ANNALES POLONICI MATHEMATICI LXXVI.3 (2001)

Asymptotic stability of a system of randomly connected transformations on Polish spaces

by Katarzyna Horbacz (Katowice)

Abstract. We give sufficient conditions for the existence of a matrix of probabilities $[p_{ik}]_{i,k=1}^N$ such that a system of randomly chosen transformations Π_k , $k=1,\ldots,N$, with probabilities p_{ik} is asymptotically stable.

0. Introduction. We consider a system of randomly connected transformations on a Polish space Y (see K. Horbacz [2]).

Let Y be a Polish space, i.e. a separable, complete metric space, which is the phase space of some dynamical system. In the deterministic case the dynamics can be described in terms of a function $\Pi: \mathbb{R}_+ \times Y \to Y$ so that a point starting from $x_0 \in Y$ at time t_0 is in position $\Pi(t - t_0, x_0)$ at time $t > t_0$.

In this paper we consider a random dynamics. We assume that a point can move according to one of the transformations $\Pi_k : \mathbb{R}_+ \times Y \to Y$ from a set $\{\Pi_1, \dots, \Pi_N\}$. The choice of the initial transformations is random and changes randomly at random moments t_k . This system is called a *system of randomly connected transformations*. The probabilities determining the frequency with which the maps Π_k can be chosen are described by means of a stochastic matrix $[p_{ik}(x)]_{i,k=1}^N$. We give sufficient conditions for the existence of a stochastic matrix as above such that the system Π_k , $k = 1, \dots, N$, with probabilities p_{ik} is asymptotically stable.

It should be underlined that our stability criterion is valid in a general class of metric spaces (Polish spaces) which are not necessarily locally compact. Thus these results are applicable to infinite-dimensional systems.

In the case when the transformation Π_k does not depend on the variable t and $p_{ij} = p_i$ for j = 1, ..., N, we obtain an Iterated Function System with probabilities. In [4] A. Lasota and J. Myjak gave sufficient conditions for the existence of probabilities $\{p_i : i \in I\}, p_i : Y \to (0,1]$, such that an Iterated

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A35; Secondary 58F30.

Key words and phrases: dynamical systems, Markov operator, asymptotic stability.

Function System on measures is asymptotically stable. Our method is based on their ideas.

The organization of the paper is as follows. Section 1 contains some notation and definitions from the theory of Markov operators. In Section 2 we specify the problem to be considered. Sufficient conditions for the existence of $[p_{ik}]_{i,k=1}^N$ such that the corresponding system of randomly connected transformations is asymptotically stable are given in Section 3.

1. Preliminaries. Let (Y, ϱ) be a Polish space. Throughout this paper, K(x, r) stands for the closed ball in Y with center at x and radius r.

We denote by $C_{\varepsilon}(Y)$, $\varepsilon > 0$, the family of all sets $C \subset Y$ for which there exists a finite set $\{x_1, \ldots, x_n\} \subset Y$ such that

$$C = \bigcup_{i=1}^{n} K(x_i, \varepsilon).$$

We denote by $\mathcal{B}(Y)$ the σ -algebra of all Borel subsets of Y and by $\mathcal{M}(Y)$ the family of all finite Borel measures (nonnegative, σ -additive) on Y. By $\mathcal{M}_1(Y)$ we denote the subset of $\mathcal{M}(Y)$ such that $\mu(Y) = 1$ for $\mu \in \mathcal{M}_1(Y)$. The elements of $\mathcal{M}_1(Y)$ will be called *distributions*. Further

$$\mathcal{M}_{\text{sig}}(Y) = \{ \mu_1 - \mu_2 : \mu_1, \mu_2 \in \mathcal{M}(Y) \}$$

is the space of all finite signed measures.

Let $\Theta \subset \mathcal{M}_1(Y)$. We call Θ tight if for every $\varepsilon > 0$ there exists a compact set $K \subset Y$ such that $\mu(K) \geq 1 - \varepsilon$ for all $\mu \in \Theta$.

As usual, B(Y) denotes the space of all bounded Borel measurable functions $f: Y \to \mathbb{R}$, and C(Y) the subspace of all bounded continuous functions. Both spaces are considered with the supremum norm $\|\cdot\|_0$.

For $f \in B(Y)$ and $\mu \in \mathcal{M}_{sig}(Y)$ we write

$$\langle f, \mu \rangle = \int_{Y} f(x) \, \mu(dx).$$

We say that a sequence $\{\mu_n\}_{n\geq 1}$, $\mu_n \in \mathcal{M}_1(Y)$, converges weakly to a measure $\mu \in \mathcal{M}_1(Y)$ if

$$\lim_{n \to \infty} \langle f, \mu_n \rangle = \langle f, \mu \rangle \quad \text{ for } f \in C(Y).$$

In the space $\mathcal{M}_{sig}(Y)$ we introduce the Fortet-Mourier norm (see [1, 5]) by setting

$$\|\mu\|_{\mathcal{F}} = \sup\{\langle f, \mu \rangle : f \in \mathcal{F}\},\$$

where

$$\mathcal{F} = \{ f \in C(Y) : ||f||_0 \le 1 \text{ and } |f(x) - f(y)| \le \varrho(x, y) \text{ for } x, y \in Y \}.$$

The space $\mathcal{M}_1(Y)$ with the distance $\|\mu_1 - \mu_2\|_{\mathcal{F}}$ is a complete metric space and the convergence

$$\lim_{n \to \infty} \|\mu_n - \mu\|_{\mathcal{F}} = 0 \quad \text{ for } \mu_n, \mu \in \mathcal{M}_1(Y)$$

is equivalent to the weak convergence of $\{\mu_n\}_{n\geq 1}$ to μ .

