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The Łojasiewicz exponent at infinity
for overdetermined polynomial mappings

by S. Spodzieja (Łódź)

Abstract. We prove that the study of the Łojasiewicz exponent at infinity of overde-
termined polynomial mappings Cn → Cm, m > n, can be reduced to the one when m = n.

Introduction. In the paper we study the Łojasiewicz exponent at in-
finity for overdetermined polynomial mappings, i.e. polynomial mappings
f : Cn → Cm, where m > n. In the case m = n this exponent is well known
(see [C], [CK1]–[CK4], [P1], [P2], [PT]). It is strongly related to the prop-
erties of properness and injectivity of polynomial mappings (see [H], [C],
[CK1], [CK3], [CK4], [P1], [P2], [PT]). Numerous papers have been devoted
to the estimation of this exponent from below and to the effective Nullstel-
lensatz (see [C], [B1], [B2], [JKS], [K], [S], [BY], [CK5]). The deepest result in
this direction is the Kollár inequality [K]. We investigate it in Corollary 3.2.

We reduce the computation of the exponent of f : Cn → Cm, m > n, to
the case m = n (see Theorem 2.1 and Corollary 3.1). The key point of the
proof is the reduction of the study of the fibres of a polynomial mapping to
the case of m ≤ n (Proposition 1.1). We obtain it by composing f with a
linear mapping. This method can be applied to obtain a characterization of
the Łojasiewicz exponent of a proper polynomial mapping (Corollary 3.3,
cf. [C], [P1]). Corollary 3.3 also gives a criterion for injectivity of polynomial
mappings (cf. [P1]).

Additionally, using the Łojasiewicz exponent at infinity we prove a cri-
terion of properness of polynomial mappings (Corollary 3.4, cf. [C], [P1]).

1. Fibres of polynomial mappings. In what follows we write “the
generic x ∈ A” instead of “there exists an algebraic set V such that A \ V
is a dense subset of A and x ∈ A \ V ”.
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For any m,k ∈ N we denote by L(m,k) the set of all nonsingular linear
mappings Cm → Ck, where for k = 0 we put Ck = {0}. Let m ≥ k. Denote
by ∆(m,k) the set of all linear mappings L = (L1, . . . , Lk) ∈ L(m,k) of the
form

Li(y1, . . . , ym) = yi +
m∑

j=k+1

αi,jyj , i = 1, . . . , k,

where αi,j ∈ C; ∆0(m,k) is the set of all L = (L1, . . . , Lk) ∈ ∆(m,k) such
that

L1(y1, . . . , ym) = y1.

Proposition 1.1. Let f = (f1, . . . , fm) : Cn → Cm be a polynomial
mapping with deg fj > 0 for j = 1, . . . ,m, where m ≥ n ≥ 1.

(i) For the generic L ∈ L(m,n),

(1) #[(L ◦ f)−1(0) \ f−1(0)] <∞.
(ii) For the generic L ∈ ∆0(m,n), (1) holds.

The proof will be preceded by an easy lemma. We denote by Gk(Cm)
the Grassmann space of k-dimensional linear subspaces of Cm, k < m.

Lemma 1.1. Let V ⊂ Cm be an algebraic set of dimension s.

(i) If s+ k < m, then for the generic H ∈ Gk(Cm),

H ∩ V ⊂ {0}.
(ii) If s+ k = m, then for the generic H ∈ Gk(Cm),

#(H ∩ V ) <∞.
Proof of Proposition 1.1. In the proof of (ii) we will need a version of (i)

in the case of regular mappings. So, we prove (i) in the slightly general case
of regular mappings f = (f1, . . . , fm) : X → Cm, where X is an irreducible
algebraic set, dimX ≤ n and fj 6= const. Let W ⊂ Cm be the closure of
f(X) and k = dimW . Obviously k ≤ n. We have two cases:

1◦. k < n. By Lemma 1.1(i) there exists a Zariski open and dense subset
U ⊂ Gm−n(Cm) such that for any H ∈ U we have W ∩ H ⊂ {0}. Hence,
the set U = {L ∈ L(m,n) : kerL ∈ U} is a Zariski open and dense subset
of L(m,n). Moreover, for any L ∈ U we have f−1(0) = (L ◦ f)−1(0). This
gives (1) in this case.

2◦. k = n. Let

Γ = {w ∈W : dim f−1(w) > 0}.
By Corollary 3.16 and Proposition 2.31 of [M], Γ is an algebraic set. More-
over dimΓ < n, since in the opposite case, by the definition of Γ and
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Corollary 3.15 of [M], we have

n+ 1 ≤ dim f−1(Γ ) ≤ dim f−1(W ) = n,

which is impossible. Thus, by Lemma 1.1, there exists a Zariski open and
dense subset U ⊂ Gm−n(Cm) such that for any H ∈ U we have

(2) #(W ∩H) <∞
and

(3) Γ ∩H ⊂ {0}.
Let, by (2), W ∩H = {w1, . . . , wp} and L ∈ L(m,n) be such that H = kerL.
Then

(L ◦ f)−1(0) = f−1(w1) ∪ . . . ∪ f−1(wp).

From (3) it follows that wi 6∈ Γ if wi 6= 0. In consequence for wi 6= 0 we
have #f−1(wi) < ∞. This gives (1). Since {L ∈ L(m,n) : kerL ∈ U} is a
Zariski open and dense subset of L(m,n), we have the assertion in this case.
This gives (i).

To prove (ii), let X ′ = f−1({0}×Cm−1) and g : X ′ → Cm−1 be a regular
mapping of the form

g(x) = (f2(x), . . . , fm(x)), x ∈ X ′.
Since f1 6= 0, dimX ′ ