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Asymptotic stability of a system of randomly
connected transformations on Polish spaces

by Katarzyna Horbacz (Katowice)

Abstract. We give sufficient conditions for the existence of a matrix of probabilities
[pik]Ni,k=1 such that a system of randomly chosen transformations Πk, k = 1, . . . , N , with
probabilities pik is asymptotically stable.

0. Introduction. We consider a system of randomly connected trans-
formations on a Polish space Y (see K. Horbacz [2]).

Let Y be a Polish space, i.e. a separable, complete metric space, which
is the phase space of some dynamical system. In the deterministic case the
dynamics can be described in terms of a function Π : R+ × Y → Y so that
a point starting from x0 ∈ Y at time t0 is in position Π(t− t0, x0) at time
t > t0.

In this paper we consider a random dynamics. We assume that a point
can move according to one of the transformations Πk : R+× Y → Y from a
set {Π1, . . . ,ΠN}. The choice of the initial transformations is random and
changes randomly at random moments tk. This system is called a system
of randomly connected transformations. The probabilities determining the
frequency with which the mapsΠk can be chosen are described by means of a
stochastic matrix [pik(x)]Ni,k=1. We give sufficient conditions for the existence
of a stochastic matrix as above such that the system Πk, k = 1, . . . , N , with
probabilities pik is asymptotically stable.

It should be underlined that our stability criterion is valid in a gen-
eral class of metric spaces (Polish spaces) which are not necessarily locally
compact. Thus these results are applicable to infinite-dimensional systems.

In the case when the transformation Πk does not depend on the variable
t and pij = pi for j = 1, . . . , N , we obtain an Iterated Function System with
probabilities. In [4] A. Lasota and J. Myjak gave sufficient conditions for the
existence of probabilities {pi : i ∈ I}, pi : Y → (0, 1], such that an Iterated
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Function System on measures is asymptotically stable. Our method is based
on their ideas.

The organization of the paper is as follows. Section 1 contains some no-
tation and definitions from the theory of Markov operators. In Section 2
we specify the problem to be considered. Sufficient conditions for the exis-
tence of [pik]Ni,k=1 such that the corresponding system of randomly connected
trasformations is asymptotically stable are given in Section 3.

1. Preliminaries. Let (Y, %) be a Polish space. Throughout this paper,
K(x, r) stands for the closed ball in Y with center at x and radius r.

We denote by Cε(Y ), ε > 0, the family of all sets C ⊂ Y for which there
exists a finite set {x1, . . . , xn} ⊂ Y such that

C =
n⋃

i=1

K(xi, ε).

We denote by B(Y ) the σ-algebra of all Borel subsets of Y and byM(Y )
the family of all finite Borel measures (nonnegative, σ-additive) on Y . By
M1(Y ) we denote the subset ofM(Y ) such that µ(Y ) = 1 for µ ∈ M1(Y ).
The elements of M1(Y ) will be called distributions. Further

Msig(Y ) = {µ1 − µ2 : µ1, µ2 ∈ M(Y )}
is the space of all finite signed measures.

Let Θ ⊂M1(Y ). We call Θ tight if for every ε > 0 there exists a compact
set K ⊂ Y such that µ(K) ≥ 1− ε for all µ ∈ Θ.

As usual, B(Y ) denotes the space of all bounded Borel measurable func-
tions f : Y → R, and C(Y ) the subspace of all bounded continuous func-
tions. Both spaces are considered with the supremum norm ‖ · ‖0.

For f ∈ B(Y ) and µ ∈ Msig(Y ) we write

〈f, µ〉 =
�

Y

f(x)µ(dx).

We say that a sequence {µn}n≥1, µn ∈ M1(Y ), converges weakly to a
measure µ ∈M1(Y ) if

lim
n→∞

〈f, µn〉 = 〈f, µ〉 for f ∈ C(Y ).