For $A \subset Y$ we denote by $\operatorname{diam}_{\varrho} A$ the diameter of the set A, i.e. $\operatorname{diam}_{\varrho} A = \sup \{ \varrho(x,y) : x,y \in A \}$.

A linear mapping $P: \mathcal{M}_{sig}(Y) \to \mathcal{M}_{sig}(Y)$ is called a *Markov operator* if $P(\mathcal{M}_1(Y)) \subset \mathcal{M}_1(Y)$. A measure $\mu_* \in \mathcal{M}(Y)$ is called *invariant* or stationary for P if $P\mu_* = \mu_*$. A stationary probability measure is called a stationary distribution.

We define

$$\omega(\mu) = \{ \nu \in \mathcal{M}_1(Y) : \exists_{\{n_k\}_{k \ge 1}}, \ n_k \to \infty, \ P^{n_k} \mu \to \nu \},$$
$$\Gamma = \bigcup_{\mu \in \mathcal{M}_1(Y)} \omega(\mu).$$

A Markov operator $P: \mathcal{M}_{sig}(Y) \to \mathcal{M}_{sig}(Y)$ is called a *Feller operator* if there is an operator $U: B(Y) \to B(Y)$ (dual to P) such that

(1.1)
$$\langle Uf, \mu \rangle = \langle f, P\mu \rangle \quad \text{for } f \in B(Y), \ \mu \in \mathcal{M}_{\text{sig}}(Y)$$

and

$$(1.2) Uf \in C(Y) for f \in C(Y).$$

Setting $\mu = \delta_x$ in (1.1) we obtain

(1.3)
$$Uf(x) = \langle f, P\delta_x \rangle \quad \text{for } f \in B(Y), \ x \in Y,$$

where $\delta_x \in \mathcal{M}_1(Y)$ is the point (Dirac) measure supported at x.

A Markov operator $P: \mathcal{M}_{sig}(Y) \to \mathcal{M}_{sig}(Y)$ is called *nonexpansive* if

(1.4)
$$||P\mu_1 - P\mu_2||_{\mathcal{F}} \le ||\mu_1 - \mu_2||_{\mathcal{F}} \quad \text{for } \mu_1, \mu_2 \in \mathcal{M}_1(Y);$$

semi-concentrating if for every $\varepsilon > 0$ there exist $C \in \mathcal{C}_{\varepsilon}$ and $\alpha > 0$ such that

(1.5)
$$\liminf_{n \to \infty} P^n \mu(C) > \alpha \quad \text{ for } \mu \in \mathcal{M}_1(Y);$$

and asymptotically stable if there exists a stationary measure $\mu_* \in \mathcal{M}_1(Y)$ such that

(1.6)
$$\lim_{n \to \infty} \|P^n \mu - \mu_*\|_{\mathcal{F}} = 0 \quad \text{for } \mu \in \mathcal{M}_1(Y).$$

2. Formulation of the problem. Let (Y, ϱ) be a Polish space. Suppose we are given a sequence of continuous transformations $\Pi_k : \mathbb{R}_+ \times Y \to Y$, $k = 1, \ldots, N$, and a sequence of random variables $\{t_n\}_{n \geq 1}$ such that the increments

(2.1)
$$\Delta t_1 = t_1 - t_0, \ldots, \Delta t_n = t_n - t_{n-1}, \ldots (t_0 = 0)$$

are independent and have the same density distribution function $g(t) = ae^{-at}$.

Assume moreover that Borel measurable functions $p_i, p_{ik}: Y \to \mathbb{R}_+$ satisfy

$$p_i(x) \ge 0, \quad \sum_{i=1}^{N} p_i(x) = 1 \quad \text{for } x \in Y$$

and

$$p_{ij}(x) \ge 0$$
, $\sum_{j=1}^{N} p_{ij}(x) = 1$ for $x \in Y$ and $i, j = 1, ..., N$.

The action of randomly chosen transformations can be roughly described as follows. We choose an initial point $x_0 \in Y$. Next we randomly select an integer k_1 from $\{1, \ldots, N\}$ with some probability $p_{k_1}(x_0)$. We define

$$x_1 = \Pi_{k_1}(t_1, x_0).$$

Next, we select k_2 with probability $p_{k_1k_2}(x_1)$ and define

$$x_2 = \Pi_{k_2}(t_2 - t_1, x_1)$$

and so on. Thus

$$x_n = \Pi_s(t_n - t_{n-1}, x_{n-1})$$

with probability $p_{ks}(x_{n-1})$ if $x_{n-1} = \Pi_k(t_{n-1} - t_{n-2}, x_{n-2})$.

The system of randomly chosen Π_k with probabilities p_{ik} is denoted by $[\Pi, p]$.

Denote by μ_n , n = 0, 1, ..., the distribution of x_n , i.e.

(2.2)
$$\mu_n(A) = \operatorname{prob}(x_n \in A) \quad \text{for } A \in \mathcal{B}(Y), \ n = 0, 1, \dots$$

We will give sufficient conditions for the existence of a matrix of probabilities $[p_{ik}]_{i,k=1}^N$, $p_{ik}: Y \to (0,1]$, such that the sequence $\{\mu_n\}_{n\geq 1}$ is weakly convergent to a unique measure μ_* .

We change the space Y in order to be able to describe the evolution of measures under some Markov operator.

