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The complex Monge—Ampere equation for
complex homogeneous functions in C"

by RAFAL Czyz (Krakow)

Abstract. We prove some existence results for the complex Monge-Ampére equation
(ddu)™ = gdX in C™ in a certain class of homogeneous functions in C", i.e. we show that
for some nonnegative complex homogeneous functions g there exists a plurisubharmonic
complex homogeneous solution u of the complex Monge—Ampére equation.

0. Introduction. In this paper we consider the following problem: for
which nonnegative complex homogeneous functions g in C™ does there ex-
ist a complex homogeneous plurisubharmonic function « in C" solving the
complex Monge—Ampére equation

(0.1) (dd°u)™ = gdA,

where d)\ denotes the Lebesgue measure in C™?

The problem of the existence of global solutions of the complex Monge—
Ampere equations in C™ has been treated only in a few cases. In [K1]
Kotodziej showed some sufficient conditions which guarantee that a finite
measure 1 in C™ admits a solution of the equation (dd°u)™ = du in the class
L (for definition of £ see Section 1). Uniqueness, up to an additive con-
stant, in this case was proved by Bedford and Taylor in [BT2]. In [J] Jeune
proved that a perturbation of the Lebesgue measure in C" by a smooth func-
tion which, together with all its derivatives, tends to 0 fast enough at infinity,
admits a smooth solution of the complex Monge-Ampere equation. Monn
[M] proved the existence of a solution of the complex Monge-Ampere equa-
tion in the class of radial functions in C", i.e. for every nonnegative radial
function g in C™ there exists a radial, entire plurisubharmonic function satis-
fying (0.1). Kotodziej [K3] showed that for given two entire locally bounded
plurisubharmonic functions v and w satisfying w < v, (dd“v)™ < (dd°w)™
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and lim|| o (v(2) — w(z)) = 0, one can solve the Monge-Ampere equation
for any measure p such that

(ddv)" < dp < (dd°w)".

Furthermore, the solution u is unique among functions satisfying w < u < v.

In this paper we prove the existence of a solution of the complex Monge—
Ampere equation for a certain class of homogeneous functions in C". In the
complex plane every complex homogeneous function is of the form c|z|®
and a simple computation shows that the function u(z) = ﬁ\z\"‘“ is
a solution of dd“u = |z|“d\, where o > 0. For this reason in this paper we
always assume that n > 2.

In the first section we prove that for any nonnegative, smooth (out-
side the origin), complex homogeneous function g of order of homogeneity
n(t—2), where 0 < t < 1/(n — 1), there exists a smooth (outside the origin)
solution u of the equation (0.1). We also establish a connection, which plays
a major role in proving the theorem mentioned before, between the existence
of a solution of an equation of complex Monge—Ampere type in the complex
projective space P! and the existence of a solution of the Monge-Ampere
equation in the class of homogeneous functions in C". Namely, we show that
a solution in P"~! allows us to construct a corresponding solution in C".
The existence of a solution for some equations of Monge-Ampere type on
special compact Kahler manifolds was proved by Ben Abdesselem [BA].

At the end of Section 1 we prove that, under an additional assumption
on g, it is possible to solve (0.1) with a weaker restriction on the order of
homogeneity.

In the second section we prove the existence of a solution of (0.1) for g
locally bounded. To prove this we need a generalization of Tian’s theorem
from [T]. Tian solved the following equation on compact Kéhler manifolds
(M,w) with a positive first Chern class:

(0.2) (dd°p 4 w)" = ety

where dd°¢p +w > 0, f is C*° smooth and 0 < ¢t < 1. For ¢t = 1 this equation
provides the existence of a Kéhler—Einstein metric on M. We prove that
(0.2) has a solution for every bounded function f and 0 <t < a(M), where
a(M) is a global holomorphic invariant on M introduced by Tian.

1. Existence of a solution for smooth data

DEFINITION 1.1. We say that a function f : C* — R is complex homo-
geneous of order o where v > 0 if

fA2) = |\“f(z) forall A € Cand z € C".
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We denote by H&(C™) the space of all complex homogeneous functions of
order o in C".

Sometimes we call a complex homogeneous function simply a homoge-
neous function.

We denote (see [K1]) by £ the set of all entire plurisubharmonic func-
tions v in C™ for which there exist constants C; and Cs (depending on u)
such that

C1 +1log(1 + |z]) < u(z) < Ca +log(1 + [2]).