In the spaceMsig(Y ) we introduce the Fortet–Mourier norm (see [1, 5])
by setting

‖µ‖F = sup{〈f, µ〉 : f ∈ F},
where

F = {f ∈ C(Y ) : ‖f‖0 ≤ 1 and |f(x)− f(y)| ≤ %(x, y) for x, y ∈ Y }.
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The spaceM1(Y ) with the distance ‖µ1 − µ2‖F is a complete metric space
and the convergence

lim
n→∞

‖µn − µ‖F = 0 for µn, µ ∈ M1(Y )

is equivalent to the weak convergence of {µn}n≥1 to µ .
ForA ⊂ Y we denote by diam%A the diameter of the setA, i.e. diam%A =

sup{%(x, y) : x, y ∈ A}.
A linear mapping P :Msig(Y ) →Msig(Y ) is called a Markov operator

if P (M1(Y )) ⊂ M1(Y ). A measure µ∗ ∈ M(Y ) is called invariant or
stationary for P if Pµ∗ = µ∗. A stationary probability measure is called a
stationary distribution.

We define
ω(µ) = {ν ∈M1(Y ) : ∃{nk}k≥1

, nk →∞, Pnkµ→ ν},
Γ =

⋃

µ∈M1(Y )

ω(µ).

A Markov operator P : Msig(Y ) →Msig(Y ) is called a Feller operator
if there is an operator U : B(Y )→ B(Y ) (dual to P ) such that

(1.1) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(Y ), µ ∈ Msig(Y )

and

(1.2) Uf ∈ C(Y ) for f ∈ C(Y ).

Setting µ = δx in (1.1) we obtain

(1.3) Uf(x) = 〈f, Pδx〉 for f ∈ B(Y ), x ∈ Y,
where δx ∈M1(Y ) is the point (Dirac) measure supported at x.

A Markov operator P :Msig(Y )→Msig(Y ) is called nonexpansive if

(1.4) ‖Pµ1 − Pµ2‖F ≤ ‖µ1 − µ2‖F for µ1, µ2 ∈ M1(Y );

semi-concentrating if for every ε > 0 there exist C ∈ Cε and α > 0 such that

(1.5) lim inf
n→∞

Pnµ(C) > α for µ ∈ M1(Y );

and asymptotically stable if there exists a stationary measure µ∗ ∈ M1(Y )
such that

(1.6) lim
n→∞

‖Pnµ− µ∗‖F = 0 for µ ∈ M1(Y ).

2. Formulation of the problem. Let (Y, %) be a Polish space. Suppose
we are given a sequence of continuous transformations Πk : R+ × Y →
Y, k = 1, . . . , N , and a sequence of random variables {tn}n≥1 such that the
increments

(2.1) ∆t1 = t1 − t0, . . . , ∆tn = tn − tn−1, . . . (t0 = 0)
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are independent and have the same density distribution function g(t) =
ae−at.

Assume moreover that Borel measurable functions pi, pik : Y → R+

satisfy

pi(x) ≥ 0,
N∑

i=1

pi(x) = 1 for x ∈ Y

and

pij(x) ≥ 0,
N∑

j=1

pij(x) = 1 for x ∈ Y and i, j = 1, . . . , N.

The action of randomly chosen transformations can be roughly described
as follows. We choose an initial point x0 ∈ Y . Next we randomly select an
integer k1 from {1, . . . , N} with some probability pk1(x0). We define

x1 = Πk1(t1, x0).

Next, we select k2 with probability pk1k2(x1) and define

x2 = Πk2(t2 − t1, x1)

and so on. Thus
xn = Πs(tn − tn−1, xn−1)

with probability pks(xn−1) if xn−1 = Πk(tn−1 − tn−2, xn−2).
The system of randomly chosen Πk with probabilities pik is denoted by

[Π, p].
Denote by µn, n = 0, 1, . . . , the distribution of xn, i.e.

(2.2) µn(A) = prob(xn ∈ A) for A ∈ B(Y ), n = 0, 1, . . .

We will give sufficient conditions for the existence of a matrix of proba-
bilities [pik]Ni,k=1, pik : Y → (0, 1], such that the sequence {µn}n≥1 is weakly
convergent to a unique measure µ∗.

We change the space Y in order to be able to describe the evolution of
measures under some Markov operator.

Let Y = Y × {1, . . . , N} with the metric % given by

%((x, i), (y, j)) = %(x, y) + %0(i, j) for x, y ∈ Y, i, j ∈ {1, . . . , N},
where %0 is some metric in {1, . . . , N}.