Let $\overline{Y} = Y \times \{1, \dots, N\}$ with the metric $\overline{\varrho}$ given by

$$\overline{\varrho}((x,i),(y,j)) = \varrho(x,y) + \varrho_0(i,j) \quad \text{for } x,y \in Y, \ i,j \in \{1,\dots,N\},\$$

where ϱ_0 is some metric in $\{1,\ldots,N\}$.

We define a new sequence of transformations

$$\overline{\Pi}_k : \mathbb{R}_+ \times \overline{Y} \to \overline{Y} \quad \text{ for } k = 1, \dots, N$$

by

$$\overline{\Pi}_k(t,(x,s)) = (\Pi_k(t,x),k).$$

Now, for an initial point x_0 we randomly select an integer k with probability $p_k(x_0)$ and we define $x_1 = \Pi_k(t_1, x_0)$. Next we randomly select $s \in \{1, \ldots, N\}$ with probability $p_{ks}(x_1)$, and we define

$$(x_2, s) = \overline{\Pi}_s(t_2 - t_1, (x_1, k))$$

and so on. Hence

$$(x_n, s) = \overline{\Pi}_s(\Delta t_n, (x_{n-1}, k)), \quad n = 2, 3, \dots,$$

with probability $p_{ks}(x_{n-1})$.

The evolution of the distributions $\overline{\mu}_n$ on the space \overline{Y} , where

$$\overline{\mu}_n(A \times \{s\}) = \operatorname{prob}(x_n \in A \text{ and } x_n = \Pi_s(\Delta t_n, x_{n-1})), \quad n = 1, 2, \dots,$$

can be described by a Feller operator P, i.e. $\overline{\mu}_{n+1} = P\overline{\mu}_n$. It is called the transition operator for this system. To find the explicit form of P, we look for the dual operator U. A straightforward calculation shows that

$$(2.3) Uf(x,k) = \sum_{s=1}^{N} \int_{0}^{\infty} f(\overline{\Pi}_{s}(t,(x,k))) ae^{-at} p_{ks}(x) dt$$
$$= \sum_{s=1}^{N} \int_{0}^{\infty} f(\Pi_{s}(t,x),s) ae^{-at} p_{ks}(x) dt \quad \text{for } f \in B(\overline{Y}).$$

Thus (see [3]), we may find P by the formula

$$P\mu(A) = \langle \mathbf{1}_A, P\mu \rangle = \langle U\mathbf{1}_A, \mu \rangle.$$

This gives

(2.4)
$$P\mu(A) = \sum_{s=1}^{N} \int_{\overline{V}} \int_{0}^{\infty} \mathbf{1}_{A}(\overline{\Pi}_{s}(t,(x,k))) ae^{-at} dt \, p_{ks}(x) \, d\mu(x,k)$$

for $\mu \in \mathcal{M}(\overline{Y})$ and $A \in \mathcal{B}(\overline{Y})$.

The weak convergence of the sequence $\{\mu_n\}_{n\geq 1}$ will follow from the asymptotic stability of the operator P.

To prove the latter we need the following three lemmas. The first was proved by T. Szarek [6].

Lemma 2.1. Let $P: \mathcal{M}_{sig}(\overline{Y}) \to \mathcal{M}_{sig}(\overline{Y})$ be a nonexpansive semi-concentrating Markov operator. Then

- (i) P has an invariant distribution,
- (ii) $\omega(\mu) \neq \emptyset$ for every $\mu \in \mathcal{M}_1(\overline{Y})$,
- (iii) $\Gamma = \bigcup_{\mu \in \mathcal{M}_1(Y)} \omega(\mu)$ is tight.

In [5] A. Lasota and J. A. Yorke proved the following result.

Lemma 2.2. Let P be a nonexpansive Markov operator. Assume that for every $\varepsilon > 0$ there is a $\Delta > 0$ with the following property: for every

 $\mu_1, \mu_2 \in \mathcal{M}_1(\overline{Y})$ there exists a Borel measurable set A with $\operatorname{diam}_{\overline{\varrho}}(A) \leq \varepsilon$ and an integer n_0 such that

(2.5)
$$P^{n_0}\mu_i(A) \ge \Delta \quad \text{for } i = 1, 2.$$

Then P satisfies

(2.6)
$$\lim_{n \to \infty} \|P^n \mu_1 - P^n \mu_2\|_{\mathcal{F}} = 0 \quad \text{for } \mu_1, \mu_2 \in \mathcal{M}_1(\overline{Y}).$$

We also need the following elementary lemma whose proof is left to the reader.

LEMMA 2.3. Let $q: \mathbb{R}_+ \to (\delta, \infty)$, $\delta \geq 0$, be a nonincreasing function and let $\varepsilon > 0$. Then there exists a nonincreasing function $\overline{q}: \mathbb{R}_+ \to (\delta, \delta + \varepsilon)$ such that

$$\delta < \overline{q}(t) < q(t)$$
 and $|\overline{q}(t) - \overline{q}(s)| \le \varepsilon |t - s|$ for $t, s \ge 0$.

3. Main result. We now formulate the main result of this paper.

THEOREM 3.1. Assume that the sequence of transformations $\Pi_k : \mathbb{R}_+ \times Y \to Y$ satisfies

(3.1)
$$\varrho(\Pi_k(t,x),\Pi_k(t,y)) \le L_k e^{-\lambda t} \varrho(x,y)$$

for $x, y \in A$, $t \ge 0$ and k = 1, ..., N, on every bounded set $A \subset Y$. Assume moreover that the positive constants a, λ and L_1 satisfy

$$(3.2) L_1 - \lambda/a < 1.$$

If in addition there is a point $x_* \in Y$ such that

(3.3)
$$\sup\{\varrho(\Pi_k(t,x_*),x_*): t \ge 0\} < \infty \quad \text{for } k = 1,\dots,N,$$

then there exists a matrix of probabilities $p_{ik}: Y \to (0,1]$ satisfying

$$\sum_{k=1}^{N} p_{ik}(x) = 1$$

for $x \in Y$ and i = 1, ..., N such that the sequence $\{\mu_n\}_{n \geq 1}$ defined by (2.2) is weakly convergent to a distribution μ_* .

