exists an integer

ny = nq(p) for which (3.11) holds. Let n = 7+ m for some 7 > n;. Using
(3.10) we get
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(3.16) P u(C)

b 1ot
S S oV ok @)y (T (w)) - piy e (T 7273 (w))
Yk Ry

H,_/

X 10(]7?:1','.',%1 (w,r))a™e~ Mt Ftn) qty  dt,, dP" p(w, ).
Consider the space

Z=Fx[t,t+7]X...x[t,t+ 7]

m times

with the product measure P"y ® Iy ® ... ® Iy, where [; denotes the Lebesgue
N————

measure. Define m times

Zj1-.-jm == {((w,r),tl, e ,tm) € Z:
oUT 5 (y, 8), 53 (w, ) < rgtol(w, ), (y, 5))}
for j1,...,dm € {1,..., N}. Applying (3.1) (m times) we see that for every
(w,r) € F and (ty,...,tm) € [t,t+ 7] there exists a sequence (i1, ..., 0y,) €
{1,...,N}™ such that ((w,r),t1,...,tm) € Ziy. i,,-
Hence we deduce that

(3'17> Z = U ZJI .]’"L

j17~~-7j7n:1
Since B
(PPuelh®...04L)(2)>

7

km) € {1,..., N} such that

l\JI»—A

there exists a sequence (kq, ..

(3.18) (Pu@l @...00)( Zi..5) > 2§Vm.
Combining (3.13) and (3.14) with (3.16) and (3.18) we obtain
(3.19) Pru(C) > o™ \...\ 1c(Tmoh (w,r))

Zky.. km

x aMe~ it Ftm) qp o dt,, AP (w, )

1 _ m
> 5 [%Tae_a(“'ﬂ} ,

which finishes the proof of Claim II.

From Lemma 2.1(i) it follows that the operator P given by (2.4) has an
invariant measure.

Cram III. The operator P satisfies a lower bound condition, namely, for
every 3 > 0 there is A > 0 such that for any py1, s € M1(Y) there exists a
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Borel measurable set A with diamgz A < 8 and an integer ng for which
(3.20) P™up(A)> A  for k=1,2.

Fix # > 0. Since P is semi-concentrating, Lemma 2.1 shows that there
exists a compact set H C Y such that

(3.21) w(H)>4/5 forpel.
Now let p € N be such that
(3.22) ry diamg H < [3/3,

where r¢ is defined by (3.12). For (y,s) € H and (k1,...,kp) € {1,..., N}’
we define the open sets

N
(3.23) Oyo= [) {lwr)eY:

Take (y1,51),---, (Yn, sn) € H such that

h
(3.24) HC U O(ymsz‘)
i=1
and define
h
(3.25) G=|]JOu.s
i=1

By continuity there exists 7 > 0 such that for all (y, s) € H and all sequences
(k1,...,kp) € {1,...,N}¥ we have
— Tyt L1
(326) Q(Hkp,_,kll(ya 8)7H§cp.tﬂk1(y75)) < ﬁ/6
for t; € [t,t+7] ,i=1,...,p.
We show that (3.20) holds with
1 _
A = —[ogvae )P
5% [o7ae ]

Fix pi1, 2 € M1(Y). Set i = (1 + p2)/2. Lemma 2.1 gives w(fi) # 0. Let
{n;},>, be a sequence of integers such that {P"/[i} ., converges to some

measure p, € M;(Y). By the Alexandrov theorem we have
liminf PP E(G) > 1.(G) > p(H) > 4/5.
j—00

Hence there exists ng € N such that

(3.27) P™E(G) > 3/4
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and consequently
P™u,(G)>1/2 fori=1,2.
Thus we get
1
>
— 2h

for some [,k € {1,...,h}. Write for simplicity O1 = Oy, 5,), O2 = O(y,. 51
Now, (3.1) and (3.22) imply

T 1 n
Poul(O(yhsl))Z% and POMZ(O(ykvsk))

(3.28) @(ﬁi{'z (1, 51), ﬁi{f.{.il(yk, si)) < rp diamg H < 3/3

Lt

for some (ip,...,i1)€ {1,..., N}’
Define A = Ay U As, where

A = cl{ﬁﬁi_’::fi (y,8): (y,8) € Oy, tj €[t,t+7] for j € {1,...,p}}
for i = 1,2 (here cl denotes closure in the space Y). Using (3.23) and (3.26)
we check at once that diamz A < e. Proceeding analogously to the proof of
the estimates (3.16) and (3.19) we get
1 - —
PP pi(A) > loyae” TP for i = 1,2,
which finishes the proof of Claim III.

CrAmM IV. The sequence {p, }n>1 defined by (2.2) is weakly convergent
to a distribution fi.

Since by Claim II the operator P given by (2.4) has an invariant measure,
Lemma 2.2 yields

N ([P~ Prpasll =0 for . az € My (Y).

Thus the operator P is asymptotically stable. Hence there exists an invariant
measure [i, such that

lim (F.ji) = (/) for e C(F),
where 41 = Pli,. Hence

(3.29) lim | f(z,i) dfin(2,i) = | f(2,i) di.(z,i)  for f € C(Y).
Y Y

Further, for every f € C(Y') we define the sequence of functions f j: Y -Y,

j=1,...,N, by the formula

z ~_ ) fx) fori=j,
fj(x’l)_{O for ¢ # j.
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It is evident that each f; belongs to C(Y). From (3.29) it follows that

and consequently

nlggozg ©) fin(dz x {5}) =Y | f(2) fulda x {j}).

j=1Y j=1
Setting

= Z,@(A x {j}) for Ae B(Y)

and using the definitions of u, and [, we finally obtain

lim | f(2) pn(dz) = | f(2) pe(dz)  for f € C(Y). m
Y

Y
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