We define a new sequence of transformations

Πk : R+ × Y → Y for k = 1, . . . , N

by
Πk(t, (x, s)) = (Πk(t, x), k).
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Now, for an initial point x0 we randomly select an integer k with prob-
ability pk(x0) and we define x1 = Πk(t1, x0). Next we randomly select
s ∈ {1, . . . , N} with probability pks(x1), and we define

(x2, s) = Πs(t2 − t1, (x1, k))

and so on. Hence

(xn, s) = Πs(∆tn, (xn−1, k)), n = 2, 3, . . . ,

with probability pks(xn−1).
The evolution of the distributions µn on the space Y , where

µn(A× {s}) = prob(xn ∈ A and xn = Πs(∆tn, xn−1)), n = 1, 2, . . . ,

can be described by a Feller operator P , i.e. µn+1 = Pµn. It is called the
transition operator for this system. To find the explicit form of P , we look
for the dual operator U . A straightforward calculation shows that

Uf(x, k) =
N∑

s=1

∞�

0

f(Πs(t, (x, k)))ae−atpks(x) dt(2.3)

=
N∑

s=1

∞�

0

f(Πs(t, x), s)ae−atpks(x) dt for f ∈ B(Y ).

Thus (see [3]), we may find P by the formula

Pµ(A) = 〈1A, Pµ〉 = 〈U1A, µ〉.
This gives

(2.4) Pµ(A) =
N∑

s=1

�

Y

∞�

0

1A(Πs(t, (x, k)))ae−at dt pks(x) dµ(x, k)

for µ ∈ M(Y ) and A ∈ B(Y ).
The weak convergence of the sequence {µn}n≥1 will follow from the

asymptotic stability of the operator P .
To prove the latter we need the following three lemmas. The first was

proved by T. Szarek [6].

Lemma 2.1. Let P : Msig(Y ) → Msig(Y ) be a nonexpansive semi-
concentrating Markov operator. Then

(i) P has an invariant distribution,
(ii) ω(µ) 6= ∅ for every µ ∈ M1(Y ),

(iii) Γ =
⋃
µ∈M1(Y ) ω(µ) is tight.

In [5] A. Lasota and J. A. Yorke proved the following result.

Lemma 2.2. Let P be a nonexpansive Markov operator. Assume that
for every ε > 0 there is a ∆ > 0 with the following property : for every
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µ1, µ2 ∈ M1(Y ) there exists a Borel measurable set A with diam%(A) ≤ ε
and an integer n0 such that

(2.5) Pn0µi(A) ≥ ∆ for i = 1, 2.

Then P satisfies

(2.6) lim
n→∞

‖Pnµ1 − Pnµ2‖F = 0 for µ1, µ2 ∈M1(Y ).

We also need the following elementary lemma whose proof is left to the
reader.

Lemma 2.3. Let q : R+ → (δ,∞), δ ≥ 0, be a nonincreasing function
and let ε > 0. Then there exists a nonincreasing function q : R+ → (δ, δ+ε)
such that

δ < q(t) < q(t) and |q(t)− q(s)| ≤ ε|t− s| for t, s ≥ 0.

3. Main result. We now formulate the main result of this paper.

Theorem 3.1. Assume that the sequence of transformations Πk : R+×Y
→ Y satisfies

(3.1) %(Πk(t, x),Πk(t, y)) ≤ Lke−λt%(x, y)

for x, y ∈ A, t ≥ 0 and k = 1, . . . , N , on every bounded set A ⊂ Y . Assume
moreover that the positive constants a, λ and L1 satisfy

(3.2) L1 − λ/a < 1.

If in addition there is a point x∗ ∈ Y such that

(3.3) sup{%(Πk(t, x∗), x∗) : t ≥ 0} <∞ for k = 1, . . . , N,

then there exists a matrix of probabilities pik : Y → (0, 1] satisfying
N∑

k=1

pik(x) = 1

for x ∈ Y and i = 1, . . . , N such that the sequence {µn}n≥1 defined by (2.2)
is weakly convergent to a distribution µ∗.

Proof. For x ∈ Y set
|x|∗ = %(x, x∗).

Let 0 < δ < (1 + λ/a− L1)/N. For i ∈ {2, . . . , N} and r ≥ 0 define

σi(r) = sup{%(Πi(t, x), x∗) : |x|∗ ≤ r, t ≥ 0},

ri(r) = sup
{
%(Πi(t, x),Πi(t, y))

e−λt%(x, y)
: |x|∗, |y|∗ ≤ r, x 6= y and t ≥ 0

}
,
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qi(r) = min
{

δ

1 + ri(r)
,

δ

1 + σi(r)

}
, sup ∅ = 0.