Proof. For $x \in Y$ set

$$|x|_* = \varrho(x, x_*).$$

Let $0 < \delta < (1 + \lambda/a - L_1)/N$. For $i \in \{2, ..., N\}$ and $r \ge 0$ define $\sigma_i(r) = \sup\{\varrho(\Pi_i(t, x), x_*) : |x|_* \le r, \ t \ge 0\},$

$$r_i(r) = \sup \left\{ \frac{\varrho(\Pi_i(t, x), \Pi_i(t, y))}{e^{-\lambda t}\varrho(x, y)} : |x|_*, |y|_* \le r, \ x \ne y \text{ and } t \ge 0 \right\},$$

$$q_i(r) = \min \left\{ \frac{\delta}{1 + r_i(r)}, \frac{\delta}{1 + \sigma_i(r)} \right\}, \quad \sup \emptyset = 0.$$

Fix $\varepsilon > 0$ such that $\delta + \varepsilon < 1$. Using Lemma 2.3 for ε , choose a sequence of functions \overline{q}_i , i = 2, ..., N. Define

$$p_{i1}(x) = 1 - \sum_{s=2}^{N} \overline{q}_s(|x|_*) \quad \text{for } i = 1, \dots, N,$$

$$p_{ik}(x) = \overline{q}_k(|x|_*) \quad \text{for } i = 1, \dots, N \text{ and } k = 2, \dots, N.$$

Consider now the resulting system $[\Pi, p]$ and let P and U be given by (2.4) and (2.3), respectively.

CLAIM I. There exists a metric ϱ_K on \overline{Y} such that P is nonexpansive with respect to ϱ_K .

Set

$$K = \frac{2(N-1)N\varepsilon}{1 - L_1 a/(a+\lambda)}.$$

Define

$$\varrho_K((x,i),(y,j)) = K(\varrho(x,y) + \varrho_0(i,j))$$

for $x, y \in Y$ and $i, j \in \{1, ..., N\}$, where

$$\varrho_0(i,j) = \begin{cases} c & \text{for } i \neq j, \\ 0 & \text{for } i = j, \end{cases}$$

for c such that $cK \geq 2$. Denote by $\|\cdot\|_K$ the Fortet–Mourier norm in $\mathcal{M}_1(\overline{Y})$ given by $\|\mu_1 - \mu_2\|_K = \sup\{|\langle f, \mu_1 - \mu_2 \rangle| : f \in \mathcal{F}_K\}$, where \mathcal{F}_K is the set of functions f such that $\|f\|_0 \leq 1$ and

$$|f(x,i) - f(y,j)| \le \varrho_K((x,i),(y,j))$$

for $x, y \in Y$, $i, j \in \{1, ..., N\}$. To prove the nonexpansiveness it is sufficient to show that $U(\mathcal{F}_K) \subset \mathcal{F}_K$. Fix an $f \in \mathcal{F}_K$. Evidently $||Uf||_0 \leq 1$, so we have to prove that

$$(3.4) |Uf(x,i) - Uf(y,j)| \le K\overline{\varrho}((x,i),(y,j))$$

for $x, y \in Y$ and $i, j \in \{1, ..., N\}$. Since $\varrho_0(i, j) = c$ for $i \neq j$ and $Kc \geq 2$, the condition (3.4) is satisfied for $i \neq j$. For i = j we have

$$|Uf(x,i) - Uf(y,i)| \le \sum_{k=1}^{N} \int_{0}^{\infty} |f(\Pi_{k}(t,x),k)| ae^{-at} |p_{ik}(x) - p_{ik}(y)| dt + \sum_{k=1}^{N} \int_{0}^{\infty} |f(\Pi_{k}(t,x),k) - f(\Pi_{k}(t,y),k)| p_{ik}(y) ae^{-at} dt.$$

Since $f \in \mathcal{F}_K$, we obtain

(3.5)
$$|Uf(x,i) - Uf(y,i)| \le \sum_{k=1}^{N} |p_{ik}(x) - p_{ik}(y)| + \sum_{k=1}^{N} \int_{0}^{\infty} K\varrho(\Pi_k(t,x), \Pi_k(t,y)) p_{ik}(y) a e^{-at} dt.$$

Without any loss of generality we may assume that $|x|_* \leq |y|_*$. For $k \geq 2$, we have

$$\varrho(\Pi_k(t,x),\Pi_k(t,y)) \le r_k(|y|_*)e^{-\lambda t}\varrho(x,y)$$

and

$$p_{ik}(y) = \overline{q}_k(|y|_*) \le q_k(|y|_*) \le \frac{\delta}{1 + r_k(|y|_*)}.$$

Thus

$$\sum_{k=2}^{N} p_{ik}(y) \varrho(\Pi_{k}(t,x), \Pi_{k}(t,y)) \leq \sum_{k=2}^{N} \frac{\delta}{1 + r_{k}(|y|_{*})} r_{k}(|y|_{*}) e^{-\lambda t} \varrho(x,y)$$

$$\leq \sum_{k=2}^{N} \delta e^{-\lambda t} \varrho(x,y) = (N-1) \delta e^{-\lambda t} \varrho(x,y).$$

Moreover

$$p_{i1}(y)\varrho(\Pi_1(t,x),\Pi_1(t,y)) \le p_{i1}(y)L_1e^{-\lambda t}\varrho(x,y),$$

thus

$$\sum_{k=1}^{N} p_{ik}(y)\varrho(\Pi_k(t,x), \Pi_k(t,y)) \le (p_{i1}(y)L_1 + (N-1)\delta)e^{-\lambda t}\varrho(x,y)$$

$$\le (L_1 + (N-1)\delta)e^{-\lambda t}\varrho(x,y)$$

$$\le Le^{-\lambda t}\varrho(x,y)$$

where $L = 1 + \lambda/a - (1 + \lambda/a - L_1)/N$.