We denote by H, the set of all entire plurisubharmonic functions « in
C™ which satisfy

u(Az) =log|A| +u(z) forall A € Cand z € C".
It is well known that H4 C £4 and
| (ddew) = (2m)"  forallue L.
Cn

Now we recall that for a function from H,; much more is known about
its Monge—Ampeére measure.

PROPOSITION 1.2. If w € Hy then (dd°u)™ = (2m)"d¢, where dq is the
Dirac measure at zero.

Proof. First we prove our proposition for smooth functions. Suppose
that u € H4 NC°°(C™\ {0}). Then taking the 9?/0z;0%) derivative of the
equation u(Az) = log|A| + u(z) for z # 0 we obtain

“jE(Z) = ‘)‘|2qu(>‘2) for A # 0 and z # 0,

_ . _9%u
where u;z(2) := 52,05,

(z). Taking z = z/|z| and A = |z| we have
uip(2) = |2l 725 (2/ 1))

Recall that if a plurisubharmonic function v is C? smooth then

0%u
(& n — n '
(ddu)™ = 4"n! det <8zj8§k>d)\'

Using this equation we can show that for any R > 0,
| (daw)m=niam | det(u;g(2)) dA
B(0,R)\{0} B(0,”)\{0}

=nla" | 27 det(u5(2/]2])) dA
B(0,R)\{0}
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R
= lin(l) nl4" S r~tdr S det(u;z(2/|z|)) do
= c 2B(0,1)

0 if 883(071) det(u;z(2/]2])) do = 0,
oo if SBB(O,I) det(u;z(2/]2])) do # 0.

However we know that ., (dd°u)"™ = (2m)" < oo, so det(u;z(z)) must vanish
on 0B(0,1). From that we conclude that (dd°u)™ = 0 in C™ \ {0}. This
implies that the measure (dd°u)™ is supported at the origin, so (ddu)™ =
(27’()”(50.
To finish the proof of Proposition 1.2 it is enough to find for every u € H
a sequence of smooth functions from H, decreasing to u. First we recall the
standard way of regularization of .
Define a function h : R — R by the formula
_ Jexp(=1/t) fort >0,
h(t)_{o for t <O0.
Set O(x) = Ah(1 — |z|?) for € R™, where A = (83(0,1) h(1 — |z|?)d)) 1.
Obviously § € C®(R™), supp# = B(0,1) and {,, 6(z)d\ = 1. For § > 0
we define 05(x) = (1/0™)6(x/0). Note that {;,, 65() dX = 1 and supp 05 =
B(0,0). It is well known that vs := u * 05 € PSHNC> and vs is decreasing
to u as d \, 0. We call the sequence {vs} the standard regularization of u.

Now we define another regularization of u which preserves homogeneity.
Set

ug(2) = |2 72" fu(w)s <Z ’_Z’“’> dA(w) = Julz — |2Jw)bs(w) dA(w).

We claim that us is the desired sequence. Obviously us € C*°(C™ \ {0}).

First we show that if u satisfies u(uz) = log |u| + u(z) for all u € C and
z € C™ then also the functions us satisfy this equation. To see this observe
that

us(nz) = Yulpz — [pzlw)s (w) d\(w)

log |14] +Su<z - %]21{)) 05 (w) d\(w)

log || +§u<z - %]2w>05<m| )

= log |p| + us(z).

a2

Now we show that ug \, u as 6 \, 0. From the above equation it is enough
to check this for |z| = 1. But for such z our regularization is the standard
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regularization us = wvs. For the standard regularization we know that vs
decreases to u, so also ug decreases to u.

To end the proof it is enough to check that us € PSH(C™). To see this,
note that we can write us as

us(z) =log|z| +us(z/]z]) = log |z| + vs(z/]2]),
where vs is the standard regularization of u.