Fix ε > 0 such that δ + ε < 1. Using Lemma 2.3 for ε, choose a sequence of
functions qi, i = 2, . . . , N . Define

pi1(x) = 1−
N∑

s=2

qs(|x|∗) for i = 1, . . . , N,

pik(x) = qk(|x|∗) for i = 1, . . . , N and k = 2, . . . , N.

Consider now the resulting system [Π, p] and let P and U be given by (2.4)
and (2.3), respectively.

Claim I. There exists a metric %K on Y such that P is nonexpansive
with respect to %K .

Set

K =
2(N − 1)Nε

1− L1a/(a+ λ)
.

Define
%K((x, i), (y, j)) = K(%(x, y) + %0(i, j))

for x, y ∈ Y and i, j ∈ {1, . . . , N}, where

%0(i, j) =
{
c for i 6= j,
0 for i = j,

for c such that cK ≥ 2. Denote by ‖·‖K the Fortet–Mourier norm inM1(Y )
given by ‖µ1 − µ2‖K = sup{|〈f, µ1− µ2〉| : f ∈ FK}, where FK is the set of
functions f such that ‖f‖0 ≤ 1 and

|f(x, i)− f(y, j)| ≤ %K((x, i), (y, j))

for x, y ∈ Y , i, j ∈ {1, . . . , N}. To prove the nonexpansiveness it is sufficient
to show that U(FK) ⊂ FK . Fix an f ∈ FK . Evidently ‖Uf‖0 ≤ 1, so we
have to prove that

(3.4) |Uf(x, i)− Uf(y, j)| ≤ K%((x, i), (y, j))

for x, y ∈ Y and i, j ∈ {1, . . . , N}. Since %0(i, j) = c for i 6= j and Kc ≥ 2,
the condition (3.4) is satisfied for i 6= j. For i = j we have

|Uf(x, i)− Uf(y, i)| ≤
N∑

k=1

∞�

0

|f(Πk(t, x), k)|ae−at|pik(x)− pik(y)| dt

+
N∑

k=1

∞�

0

|f(Πk(t, x), k)− f(Πk(t, y), k)|pik(y)ae−at dt.
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Since f ∈ FK , we obtain

(3.5) |Uf(x, i)− Uf(y, i)|

≤
N∑

k=1

|pik(x)− pik(y)|+
N∑

k=1

∞�

0

K%(Πk(t, x),Πk(t, y))pik(y)ae−at dt.

Without any loss of generality we may assume that |x|∗ ≤ |y|∗. For k ≥ 2,
we have

%(Πk(t, x),Πk(t, y)) ≤ rk(|y|∗)e−λt%(x, y)

and

pik(y) = qk(|y|∗) ≤ qk(|y|∗) ≤
δ

1 + rk(|y|∗)
.

Thus
N∑

k=2

pik(y)%(Πk(t, x),Πk(t, y)) ≤
N∑

k=2

δ

1 + rk(|y|∗)
rk(|y|∗)e−λt%(x, y)

≤
N∑

k=2

δe−λt%(x, y) = (N − 1)δe−λt%(x, y).

Moreover

pi1(y)%(Π1(t, x),Π1(t, y)) ≤ pi1(y)L1e
−λt%(x, y),

thus
N∑

k=1

pik(y)%(Πk(t, x),Πk(t, y)) ≤ (pi1(y)L1 + (N − 1)δ)e−λt%(x, y)

≤ (L1 + (N − 1)δ)e−λt%(x, y)

≤ Le−λt%(x, y)

where L = 1 + λ/a− (1 + λ/a− L1)/N .
From (3.5) it now follows that

(3.6) |Uf(x, i)− Uf(y, i)|

≤
N∑

k=1

|pik(x)− pik(y)|+K

∞�

0

Lae−(a+λ)t%(x, y) dt

≤
N∑

k=1

|pik(x)− pik(y)|+Kr%(x, y)

where r = aL/(a+ λ). Moreover from Lemma 2.3 we obtain

|pik(x)− pik(y)| = |qk(|x|∗)− qk(|y|∗)| ≤ ε%(x, y) for k = 2, . . . , N.
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Thus
N∑

k=1

|pik(x)− pik(y)| ≤ |pi1(x)− pi1(y)|+
N∑

k=2

|pik(x)− pik(y)|

≤ 2
N∑

k=2

|qk(|x|∗)− qk(|y|∗)| ≤ 2(N − 1)ε%(x, y).