From (3.5) it now follows that

$$(3.6) |Uf(x,i) - Uf(y,i)|$$

$$\leq \sum_{k=1}^{N} |p_{ik}(x) - p_{ik}(y)| + K \int_{0}^{\infty} Lae^{-(a+\lambda)t} \varrho(x,y) dt$$

$$\leq \sum_{k=1}^{N} |p_{ik}(x) - p_{ik}(y)| + Kr\varrho(x,y)$$

where $r = aL/(a + \lambda)$. Moreover from Lemma 2.3 we obtain

$$|p_{ik}(x) - p_{ik}(y)| = |\overline{q}_k(|x|_*) - \overline{q}_k(|y|_*)| \le \varepsilon \varrho(x, y)$$
 for $k = 2, \dots, N$.

Thus

$$\sum_{k=1}^{N} |p_{ik}(x) - p_{ik}(y)| \le |p_{i1}(x) - p_{i1}(y)| + \sum_{k=2}^{N} |p_{ik}(x) - p_{ik}(y)|$$

$$\le 2 \sum_{k=2}^{N} |\overline{q}_{k}(|x|_{*}) - \overline{q}_{k}(|y|_{*})| \le 2(N-1)\varepsilon \varrho(x,y).$$

From (3.6) we finally obtain

$$|Uf(x,i) - Uf(y,i)| \le 2(N-1)\varepsilon\varrho(x,y) + Kr\varrho(x,y),$$

which reduces to

$$|Uf(x,i) - Uf(y,i)| \le K\varrho(x,y)$$

by the definition of K, and completes the proof of the nonexpansiveness.

Claim II. The operator P is semi-concentrating.

Fix $\gamma > 0$. Consider the function

$$V(x,k) = \varrho(x,x_*)$$
 for $x \in Y$ and $k = 1, ..., N$.

By (2.3) and the definition of V, p_{ik} and σ_i we have

$$UV(x,k) = \sum_{s=1}^{N} \int_{0}^{\infty} \varrho(\Pi_{s}(t,x), x_{*}) a e^{-at} p_{ks}(x) dt$$

$$\leq \int_{0}^{\infty} \varrho(\Pi_{1}(t,x), x_{*}) a e^{-at} p_{k1}(x) dt + \sum_{s=2}^{N} \sigma_{s}(|x|_{*}) \frac{\delta}{1 + \sigma_{s}(|x|_{*})}$$

$$\leq \int_{0}^{\infty} \varrho(\Pi_{1}(t,x), \Pi_{1}(t,x_{*})) a e^{-at} p_{k1}(x) dt$$

$$+ \int_{0}^{\infty} \varrho(\Pi_{1}(t,x_{*}), x_{*}) a e^{-at} p_{k1}(x) dt + (N-1)\delta$$

$$\leq L_{1} \frac{a}{\lambda + a} \varrho(x, x_{*}) + M + (N-1)\delta,$$

where

$$M = \max_{1 \le k \le N} \sup_{t > 0} \varrho(\Pi_k(t, x_*), x_*).$$

Setting
$$b=M+(N-1)\delta$$
 and $\beta=L_1a/(\lambda+a)$, we have
$$UV(x,k)\leq \beta V(x,k)+b.$$

Now define

$$m_n = \langle V, \overline{\mu}_n \rangle, \quad n = 0, 1, \dots$$

Consider first the case $m_0 < \infty$. Using the recurrence formula $\overline{\mu}_{n+1} = P\overline{\mu}_n$ and (3.7) we have

$$m_{n+1} = \langle V, P\overline{\mu}_n \rangle = \langle UV, \overline{\mu}_n \rangle \le \langle \beta V + b, \overline{\mu}_n \rangle = \beta m_n + b.$$

By an induction argument this gives

(3.8)
$$m_{n+1} \le \beta^n m_0 + \frac{b}{1-\beta}.$$

Define

$$R = \frac{2b}{\gamma(1-\beta)}.$$

Using the Chebyshev inequality we get

(3.9)
$$P^{n}\overline{\mu}_{0}(B) = \overline{\mu}_{n}(B) \ge 1 - \gamma \quad \text{for } n \ge n_{0} \text{ and } \overline{\mu}_{0} \in \mathcal{M}_{1}(\overline{Y})$$

where $B = K(x_*, R) \times \{1, \dots, N\}$. The general case $m_0 \le \infty$ can be reduced to the previous one as follows. For given $\delta > 0$ we choose a bounded Borel set $A \subset \overline{Y}$ such that $\overline{\mu}_0(A) \ge 1 - \delta$. Setting

$$\nu_0(D) = \frac{\overline{\mu}_0(A \cap D)}{\overline{\mu}_0(A)}$$

we define a probability measure ν_0 supported on A for which the initial moment $\overline{m}_0 = \langle V, \nu_0 \rangle$ is finite. Thus

$$P^n \nu_0(B) \ge 1 - \gamma$$
 for $n \ge n_0$.

