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A monotone method for constructing extremal solutions
to second order periodic boundary value problems

by Daqing Jiang (Changchun) and Lingbin Kong (Anda)

Abstract. We describe a constructive method which yields two monotone sequences
that converge uniformly to extremal solutions to the periodic boundary value problem
u′′(t) = f(t, u(t), u′(t)), u(0) = u(2π), u′(0) = u′(2π) in the presence of a lower solution
α(t) and an upper solution β(t) with β(t) ≤ α(t).

1. Introduction and main result. This paper is concerned with the
following second order periodic boundary value problem:

(1.1)
{
u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π],
u(0) = u(2π), u′(0) = u′(2π),

where f(t, u, v) is a Carathéodory function.
A function f : [0, 2π] × R2 → R is said to be a Carathéodory function

if f(t, ·, ·) is continuous for a.e. t ∈ [0, 2π], f(·, u, v) is measurable for any
(u, v) ∈ R2 and for each constant r > 0 there exists a function hr(t) ∈
L1[0, 2π] such that |f(t, u, v)| ≤ hr(t) for a.e. t ∈ [0, 2π] with max{|u|, |v|}
≤ r.

We say that α, β ∈ W 2,1[0, 2π] are lower and upper solutions to (1.1),
respectively, if they satisfy

(1.2)
{
α′′(t) ≥ f(t, α(t), α′(t)) for a.e. t ∈ [0, 2π],
α(0) = α(2π), α′(0) ≥ α′(2π),

and

(1.3)
{
β′′(t) ≤ f(t, β(t), β′(t)) for a.e. t ∈ [0, 2π],
β(0) = β(2π), β′(0) ≤ β′(2π).

We call a function u ∈W 2,1[0, 2π] a solution of the problem (1.1) if it is
both a lower and an upper solution of (1.1).
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Under the classical assumption that α(t) ≤ β(t), a number of authors
have studied the existence of solutions of second order periodic boundary
value problem by means of the method of lower and upper solutions or the
monotone iterative technique (see [1, 3–7, 9–12, 17, 19]). Only a few have
dealt with the case where α(t), β(t) satisfy the opposite ordering condition
β(t) ≤ α(t) (see [2, 8, 13–16, 19]), and if β(t) ≤ α(t) the monotone method
is not valid in general (see [2, 8, 13, 14, 16]). Recently, Wang [18] has inves-
tigated a special case of (1.1) (where f(t, u, v) = −kv − g(t, u) and g(t, u)
is nonincreasing with respect to u) in the presence of a lower solution α(t)
and an upper solution β(t) with β(t) ≤ α(t). Moreover, Rach̊unková [15]
has recently proved that the problem (1.1) has at least one solution u(t) in
the case β(t) ≤ α(t). However, the proof in [15] was not constructive, it did
not guarantee that u(t) satisfies β(t) ≤ u(t) ≤ α(t).

The purpose of this paper is to prove the existence of solutions of (1.1)
under the assumption that there exist a lower solution α(t) and an upper
solution β(t) of (1.1) with β(t) ≤ α(t). We will develop the monotone iter-
ative method to approximate the extremal solution of (1.1) and prove that
the solution u(t) of (1.1) satisfies β(t) ≤ u(t) ≤ α(t). Our result extends and
complements those in [15, 18].

The following hypotheses are adopted throughout this paper:

(H1) For given α, β ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π] there exists
0 < L < |M | such that

(M − L)(v2 − v1) ≤ f(t, u, v1)− f(t, u, v2) ≤ (M + L)(v2 − v1)

for a.e. t ∈ [0, 2π] whenever β(t) ≤ u ≤ α(t), v2 ≥ v1, v1, v2 ∈ R.

(H2) The inequality f(t, u2, v) − f(t, u1, v) ≥ 0 holds for a.e. t ∈ [0, 2π]
whenever β(t) ≤ u1 ≤ u2 ≤ α(t), v ∈ R.

The main result of this paper is as follows.