From (3.6) we finally obtain

|Uf(x, i)− Uf(y, i)| ≤ 2(N − 1)ε%(x, y) +Kr%(x, y),

which reduces to

|Uf(x, i)− Uf(y, i)| ≤ K%(x, y)

by the definition of K, and completes the proof of the nonexpansiveness.

Claim II. The operator P is semi-concentrating.

Fix γ > 0. Consider the function

V (x, k) = %(x, x∗) for x ∈ Y and k = 1, . . . , N.

By (2.3) and the definition of V, pik and σi we have

UV (x, k) =
N∑

s=1

∞�

0

%(Πs(t, x), x∗)ae−atpks(x) dt

≤
∞�

0

%(Π1(t, x), x∗)ae−atpk1(x) dt+
N∑

s=2

σs(|x|∗)
δ

1 + σs(|x|∗)

≤
∞�

0

%(Π1(t, x),Π1(t, x∗))ae−atpk1(x) dt

+
∞�

0

%(Π1(t, x∗), x∗)ae−atpk1(x) dt+ (N − 1)δ

≤ L1
a

λ+ a
%(x, x∗) +M + (N − 1)δ,

where

M = max
1≤k≤N

sup
t≥0

%(Πk(t, x∗), x∗).

Setting b = M + (N − 1)δ and β = L1a/(λ+ a) , we have

(3.7) UV (x, k) ≤ βV (x, k) + b.
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Now define
mn = 〈V, µn〉, n = 0, 1, . . .

Consider first the case m0 <∞. Using the recurrence formula µn+1 = Pµn
and (3.7) we have

mn+1 = 〈V, Pµn〉 = 〈UV, µn〉 ≤ 〈βV + b, µn〉 = βmn + b.

By an induction argument this gives

(3.8) mn+1 ≤ βnm0 +
b

1− β .

Define

R =
2b

γ(1− β)
.

Using the Chebyshev inequality we get

(3.9) Pnµ0(B) = µn(B) ≥ 1− γ for n ≥ n0 and µ0 ∈ M1(Y )

where B = K(x∗, R)×{1, . . . , N}. The general case m0 ≤ ∞ can be reduced
to the previous one as follows. For given δ > 0 we choose a bounded Borel
set A ⊂ Y such that µ0(A) ≥ 1− δ. Setting

ν0(D) =
µ0(A ∩D)
µ0(A)

we define a probability measure ν0 supported on A for which the initial
moment m0 = 〈V, ν0〉 is finite. Thus

Pnν0(B) ≥ 1− γ for n ≥ n0.

Since µ0(D) ≥ µ0(D ∩ A), we have

Pnµ0(B) ≥ µ0(A)Pnν0(B) ≥ (1− δ)(1− γ).

Choosing δ sufficiently small we obtain

Pnµ0(B) ≥ 1− γ for n ≥ n0.

Now we define the families of functions Π tn...t1
kn...k1

: Y → Y and Πtn...t1
kn...k1

:
Y → Y (ti ∈ R+, ki ∈ {1, . . . , N} for i = 1, . . . , n) by the recurrence
relations

Πt1
k1

(y) = Πk1(t1, y),

Πtn...t1
kn...k1

(y) = Πkn(tn,Π
tn−1...t1
kn−1...k1

(y)) for y ∈ Y
and

Πt1
k1

(y, s) = (Πt1
k1

(y), k1),

Πtn...t1
kn...k1

(y, s) = (Πtn...t1
kn...k1

(y), kn) for (y, s) ∈ Y .
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Using equation (2.3) n times, we obtain

(3.10) Unf(y, i)

=
∑

k1,...,kn

�

R+

. . .
�

R+︸ ︷︷ ︸
n

pik1(y)pk1k2(Πt1
k1

(y)) . . . pkn−1kn(Πtn−1...t1
kn−1...k1

(y))

× f(Πtn...t1
kn...k1

(y, i))ane−a(t1+...+tn) dt1 . . . dtn.

By (3.9) there exists a bounded Borel set F ⊂ Y such that for every µ ∈
M1(Y ) there exists an integer n1 = n1(µ) for which

(3.11) Pnµ(F ) ≥ 1/2 for n ≥ n1.