We denote by P"~! the (n—1)-dimensional complex projective space, i.e.

the set of all one-dimensional linear subspaces of C™. Set Uy, = {[Z1, ..., Z,] :
Zy # 0}. Then we have P*~! = (J;_, Uy. In Uy, we have local coordinates
(#1543 Zky -, 2n), Where 2; = Z;/Zy. The Kihler metric h on P"~1 is
given by

hag(2) = ndx; log (1 +3 \sz) on U.
#k
We denote by w the form given by the formula
W= gddclog (1 +3 |zj|2) on Uy.
#k
We define a mapping IT : C* \ {0} — P"~! by II1(2) = [z1, ..., 2n]-

LEMMA 1.3. Let g : C* — Ry be a complex homogeneous function of
order n(a — 2), where a > 0 and suppose that there exists a solution v of
the following Monge—Ampére equation on P"1:

(1.1) (ddv+w)" ' =G, )w" ' and ddv+w >0,
where G : R x P"~! - R, and
G(t,z) = C(n,a)g(II ™" (2))e™™",

with
1

nlontlgntl’
Then there exists a solution v € PSH(C™) N HE of the complex Monge—
Ampére equation on C":
(1.2) (ddu)™ = gdA.

Proof. First we define w(z) := log|z| + Lv(II(2)). Observe that w €
PSH(C?) and

g(z) = [z Pg(2) and C(n,a)=

1 1
w(Az) = log |Az| + E’U(U()\Z)) = log |A| + log | 2| + EU(H(Z))

= log[A] + w(2),

for all A € C and z € C™. So we have checked that w € H; and Proposi-
tion 1.2 gives (dd“w)™ = (27)"dp. Now we can define u(z) := exp(aw(z))
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for z # 0 and u(0) = 0. Then v € PSH(C") and for all A € C and z € C",
’LL()\Z) — eau}(}\z) — ea(logp\z\—l—n*lv(ﬂ(/\z)))
= @ log \A|eo¢ log |z|+an~tv(IT(2)) — ’)\|au(2)'
Now we compute the Monge—Ampere measure for u:
(dd°u)™ = (dd°e“™)" = (a?e*“dw A d°w + ae*dd w)"
= a"e" " (adw A d°w + dd“w)"
= a"e" " ((dd“w)"™ + nadw A dw A (dd°w)™1).
Note that from the fact that w € H, we obtain
a e (ddw)" = a”\z\"aea”(n(’z)) - (2m)"60 = 0.
So
(dd°u)™ = na" e dw A d“w A (dd°w)™ "t
Denote by T the current T'=e"** (dd“w)" ! and z= (21, 2’) = (21, 22, . - - , Zn)-
Now fix a point z € C™\ {0}. We can assume (applying rotation if necessary)
that z = (a,0,...,0) and |a| = |z|.
Recall that IT denotes the canonical projection from C™ \ {0} to P"~1;

we denote by I, the restriction of IT to {z; = a}. Then it is easy to see
that

H,(a,z2,...,2,) = (22/a,...,2,/a) € Uy,
I 29, .0 20) = (a,a2s, . .. az,) € {2 = a},
M,oll; " =idy, and II;'oll, =id(,_q).

Now we express the current (dd“w)”~! on the set {z; = a} using our as-
sumptions:

(1.3)  (dd°w)™* = (I o IT,)*(dd°w)" " = IT*(dd(w o IT; *))"~*

1 1 n—1
= I <ddc<§ log |11} (2/)|? + —v(IT, o Ha_l(z'))>>
n
1 1 n—1
=II} (ddc<§ log(|a)®(1 + |2'%)) + HU(ZI)>>
1 1 n—1
=1} <—ddc log(1 + [2'|%) + —dd%)
2 n
1 * c, \n—1
1

— TG = (G o IT,) (ITw)"™

nnfl a nnfl

nn—l

1 n—1
= (Goﬂa)(gddclog(l—{— |z'/a|2))
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= 217"(G o I1,)(dd log(|al® + [2|*))"
— 271 — 1)l (Goﬂ)(|a|2 Ei

. §d22 ANdZa A ... N\ dzn ANdZ,.

Note that
ow Ow 1
14 d dw=4——=d dz
(1.4) w A 92,07, 2 21 Ndzy + .
Since v(I1(z)) is constant on the set {((,0,...,0) : ¢ € C} we conclude that
ow 8w |zl|2
0z, 821 IEER

According to (1.3) and (1.4), on the set {z1 = a} we obtain (remembering
that |a| = |z = [z1])
dw A d“w A (ddw)™ "

2
4!»21!

=4 05 A dz A2 = Dal(G o T)(Jal? + |2

-%dzz/\dfg/\.../\%dzn/\dfn

= (G o 2" (n — 1)!|z|2"d.
So at our fixed point z we have checked that
(dd°u)™ = n2" T (n — D" e G o IT|z| 72"d\
= pl2n gt a2 TG G o [T(2)dN = g(2)dA.
This completes the proof of Lemma 1.3.