Since $\overline{\mu}_0(D) \geq \overline{\mu}_0(D \cap A)$, we have

$$P^n\overline{\mu}_0(B) \ge \overline{\mu}_0(A)P^n\nu_0(B) \ge (1-\delta)(1-\gamma).$$

Choosing δ sufficiently small we obtain

$$P^n \overline{\mu}_0(B) \ge 1 - \overline{\gamma}$$
 for $n \ge n_0$.

Now we define the families of functions $\Pi_{k_n...k_1}^{t_n...t_1}: Y \to Y$ and $\overline{\Pi}_{k_n...k_1}^{t_n...t_1}: \overline{Y} \to \overline{Y}$ $(t_i \in \mathbb{R}_+, k_i \in \{1, ..., N\} \text{ for } i = 1, ..., n)$ by the recurrence relations

$$\begin{split} &\Pi_{k_1}^{t_1}(y) = \Pi_{k_1}(t_1, y), \\ &\Pi_{k_n \dots k_1}^{t_n \dots t_1}(y) = \Pi_{k_n}(t_n, \Pi_{k_{n-1} \dots k_1}^{t_{n-1} \dots t_1}(y)) \quad \text{ for } y \in Y \end{split}$$

and

$$\overline{\Pi}_{k_1}^{t_1}(y,s) = (\Pi_{k_1}^{t_1}(y), k_1),
\overline{\Pi}_{k_n \dots k_1}^{t_n \dots t_1}(y,s) = (\Pi_{k_n \dots k_1}^{t_n \dots t_1}(y), k_n) \quad \text{for } (y,s) \in \overline{Y}.$$

Using equation (2.3) n times, we obtain

$$(3.10) \quad U^{n} f(y,i) = \sum_{k_{1},\dots,k_{n}} \underbrace{\int_{\mathbb{R}_{+}} \dots \int_{\mathbb{R}_{+}} p_{ik_{1}}(y) p_{k_{1}k_{2}}(\Pi_{k_{1}}^{t_{1}}(y)) \dots p_{k_{n-1}k_{n}}(\Pi_{k_{n-1}\dots k_{1}}^{t_{n-1}\dots t_{1}}(y))}_{\times f(\overline{\Pi}_{k}^{t_{n}\dots t_{1}}, (y,i)) a^{n} e^{-a(t_{1}+\dots+t_{n})} dt_{1}\dots dt_{n}.$$

By (3.9) there exists a bounded Borel set $F \subset \overline{Y}$ such that for every $\mu \in \mathcal{M}_1(\overline{Y})$ there exists an integer $n_1 = n_1(\mu)$ for which

(3.11)
$$P^n \mu(F) \ge 1/2 \quad \text{for } n \ge n_1.$$

Let $\overline{t} > 0$ be such that

(3.12)
$$r_0 = \sup_{1 \le k \le N} L_k e^{-\lambda \bar{t}} < 1.$$

Fix $\alpha > 0$. We can find an integer m such that

$$(3.13) r_0^m \operatorname{diam}_{\overline{\varrho}} F \le \alpha/2.$$

Fix $(y, s) \in F$ and set

$$C = \bigcup_{j_1, \dots, j_m = 1}^{N} K(\overline{\Pi}_{j_m \dots j_1}^{\overline{t} \dots \overline{t}}(y, s), \alpha).$$

Obviously $C \in \mathcal{C}_{\alpha}$. By continuity there exists a constant τ , $0 < \tau < \overline{t}$, such that

$$(3.14) \overline{\varrho}(\overline{\Pi}_{j_m\dots j_1}^{\overline{t}\dots\overline{t}}(y,s), \overline{\Pi}_{j_m\dots j_1}^{t_m\dots t_1}(y,s)) < \alpha/2$$

for all sequences $(j_1, \ldots, j_m) \in \{1, \ldots, N\}^m$ and $t_1, \ldots, t_m \in [\overline{t}, \overline{t} + \tau]$. Set

$$\sigma = \inf\{p_{ij}(x) : x \in Y, i, j \in \{1, \dots, N\}\}.$$

From Lemma 2.3 it follows that $\sigma > 0$.

We now prove that

(3.15)
$$\liminf_{n \to \infty} P^n \mu(C) \ge \frac{1}{2} \left(\frac{\sigma}{N} \tau a e^{-a(\overline{t} + \tau)} \right)^m$$

for all $\mu \in \mathcal{M}_1(\overline{Y})$. To do this fix $\mu \in \mathcal{M}_1(\overline{Y})$. There exists an integer $n_1 = n_1(\mu)$ for which (3.11) holds. Let $n = \overline{n} + m$ for some $\overline{n} \geq n_1$. Using (3.10) we get

$$(3.16) \quad P^{n}\mu(C) = \int_{\overline{Y}} \sum_{k_{1},\dots,k_{m}} \int_{\mathbb{R}_{+}} \dots \int_{\mathbb{R}_{+}} p_{sk_{1}}(w) p_{k_{1}k_{2}}(\Pi_{k_{1}}^{t_{1}}(w)) \dots p_{k_{m-1}k_{m}}(\Pi_{k_{m-1}\dots k_{1}}^{t_{m-1}\dots t_{1}}(w))$$

$$\times \mathbf{1}_C(\overline{\Pi}_{k,\dots,k_1}^{t_m\dots t_1}(w,r))a^m e^{-a(t_1+\dots+t_m)} dt_1\dots dt_m dP^{\overline{n}}\mu(w,r).$$