Theorem 1. Assume that there exists a lower solution α(t) and an up-
per solution β(t) of (1.1) such that β(t) ≤ α(t) on [0, 2π], and f(t, u, v) is
a Carathéodory function satisfying hypotheses (H1), (H2). Then there exist
two sequences {βj} and {αj}, nondecreasing and nonincreasing , respectively ,
with β0 = β and α0 = α, which converge uniformly and monotonically to the
extremal solution to the problem (1.1) in the interval [β, α] := {u ∈ C[0, 2π] :
β(t) ≤ u(t) ≤ α(t) on [0, 2π]}.

2. Maximum-minimum principle. To prove the validity of the mono-
tone iterative technique, we present the following maximum-minimum prin-
ciple.
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Lemma 2. Let y ∈W 1,1[0, 2π] satisfy

(2.1)
{
y′(t) +My(t) + L|y(t)| ≥ 0 for a.e. t ∈ [0, 2π],
y(0) ≥ y(2π),

where |M | > L ≥ 0. Then My(t) ≥ 0 on [0, 2π], i.e. mint∈[0,2π] y(t) ≥ 0
when M > 0 and maxt∈[0,2π] y(t) ≤ 0 when M < 0.

Proof. Let M > 0. Suppose to the contrary that y(t) < 0 for some
t ∈ [0, 2π]. It is enough to consider the following three cases.

Case (i): y(t) < 0 on [0, 2π]. In this case, we have y′(t) ≥ (L−M)y(t)
> 0 for a.e. t ∈ [0, 2π], and hence y(0) < y(2π), which contradicts the fact
that y(0) ≥ y(2π).

Case (ii): y(2π) ≥ 0 and y(t) < 0 for some t ∈ [0, 2π]. Since y(0) ≥
y(2π) ≥ 0, there exists an interval (a, b), 0 ≤ a < b ≤ 2π, such that y(t) < 0
in (a, b) and y(a) = y(b) = 0. Therefore, we have y′(t) ≥ (L −M)y(t) > 0
for a.e. t ∈ (a, b), and hence y(a) < y(b), which is a contradiction.

Case (iii): y(2π) < 0 and y(t) ≥ 0 for some t < 2π. In this case, there
exists a point t0 ∈ [0, 2π] such that y(t) < 0 in (t0, 2π], and y(t0) = 0. As
a result, we have y′(t) ≥ (L −M)y(t) > 0 for a.e. t ∈ (t0, 2π], and hence
y(t0) < y(2π) < 0, which is also a contradiction. This shows that y(t) ≥ 0
on [0, 2π] when M > 0.

In very much the same way, we can prove that y(t) ≤ 0 on [0, 2π] when
M < 0. The proof of the lemma is complete.

Lemma 2 is an improvement and extension of Lemma 1.2.2 of [7].

3. Proof of Theorem 1. We first consider the case M > 0. For each
given η ∈ [β, α], we study the following periodic boundary value problem:

(3.1)
{
u′′(t) +Mu′(t) = g(t, η(t), u′(t)), t ∈ [0, 2π],
u(0) = η(2π), u′(0) = u′(2π),

where

(3.2) g(t, η(t), u′(t)) := f(t, η(t), u′(t)) +Mu′(t).

Let u be a solution of (3.1) and v(t) = u′(t). We get

(3.3)
{
v′(t) +Mv(t) = g(t, η(t), v(t)), t ∈ [0, 2π],
v(0) = v(2π).

It is easy to see that the above problem is equivalent to the integral
equation

(3.4) v(t) =
2π�

0

G(t, s)g(s, η(s), v(s)) ds,
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where

G(t, s) =





eM(2π+s−t)

e2Mπ − 1
, 0 ≤ s ≤ t ≤ 2π,

eM(s−t)

e2Mπ − 1
, 0 ≤ t ≤ s ≤ 2π.

Let v be a solution of the problem (3.4). Then

(3.5) u(t) := η(2π) +
t�

0

v(s) ds

is certainly a solution to the problem (3.1).