Our main theorem is

THEOREM 1.4. Let g : C" — R be a complex homogeneous function of
order n(a —2), where 0 < aw < 1/(n — 1), such that g € C>(C"\{0}). Then
there exists a solution u € PSH(C™*)NHZ(C™)NC>(C™\{0}) of the complex
Monge-Ampére equation (dd°u)™ = gd\ on C™. Moreover if g is only C™+P
smooth for some r > 1 and 0 < 3 < 1, then u is C2t"+8 smooth.

To prove Theorem 1.4 we need some facts about existence of solutions of
the complex Monge-Ampere equation on P"~! (for more details see [A1]-
[A3), [BA], [T], [R]).

Let (M, h) be a compact complex Kéhler manifold of dimension n. We
denote by w its first fundamental form. Consider the equation (see [A1])

(1.5) (dd°p 4+ w)" = et and dd°p 4w >0,
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where f is a given C* smooth function and ¢t € R. The following inequality
plays an important role in solving the above equation:

(1.6) S e~ < Clexp (VOI_(L) S Wn) ’
M

M

for any ¢ such that dd“p+w > 0, where C, o > 0. We also recall an invariant
a(M) for M:

a(M) = sup{a > 0 : there exists a constant C' such that
(1.6) is satisfied for all ¢ with dd®p + w > 0}.

The following theorems give partial answers to the question: for which ¢ does
the equation (1.5) have a solution?

THEOREM 1.5 [BA]. Let (M, h) be a compact complex Kdhler manifold
of dimension n with the first Chern class positive. Then the equation (1.5)
has a solution for 0 <t < “Ha(M).

THEOREM 1.6 [R]. We have
1

alf) = n+1

In particular on P"~1 the equation (1.5) has a solution for0 <t < 1/(n —1).

The following theorem tells us about the regularity of the solution.

THEOREM 1.7 [Al]. Let (M, h) be as in Theorem 1.5. Consider the fol-
lowing equation on M:

(1.7) (dd®p 4 w)™ = eFelyn

where F: R x M — Ry. If F is C* smooth, then every solution of (1.7) is
C> smooth. Moreover, if F is only C™P smooth with r > 1 and 0 < 3 < 1,
then every solution of (1.7) is C*t"+P smooth.

Now we can prove Theorem 1.4.

Proof of Theorem 1.4. Observe that the smoothness of g implies the
smoothness of the function G from Lemma 1.3. Thus Theorems 1.5 and 1.6
yield the existence of a solution of the equation (1.1), which implies the
existence of a solution of (1.2). For the regularity of the solution u, observe
that if g is C> (resp. C"*?) smooth then G is also C* (resp. C"*#) smooth
(recall that g > 0); then Theorem 1.7 shows that the solution v of the
equation (1.1) is C*® (resp. C**"*#) and by the definition so is u. This
completes the proof of Theorem 1.4.

The statement of Theorem 1.4 can be strengthened if we assume addi-
tional symmetries of the function g. Suppose that g : C* — R, satisfies the
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following conditions:

9(21, .. 25,0y 2n) :g(zl,...,ei%/pzj,...,zn)

for 1 < j < n and some p € N,
(1.8)

9(21, s 2y Zhy e Zn) = G(21, o Bl 2y Zn)
for1 <7,k <n.

THEOREM 1.8. Let g : C" — R, be a complex homogeneous function
of order n(a — 2), where 0 < a < min(n/(n—1),p/(n—1)), satisfying
conditions (1.8) and such that g € C*°(C™\{0}). Then there exists a solution
uwe PSHN HE(C™) NC>(C™\ {0}) of (dd°u)™ = gd\ on C™ satisfying also
conditions (1.8). Moreover if g is only C™t% smooth for some r > 1 and
0< B <1, then u is C*t"8 smooth.

To prove Theorem 1.8 we recall another invariant for M. Suppose that
the manifold M has a nontrivial group of automorphisms. Then for any
compact subgroup G of Aut(M) we can define the following invariant:
ag(M) = sup{a > 0 : there exists a constant C' such that (1.6) is

satisfied for all G-invariant ¢ with ddp +w > 0}.

For the invariant o (M) we have theorems analogous to Theorems 1.5
and 1.6.