Consider the space

$$Z = F \times \underbrace{[\overline{t}, \overline{t} + \tau] \times \ldots \times [\overline{t}, \overline{t} + \tau]}_{m \text{ times}}$$

with the product measure $P^{\overline{n}}\mu \otimes \underbrace{l_1 \otimes \ldots \otimes l_1}_{m \text{ times}}$, where l_1 denotes the Lebesgue measure. Define

$$Z_{j_1...j_m} = \{((w,r), t_1, \dots, t_m) \in Z : \overline{\varrho}(\overline{H}_{j_m...j_1}^{t_m...t_1}(y,s), \overline{H}_{j_m...j_1}^{t_m...t_1}(w,r)) \leq r_0^m \overline{\varrho}((w,r), (y,s)) \}$$

for $j_1, \ldots, j_m \in \{1, \ldots, N\}$. Applying (3.1) (m times) we see that for every $(w, r) \in F$ and $(t_1, \ldots, t_m) \in [\overline{t}, \overline{t} + \tau]$ there exists a sequence $(i_1, \ldots, i_m) \in \{1, \ldots, N\}^m$ such that $((w, r), t_1, \ldots, t_m) \in Z_{i_1 \ldots i_m}$.

Hence we deduce that

(3.17)
$$Z = \bigcup_{j_1, \dots, j_m = 1}^{N} Z_{j_1 \dots j_m}.$$

Since

$$(P^{\overline{n}}\mu \otimes l_1 \otimes \ldots \otimes l_1)(Z) \geq \frac{1}{2}\tau^m,$$

there exists a sequence $(k_1, \ldots, k_m) \in \{1, \ldots, N\}^m$ such that

$$(3.18) (P^{\overline{n}}\mu \otimes l_1 \otimes \ldots \otimes l_1)(Z_{k_1 \ldots k_m}) \geq \frac{\tau^m}{2N^m}.$$

Combining (3.13) and (3.14) with (3.16) and (3.18) we obtain

$$(3.19) P^{n}\mu(C) \geq \sigma^{m} \int_{Z_{k_{1}...k_{m}}} \mathbf{1}_{C}(\overline{H}_{k_{m}...k_{1}}^{t_{m}...t_{1}}(w,r))$$

$$\times a^{m}e^{-a(t_{1}+...+t_{m})}dt_{1}...dt_{m}dP^{\overline{n}}(w,r)$$

$$\geq \frac{1}{2} \left[\frac{\sigma}{N}\tau ae^{-a(\overline{t}+\tau)}\right]^{m},$$

which finishes the proof of Claim II.

From Lemma 2.1(i) it follows that the operator P given by (2.4) has an invariant measure.

CLAIM III. The operator P satisfies a lower bound condition, namely, for every $\beta > 0$ there is $\Delta > 0$ such that for any $\mu_1, \mu_2 \in \mathcal{M}_1(\overline{Y})$ there exists a

Borel measurable set A with diam_{\bar{o}} $A \leq \beta$ and an integer n_0 for which

(3.20)
$$P^{n_0}\mu_k(A) \ge \Delta \quad \text{for } k = 1, 2.$$

Fix $\beta > 0$. Since P is semi-concentrating, Lemma 2.1 shows that there exists a compact set $H \subset \overline{Y}$ such that

Now let $p \in \mathbb{N}$ be such that

$$(3.22) r_0^p \operatorname{diam}_{\overline{\varrho}} H \le \beta/3,$$

where r_0 is defined by (3.12). For $(y, s) \in H$ and $(k_1, \ldots, k_p) \in \{1, \ldots, N\}^p$ we define the open sets

(3.23)
$$O_{(y,s)} = \bigcap_{k_1, \dots, k_p = 1}^{N} \{ (w, r) \in \overline{Y} : \overline{\Pi}_{k_p \dots k_1}^{\overline{t} \dots \overline{t}} ((w, r)) \in K(\overline{\Pi}_{k_p \dots k_1}^{\overline{t} \dots \overline{t}} (y, s), \beta/3) \}.$$

Take $(y_1, s_1), \ldots, (y_h, s_h) \in H$ such that

$$(3.24) H \subset \bigcup_{i=1}^{h} O_{(y_i, s_i)}$$

and define

(3.25)
$$G = \bigcup_{i=1}^{h} O_{(y_i, s_i)}.$$

By continuity there exists $\overline{\gamma} > 0$ such that for all $(y, s) \in H$ and all sequences $(k_1, \ldots, k_p) \in \{1, \ldots, N\}^p$ we have

$$(3.26) \qquad \qquad \overline{\varrho}(\overline{II}_{k_{p}...k_{1}}^{t_{p}...t_{1}}(y,s),\overline{II}_{k_{p}...k_{1}}^{\overline{t}...\overline{t}}(y,s)) < \beta/6$$

for $t_i \in [\overline{t}, \overline{t} + \overline{\gamma}]$, $i = 1, \dots, p$.

We show that (3.20) holds with

$$\Delta = \frac{1}{2h} [\sigma \overline{\gamma} a e^{-a(\overline{t} + \overline{\gamma})}]^p.$$

Fix $\mu_1, \mu_2 \in \mathcal{M}_1(\overline{Y})$. Set $\overline{\mu} = (\mu_1 + \mu_2)/2$. Lemma 2.1 gives $\omega(\overline{\mu}) \neq \emptyset$. Let $\{n_j\}_{j\geq 1}$ be a sequence of integers such that $\{P^{n_j}\overline{\mu}\}_{j\geq 1}$ converges to some measure $\mu_* \in \mathcal{M}_1(\overline{Y})$. By the Alexandrov theorem we have

$$\liminf_{j \to \infty} P^{n_j} \overline{\mu}(G) \ge \mu_*(G) \ge \mu_*(H) \ge 4/5.$$

Hence there exists $n_0 \in \mathbb{N}$ such that

$$(3.27) P^{n_0} \overline{\mu}(G) \ge 3/4$$

and consequently

$$P^{n_0}\mu_i(G) \ge 1/2$$
 for $i = 1, 2$.