Lemma 3. For each fixed η ∈ [β, α], the problem (3.1) has a unique
solution u ∈W 2,1[0, 2π].

Proof. Define the mapping T : C[0, 2π]→ C[0, 2π] by

(Tv)(t) :=
2π�

0

G(t, s)g(s, η(s), v(s)) ds.

By (H1) we have

|g(t, η, v2)− g(t, η, v1)| ≤ L|v2 − v1|
for any v1, v2 ∈ C[0, 2π] whenever β(t) ≤ η ≤ α(t), and hence

|(Tv2)(t)− (Tv1)(t)| ≤
2π�

0

|G(t, s)| · |g(s, η(s), v2(s))− g(s, η(s), v1(s))| ds

≤ L‖v2 − v1‖
2π�

0

|G(t, s)| ds =
L

M
‖v2 − v1‖,

i.e.

‖Tv2 − Tv1‖ ≤
L

M
‖v2 − v1‖,

where ‖u‖ = max{|u(t)| : 0 ≤ t ≤ 2π}; this shows that T is a contraction
mapping. The Banach contraction principle tells us that T has a unique
fixed point v in C[0, 2π] and v satisfies the integral equation (3.4). Therefore,
the function u defined by (3.5) is a unique solution of (3.1). The proof is
complete.

We define a mapping Φ : [β, α]→W 2,1[0, 2π] by setting (Φη)(t) := u(t),
where u(t) is the unique solution of the problem (3.1) with given η ∈ [β, α].
Then it follows by Lemma 3 that the mapping Φ is well defined.

Concerning the mapping Φ, the following statement holds:

Lemma 4. The mapping Φ has the following properties:

(i) β(t) ≤ (Φβ)(t), (Φα)(t) ≤ α(t) on [0, 2π];
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(ii) Φ is increasing on [β, α], namely , (Φη1)(t) ≤ (Φη2)(t) on [0, 2π] when
η1, η2 ∈ [β, α] and η1(t) ≤ η2(t) on [0, 2π].

Proof. (i) Set β1(t) := (Φβ)(t), x(t) := β1(t)− β(t), and y(t) := x′(t). It
follows from (H1) and (1.3) that





x′′(t) +Mx′(t) ≥ g(t, β(t), β′1(t))− g(t, β(t), β′(t))

≥ −L|x′(t)| for a.e. t ∈ [0, 2π],
x(0) = 0, x′(0) ≥ x′(2π),

i.e. {
y′(t) +My(t) + L|y(t)| ≥ 0 for a.e. t ∈ [0, 2π],
y(0) ≥ y(2π).

Applying Lemma 2 we conclude that My(t) ≥ 0 on [0, 2π]. Thus we have
x(t) = � t0 y(s) ds ≥ 0 for t ∈ [0, 2π]. That is, β(t) ≤ (Φβ)(t) on [0, 2π].
A similar argument shows that (Φα)(t) ≤ α(t) on [0, 2π]. This proves (i).

(ii) Let uj(t) := (Φηj)(t), j = 1, 2, x(t) := u2(t) − u1(t), y(t) := x′(t),
where η1, η2 ∈ [β, α] and η1(t) ≤ η2(t) on [0, 2π]. By (H1), (H2) we have





x′′(t) +Mx′(t) = g(t, η2(t), u′2(t))− g(t, η1(t), u′1(t))

≥ −L|x′(t)| for a.e. t ∈ [0, 2π],
x(0) ≥ 0, x′(0) = x′(2π),

i.e. {
y′(t) +My(t) + L|y(t)| ≥ 0 for a.e. t ∈ [0, 2π],
y(0) = y(2π).

Applying Lemma 2 as before, we get y(t) ≥ 0 on [0, 2π]. Thus we have
x(t) = x(0) + � t0 y(s) ds ≥ 0 for t ∈ [0, 2π]. This shows that (Φη2)(t) ≥
(Φη1)(t) when η1, η2 ∈ [β, α] and η2(t) ≥ η1(t) on [0, 2π], which proves (ii).