THEOREM 1.9 [BA]. Let (M, h) be a compact complex Kdhler manifold
of dimension n with the first Chern class positive and let G be a compact
subgroup of Aut(M). Then the equation

(ddCQD +w)n _ eftc,oJrfwn7

where dd®o+w > 0 and f is C*° smooth and G-invariant, has a C*° smooth,
G-invariant solution for 0 <t < “ag(M).

For k,j € {0,...,n} and 6 € [0, 27| we define a class of automorphisms
on P™:

Yio(Zoy- s Zjyeo s Znl) = [Zoy .o Zs€" 0 Z4),
O-k,j([Z(Ja---7Zj7---7Zk7'--7ZnD = [Zo,...,Zk,...,Zj,...,Zn].

We denote by G the compact subgroup of Aut(P™) generated by v;4,0;.x

for k,j € {0,...,n} and 6 € [0,27], and by G, the compact subgroup of
Aut(P™) generated by ;9,0 for k,j € {0,...,n} and 6 = 27 /p.

THEOREM 1.10 [R]. We have

6, (7") 2 min (1,22 ) and - ag(®) =1,
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where G, and G are as above. In particular on P! the equation
(ddc(p +w)n — e—tap—i—fwn’

where dd°p+w > 0 and f is C> smooth and G,-invariant, has a C> smooth,
Gp-invariant solution for 0 <t < min(n/(n —1),p/(n —1)).

Now we can prove Theorem 1.8.

Proof of Theorem 1.8. First observe that from the assumptions on g, the
function go IT~! is G-invariant, where §(2) = |z|"™@~2)g(z) for z # 0. Now
the proof of Theorem 1.8 is analogous to that of Theorem 1.4.

From the above theorems we have the following corollary.

COROLLARY 1.11. Suppose that g : C™ — Ry is a complex homogeneous
function of order n(a — 2), where 0 < a < n/(n — 1), which satisfies the
following conditions:

(1.9) 9(z1, . 25, zn) = g(21, o |Z5] 0, 2n) for 1< j <,
921,y 2y 2y ey Zn) = G215y Bl ey 2y e Zn)
Jor1<j,k<n,

and such that g € C>°(C™ \ {0}). Then there ezists a solution v € PSH N
Hg(C™)nC>=(C™\ {0}) of (dd°u)™ = gd\ on C™ satisfying also conditions
(1.9). Moreover if g is only C™% smooth for somer > 1 and 0 < 3 < 1,
then u is C*T7+8 smooth.

2. Existence of a solution for bounded data. The main purpose
of this section is to prove the existence of a solution of (dd“u)™ = gd\ in
the class of homogeneous functions for bounded data, but with a stronger
restriction on the order of homogeneity.

THEOREM 2.1. Let g : C" — R4 be a complexr homogeneous function of
order n(a—2), where 0 < a < 1/n, such that g € L*>°(0B(0,1)). Then there
exists a solution u € PSHN LS N HZ(C™) of C*(dd°u)"™ = gdX on C™.

loc
First we need to prove the existence of a solution of (ddyp + w)" =
et for bounded data f on a compact Kihler manifold. This is a
generalization of Tian’s theorem [T] for bounded data, but with a stronger
assumption on the parameter ¢.

THEOREM 2.2. Let (M, h) be a compact complex Kéahler manifold of di-
mension n with the first Chern class positive and let f € L*(M) be non-
negative with §, fw™ = vol(M). Then the equation

(ddp + w)"™ = fe 1"
has a solution ¢ with dd°p +w >0 for 0 <t < a(M).
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If f € L°°(M) then there exists an approximating sequence {f;} such
that f; € C°(M), f; >0, {f;} is uniformly bounded and f; — f in L'(M)
as j — o0o. Multiplying f; by constants which tend to 1 as j — oo we can
get

S fiw™ = vol(M).
M
Let ¢ ; denote a solution of

(2.1) (dd°¢yj +w)" = fje W™ and dd°¢y; +w > 0
for 0 <t < a(M), provided by Theorem 1.5.

Now we show that for fixed ¢ the sequence ¢, ; is uniformly bounded.

LEMMA 2.3. For fized 0 < t < (M) the sequence {¢r;} is uniformly
bounded.

To prove Lemma 2.3 we need some results from [K1] and [T].