Let t > 0 be such that

(3.12) r0 = sup
1≤k≤N

Lke
−λt < 1.

Fix α > 0. We can find an integer m such that

(3.13) rm0 diam% F ≤ α/2.

Fix (y, s) ∈ F and set

C =
N⋃

j1,...,jm=1

K(Πt...t
jm...j1(y, s), α).

Obviously C ∈ Cα. By continuity there exists a constant τ , 0 < τ < t, such
that

(3.14) %(Πt...t
jm...j1(y, s),Πtm...t1

jm...j1
(y, s)) < α/2

for all sequences (j1, . . . , jm) ∈ {1, . . . , N}m and t1, . . . , tm ∈ [ t, t+ τ ]. Set

σ = inf{pij(x) : x ∈ Y, i, j ∈ {1, . . . , N}}.

From Lemma 2.3 it follows that σ > 0.
We now prove that

(3.15) lim inf
n→∞

Pnµ(C) ≥ 1
2

(
σ

N
τae−a(t+τ)

)m

for all µ ∈ M1(Y ). To do this fix µ ∈ M1(Y ). There exists an integer
n1 = n1(µ) for which (3.11) holds. Let n = n + m for some n ≥ n1. Using
(3.10) we get
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(3.16) Pnµ(C)

=
�

Y

∑

k1,...,km

�

R+

. . .
�

R+︸ ︷︷ ︸
m

psk1(w)pk1k2(Πt1
k1

(w)) . . . pkm−1km(Πtm−1...t1
km−1...k1

(w))

× 1C(Πtm...t1
km...k1

(w, r))ame−a(t1+...+tm) dt1 . . . dtm dP
nµ(w, r).

Consider the space

Z = F × [ t, t+ τ ]× . . .× [ t, t+ τ ]︸ ︷︷ ︸
m times

with the product measure Pnµ ⊗ l1 ⊗ . . .⊗ l1︸ ︷︷ ︸
m times

, where l1 denotes the Lebesgue
measure. Define

Zj1...jm = {((w, r), t1, . . . , tm) ∈ Z :

%(Πtm...t1
jm...j1

(y, s),Πtm...t1
jm...j1

(w, r)) ≤ rm0 %((w, r), (y, s))}
for j1, . . . , jm ∈ {1, . . . , N}. Applying (3.1) (m times) we see that for every
(w, r) ∈ F and (t1, . . . , tm) ∈ [ t, t+ τ ] there exists a sequence (i1, . . . , im) ∈
{1, . . . , N}m such that ((w, r), t1, . . . , tm) ∈ Zi1...im .

Hence we deduce that

(3.17) Z =
N⋃

j1,...,jm=1

Zj1...jm .

Since
(Pnµ⊗ l1 ⊗ . . .⊗ l1)(Z) ≥ 1

2τ
m,

there exists a sequence (k1, . . . , km) ∈ {1, . . . , N}m such that

(3.18) (Pnµ⊗ l1 ⊗ . . .⊗ l1)(Zk1...km) ≥ τm

2Nm
.

Combining (3.13) and (3.14) with (3.16) and (3.18) we obtain

Pnµ(C) ≥ σm
�
. . .

�

Zk1...km

1C(Πtm...t1
km...k1

(w, r))(3.19)

× ame−a(t1+...+tm)dt1 . . . dtm dP
n(w, r)

≥ 1
2

[
σ

N
τae−a(t+τ)

]m
,

which finishes the proof of Claim II.

From Lemma 2.1(i) it follows that the operator P given by (2.4) has an
invariant measure.

Claim III. The operator P satisfies a lower bound condition, namely , for
every β > 0 there is ∆ > 0 such that for any µ1, µ2 ∈ M1(Y ) there exists a
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Borel measurable set A with diam%A ≤ β and an integer n0 for which

(3.20) Pn0µk(A) ≥ ∆ for k = 1, 2.

Fix β > 0. Since P is semi-concentrating, Lemma 2.1 shows that there
exists a compact set H ⊂ Y such that

(3.21) µ(H) ≥ 4/5 for µ ∈ Γ.
Now let p ∈ N be such that

(3.22) rp0 diam%H ≤ β/3,
where r0 is defined by (3.12). For (y, s) ∈ H and (k1, . . . , kp) ∈ {1, . . . , N}p
we define the open sets

(3.23) O(y,s) =
N⋂

k1,...,kp=1

{(w, r) ∈ Y :

Πt...t
kp...k1

((w, r)) ∈ K(Πt...t
kp...k1

(y, s), β/3)}.