Thus we get

$$P^{n_0}\mu_1(O_{(y_l,s_l)}) \ge \frac{1}{2h}$$
 and $P^{n_0}\mu_2(O_{(y_k,s_k)}) \ge \frac{1}{2h}$

for some $l, k \in \{1, ..., h\}$. Write for simplicity $O_1 = O_{(y_l, s_l)}$, $O_2 = O_{(y_k, s_k)}$. Now, (3.1) and (3.22) imply

$$(3.28) \overline{\varrho}(\overline{\Pi}_{i_{p}...i_{1}}^{\overline{t}...\overline{t}}(y_{l},s_{l}),\overline{\Pi}_{i_{p}...i_{1}}^{\overline{t}...\overline{t}}(y_{k},s_{k})) \leq r_{0}^{p}\operatorname{diam}_{\overline{\varrho}}H \leq \beta/3$$

for some $(i_p, ..., i_1) \in \{1, ..., N\}^p$.

Define $A = A_1 \cup A_2$, where

$$A_i = \operatorname{cl}\{\overline{\Pi}_{i_p...i_1}^{t_p...t_1}(y,s) : (y,s) \in O_i, \ t_j \in [\overline{t},\overline{t}+\overline{\gamma}] \text{ for } j \in \{1,\ldots,p\}\}$$

for i=1,2 (here cl denotes closure in the space \overline{Y}). Using (3.23) and (3.26) we check at once that $\dim_{\overline{\varrho}} A \leq \varepsilon$. Proceeding analogously to the proof of the estimates (3.16) and (3.19) we get

$$P^{n_0+p}\mu_i(A) \ge \frac{1}{2h} [\sigma \overline{\gamma} a e^{-a(\overline{t}+\overline{\gamma})}]^p$$
 for $i=1,2,$

which finishes the proof of Claim III.

CLAIM IV. The sequence $\{\mu_n\}_{n\geq 1}$ defined by (2.2) is weakly convergent to a distribution μ_* .

Since by Claim II the operator P given by (2.4) has an invariant measure, Lemma 2.2 yields

$$\lim_{n\to\infty} \|P^n \mu_1 - P^n \mu_2\|_{\mathcal{F}} = 0 \quad \text{ for } \mu_1, \mu_2 \in \mathcal{M}_1(\overline{Y}).$$

Thus the operator P is asymptotically stable. Hence there exists an invariant measure $\overline{\mu}_*$ such that

$$\lim_{n\to\infty} \langle \overline{f}, \overline{\mu}_n \rangle = \langle \overline{f}, \overline{\mu}_* \rangle \quad \text{for } \overline{f} \in C(\overline{Y}),$$

where $\overline{\mu}_{n+1} = P\overline{\mu}_n$. Hence

(3.29)
$$\lim_{n \to \infty} \int_{\overline{Y}} \overline{f}(x,i) \, d\overline{\mu}_n(x,i) = \int_{\overline{Y}} \overline{f}(x,i) \, d\overline{\mu}_*(x,i) \quad \text{for } \overline{f} \in C(\overline{Y}).$$

Further, for every $f \in C(Y)$ we define the sequence of functions $\overline{f}_j : \overline{Y} \to \overline{Y}$, j = 1, ..., N, by the formula

$$\overline{f}_j(x,i) = \begin{cases} f(x) & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases}$$

It is evident that each \overline{f}_j belongs to $C(\overline{Y})$. From (3.29) it follows that

$$\lim_{n\to\infty} \sum_{j=1}^{N} \int_{\overline{Y}} \overline{f}_j(x,i) d\overline{\mu}_n(x,i) = \sum_{j=1}^{N} \int_{\overline{Y}} \overline{f}_j(x,i) d\overline{\mu}_*(x,i),$$

and consequently

$$\lim_{n\to\infty} \sum_{j=1}^{N} \int_{Y} f(x) \,\overline{\mu}_n(dx \times \{j\}) = \sum_{j=1}^{N} \int_{Y} f(x) \,\overline{\mu}_*(dx \times \{j\}).$$

Setting

$$\mu_*(A) = \sum_{j=1}^N \overline{\mu}_*(A \times \{j\}) \quad \text{for } A \in \mathcal{B}(Y)$$

and using the definitions of μ_n and $\overline{\mu}_n$ we finally obtain

$$\lim_{n \to \infty} \int_{Y} f(x) \, \mu_n(dx) = \int_{Y} f(x) \, \mu_*(dx) \quad \text{ for } f \in C(Y). \blacksquare$$

References

- [1] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267–285.
- [2] K. Horbacz, Randomly connected dynamical systems—asymptotic stability, Ann. Polon. Math. 68 (1998), 31–50.
- [3] A. Lasota, From fractals to stochastic differential equations, in: Chaos—the Interplay between Stochastic and Deterministic Behaviour (Karpacz'95), Springer, 1995, 235– 255.
- [4] A. Lasota and J. Myjak, Semifractals on Polish spaces, Bull. Polish Acad. Sci. Math. 46 (1998), 179–196.
- [5] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41–77.
- [6] T. Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247–257.

Institute of Mathematics Silesian University Bankowa 14

40-007 Katowice, Poland

E-mail: horbacz@ux2.math.us.edu.pl

Reçu par la Rédaction le 5.2.2000Révisé le 28.6.2000 (1134)