THEOREM 2.4 [T]. Let (M,w) be a compact complex Kdhler manifold of
dimension n with the first Chern class positive. Then for all 0 < t < a(M)
there exists a constant C, depending only on M, such that

(2.2) | e <C
M
for any functions ¢ € C? with dd°p +w > 0 and sup,,; ¢ = 0.
We also need a theorem which gives us a lower bound for the infimum

of the solution ¢y ;.

THEOREM 2.5 [K1]. Let 2 be a strictly pseudoconver subset of C™ and
let u be a smooth solution of

(dd“u)™ = fdA
on 2 with || f||zr2) < A for some p > 1. Suppose that u < 0 and u(0) > C
(0 € 02). If the sets U(s) := {2z : u(z) < s} N 2" are nonempty and relatively
compact in 2" C ' CcC 2 for s € [S,S + D] then infgu is bounded
from below by a constant depending on A, C, D, p, £2', £2, but independent
of u, 2.
Now we can prove Lemma 2.3.

Proof of Lemma 2.5. First we recall that the functions f; satisfy { o Jiw™
= vol(M) and note that by Stokes’ theorem,

M M M
Hence

(2.3) sup ¢ ; > 0.
M
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We define 9 j := ¢ j—sup,s ¢¢,;- Then the functions v, ; satisfy the Monge—
Ampere equation
(ddcwt,j + w)n — fje*t’l/}t,j*tsup @’jw”.
We also set Fj(z,z) = fj(z)e ™. Fix 0 < t < a(M) and choose ¢ > 0
such that (1 + )t < a(M). Now we show that the sequence {Fj(1:; —
sup ¢ j, )} is uniformly bounded in L'™¢(M), and from that we conclude
that ¢y ; satisfies the assumptions of Theorem 2.5. Indeed, from (2.3) and
Theorem 2.4 we obtain
S (fje*twt,j*tSUP ¢t,j)1+ewn < S (fje*twt.j)1+€wn
M M
< (sup fj)'e | em Wi < 0y,
M
where C; does not depend on j.
Now fix a covering of M by strictly pseudoconvex coordinate patches
V', and another two coverings of M: V/, V, such that V,, C V] cC V.
Fix j and take z € V|, such that vy ;j(z) = infas 9, ;. We may assume
that there is a smooth, bounded function v such that ddv =w in V), v <0
and v(z) < infyy, v — ¢o for some positive ¢ > 0. Hence,

o(2) + s () < Jnf 0+ ) o

So if we take D = cg, S = v(2) + ¢4 ;(2) and u = ¢+ ; + v in Theorem 2.5
the set U(s) = {v+ 1 ,; —s < 0} is nonempty and relatively compact in V,,
for s € [S, S+ D]. Hence from Theorem 2.5 we have inf (v +1; ;) > const,
but v is bounded so infy; ¥, ; > —Cs and Cy > 0 does not depend on j.
Then by the definition of 1 ;,

(2.4) sup ¢y ; — inf ¢y ; < Cs.
M M
To finish the proof note that
(2.5) xgrfoo S Fj(z,z)w" < As/lw” < xEIPoo S Fj(z, z)w".

Hence, by (2.4), (2.5) and the equality {, , F;(¢y,;, z)w™ = §,, w™ we conclude

that there is a constant C5 > 0 such that

M

sup ¢ ; < C3 and inf¢y; > —Cs,
M M
for j > jo. This means that the sequence {¢; ;} is uniformly bounded, which
completes the proof of Lemma 2.3.
Now we can prove Theorem 2.2. The proof is based on [K2].

Proof of Theorem 2.2. First we recall that by {f;} we have denoted an
approximating sequence such that f; € C>(M), f; >0, {,, fw™ = vol(M),
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{f;} is uniformly bounded and f; — f in L*(M) as j — oo. Furthermore,
¢¢,; denotes the solution of

(dd°¢s,j +w)" = fjeft‘bt’jw” and dd¢;; +w > 0.

By Lemma 2.3 we know that the sequence ¢, ; is uniformly bounded for any
0<t<alM).

Fix 0 <t < a(M). We may take a subsequence of ¢; ; (denoted also by
¢¢;) such that ¢, ; — ¢ in L*(M) as j — oo, where ¢ = (limsup; ¢y, ;).
We show that ¢ is the desired solution.