Take (y1, s1), . . . , (yh, sh) ∈ H such that

(3.24) H ⊂
h⋃

i=1

O(yi,si)

and define

(3.25) G =
h⋃

i=1

O(yi,si).

By continuity there exists γ > 0 such that for all (y, s) ∈ H and all sequences
(k1, . . . , kp) ∈ {1, . . . , N}p we have

(3.26) %(Πtp...t1
kp...k1

(y, s),Πt...t
kp...k1

(y, s)) < β/6

for ti ∈ [ t, t+ γ] , i = 1, . . . , p.
We show that (3.20) holds with

∆ =
1

2h
[σγae−a(t+γ)]p.

Fix µ1, µ2 ∈ M1(Y ). Set µ = (µ1 + µ2)/2. Lemma 2.1 gives ω(µ) 6= ∅. Let
{nj}j≥1 be a sequence of integers such that {P njµ}j≥1 converges to some

measure µ∗ ∈ M1(Y ). By the Alexandrov theorem we have

lim inf
j→∞

Pnjµ(G) ≥ µ∗(G) ≥ µ∗(H) ≥ 4/5.

Hence there exists n0 ∈ N such that

(3.27) Pn0µ(G) ≥ 3/4
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and consequently
Pn0µi(G) ≥ 1/2 for i = 1, 2.

Thus we get

Pn0µ1(O(yl,sl)) ≥
1

2h
and Pn0µ2(O(yk,sk)) ≥

1
2h

for some l, k ∈ {1, . . . , h}. Write for simplicity O1 = O(yl,sl), O2 = O(yk,sk).
Now, (3.1) and (3.22) imply

(3.28) %(Πt...t
ip...i1(yl, sl),Πt...t

ip...i1(yk, sk)) ≤ rp0 diam%H ≤ β/3

for some (ip, . . . , i1)∈ {1, . . . , N}p.
Define A = A1 ∪ A2, where

Ai = cl{Πtp...t1
ip...i1

(y, s) : (y, s) ∈ Oi, tj ∈ [ t, t+ γ] for j ∈ {1, . . . , p}}

for i = 1, 2 (here cl denotes closure in the space Y ). Using (3.23) and (3.26)
we check at once that diam%A ≤ ε. Proceeding analogously to the proof of
the estimates (3.16) and (3.19) we get

Pn0+pµi(A) ≥ 1
2h

[σγae−a(t+γ)]p for i = 1, 2,

which finishes the proof of Claim III.

Claim IV. The sequence {µn}n≥1 defined by (2.2) is weakly convergent
to a distribution µ∗.

Since by Claim II the operator P given by (2.4) has an invariant measure,
Lemma 2.2 yields

lim
n→∞

‖Pnµ1 − Pnµ2‖F = 0 for µ1, µ2 ∈ M1(Y ).

Thus the operator P is asymptotically stable. Hence there exists an invariant
measure µ∗ such that

lim
n→∞

〈f, µn〉 = 〈f, µ∗〉 for f ∈ C(Y ),

where µn+1 = Pµn. Hence

(3.29) lim
n→∞

�

Y

f(x, i) dµn(x, i) =
�

Y

f(x, i) dµ∗(x, i) for f ∈ C(Y ).

Further, for every f ∈ C(Y ) we define the sequence of functions f j : Y → Y ,
j = 1, . . . , N , by the formula

f j(x, i) =
{
f(x) for i = j,
0 for i 6= j.
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It is evident that each f j belongs to C(Y ). From (3.29) it follows that

lim
n→∞

N∑

j=1

�

Y

f j(x, i) dµn(x, i) =
N∑

j=1

�

Y

f j(x, i) dµ∗(x, i),

and consequently

lim
n→∞

N∑

j=1

�

Y

f(x)µn(dx× {j}) =
N∑

j=1

�

Y

f(x)µ∗(dx× {j}).

Setting

µ∗(A) =
N∑

j=1

µ∗(A× {j}) for A ∈ B(Y )

and using the definitions of µn and µn we finally obtain

lim
n→∞

�

Y

f(x)µn(dx) =
�

Y

f(x)µ∗(dx) for f ∈ C(Y ).
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