We now consider the case M < 0. For each given η ∈ [β, α], we study
the following second order periodic boundary value problem:

(3.6)
{
u′′(t) +Mu′(t) = g(t, η(t), u′(t)),
u(2π) = η(0), u′(0) = u′(2π),

where η ∈ [β, α] and g(t, u, v) is given by (3.2). As in Lemma 3 it can be
proved that

(3.7) u(t) = η(0)−
2π�

t

v(s) ds

is a solution of the problem (3.6), where v(s) is a solution of (3.4) for M < 0.
Let y(t) := x′(t), x(t) := β1(t)−β(t), β1(t) := (Φβ)(t). Then as in Lemma 4
we can easily prove y(t) ≤ 0 on [0, 2π] and so x(t) = x(2π)− � 2π

t
y(s) ds ≥ 0.

Thus, all results of Lemma 4 still hold when M < 0.
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Let us define sequences {βj} and {αj} such that

βj+1(t) := (Φβj)(t), αj+1(t) := (Φαj)(t)

with β0 = β, α0 = α. From Lemma 4, we conclude that {βj} is nondecreasing
and {αj} nonincreasing. It is clear that {αj}∞j=1 and {βj}∞j=1 are bounded,
and hence there exists an r > 0 such that |αj | ≤ r and |βj | ≤ r for all j.
Since

α′j+1(t) =
2π�

0

G(t, s)g(s, αj(s), α′j+1(s)) ds

=
2π�

0

G(t, s)[g(s, αj(s), α′j+1(s))− g(s, αj(s), 0) + g(s, αj(s), 0)] ds,

by (H1) we have

‖α′j+1‖ ≤ max
t∈[0,2π]

2π�

0

|G(t, s)|[|g(s, αj(s), α′j+1(s))− g(s, αj(s), 0)|

+ |f(s, αj(s), 0)|] ds

≤ L‖α′j+1‖ max
t∈[0,2π]

2π�

0

|G(t, s)| ds+ max
t∈[0,2π]

2π�

0

|G(t, s)|hr(s) ds

≤ L

|M |‖α
′
j+1‖+

max{e2Mπ, 1}
|e2Mπ − 1|

2π�

0

hr(s) ds,

and hence

‖α′j+1‖ ≤
|M |max{e2Mπ, 1}

(|M | − L)|e2Mπ − 1|

2π�

0

hr(s) ds.

This shows that {α′j}∞j=1 is bounded. Analogously, {β′j}∞j=1 is also bounded.
It then follows by a standard argument (see e.g. [7]) that

lim
j→∞

βj(t) =: β∗(t), lim
j→∞

αj(t) =: α∗(t)

uniformly and monotonically on [0, 2π]. From the integral representations
(3.4), (3.5) and (3.7), we conclude that β∗(t) and α∗(t) are both solutions
of the problem (3.1) or (3.6), and hence they are solutions of (1.1).

Furthermore, if u ∈ [β, α] is a solution to the problem (1.1) then, by
induction, βj(t) ≤ u(t) ≤ αj(t) on [0, 2π], j = 0, 1, 2, . . . , and hence u ∈
[β∗, α∗]. This shows that β∗(t) and α∗(t) are respectively minimal and max-
imal solutions of the problem (1.1) in the segment [β, α].

This completes the proof of Theorem 1.

Remark. The hypothesis (H1) can be replaced by the following condi-
tion:
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(H∗1) For given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], there exist
0 < A < B such that

A(v2 − v1) ≤ f(t, u, v1)− f(t, u, v2) ≤ B(v2 − v1) or

−B(v2 − v1) ≤ f(t, u, v1)− f(t, u, v2) ≤ −A(v2 − v1)

whenever β(t) ≤ u ≤ α(t), v2 ≥ v1, v1, v2 ∈ R.
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