First we prove that fje~*%* — fe='® in L'(M). Note that

‘ §(fret0us — fet)wn| < ‘ § fi(em 9 — et
M M

+ ‘ S e (f; = fHw"| =L + L.
M
Then
I, < sup f; S e Pt |] — ePri=@)|yn
M
< sup et tlgy; - gle!los Ol
M
< sup fje*t¢t,j+t|¢t,j*¢>| S t’¢t,j _ ¢’wn S0 asj — oo.
M

Similarly

I, < supe S Ilfj — flw" —0 asj— oo.
M

We have proved that fje= %t — fe~'® in L'(M), so we may choose a
subsequence (denoted also by ¢; ;) such that

(2.6) Ifie™ "% — fe™ || piany <2797
Let us introduce some auxiliary functions:
VL = max ; v = (lim T wvg)*
Kl k§j§l¢t’]’ k (j_)ooT w)"
Ry = min fie tni R, = lim | Ry;.
W= Iin, I ; p= Hm | Ry

Since, locally, w is representable by dd“v, where v is a plurisubharmonic
function, we can apply [BT1, Proposition 2.8] to get

(w + ddcl/kl)n > Rpw™.
Hence by the convergence theorem [BT3],
(2.7) Ri < lhm (w + ddcl/kl)n = (w + ddcljk)n.



300 R. Czyz

Note that ¢ = limg_, o, | vx. We can apply the convergence theorem once
more to get

(2.8) (w+ddvg)" — (w+ dd°P)".
Now we show that Ry, — fe~'® in L'(M). To prove this we shall use (2.6)
and the simple fact that
fe'? — Ry = fe ' — frypre e (frgeT 0uki — fy peT k) 4
and then
(2.9) [Ife™ = Ryl < [1fe™ = frpre "0 s
+ | frpre PR — frpeT R 4

< 97hH2 4 (g7kH2 g ok48) L

=27"
So Ry, — fe~'® in L*(M). Combining (2.9) with (2.7) and (2.8) we obtain

fe Pum < (w + dd°o)".

Since the integrals over M of both currents in the above inequality are equal

to vol(M) we get
fe Pu™ = (w + dd°o)".

This completes the proof of Theorem 2.2.

Proof of Theorem 2.1. Let g(z) = |2|7"(®"?g(z). Then g is a complex
homogeneous function of order 0 and also g € L. Let

(21 = I 2§t s (2 ) driw)

be the regularization of g defined in Proposition 1.2. Hence we know that g;
are complex homogeneous functions of order 0 and we can also assume that
g; > 0 by adding, if necessary, positive constants tending to zero. Moreover
{g;} is uniformly bounded and g; — g in L.

Define the following functions on P"~1:

F(2) = ey 9T (2))

15(2) = gy (T7(2)).

zZ—w
2]

(2.10)

Multiplying g and g; by constants which tend to 1, we can assume that
S fw = S fiw™ ™t = vol(P"1).
Ppr—1 prn—1

Moreover f € L>(P"~1), {f;} is uniformly bounded and f; — f in L' (P"~1).
So we can apply Theorems 1.4 and 2.2 to get a function ¢ on P"~! such
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that dd°p + w > 0 and (dd°p + w)" ! = fe "?w"~ 1. Then we know from
the proof of Lemma 1.3 that the function

u(z) = |z|*el@/MeUI()
is plurisubharmonic and (dd“u)™ = gdA. This completes the proof.

As a direct consequence of Theorem 2.1 we obtain the following corol-
laries.

COROLLARY 2.6. Let p € N and let g : C* — Ry be a complex homo-
geneous function of order n(a — 2), where 0 < a < min(1,p/n), satisfying
conditions (1.8) and such that g € L>°(0B(0,1)). Then there exists a solu-
tion v € PSHN HE(C™) N LYE.(C") of (ddu)™ = gdA on C™ satisfying also
conditions (1.8).

Proof. 1t is enough to note that, if ¢ satisfies conditions (1.8), then the
functions (2.10) are G,-invariant. Then the Corollary follows from the proof
of Theorems 2.2 and the proofs of Theorems 2.1 and 1.10.

COROLLARY 2.7. Let p € N and let g : C* — Ry be a complex homo-
geneous function of order n(a — 2), where 0 < a < 1, satisfying condi-
tions (1.9) and such that g € L*>*(0B(0,1)). Then there exists a solution
uw € PSHN HZ(C™) N LE.(C™) of (ddu)™ = gdX on C" satisfying also
conditions (1.9).
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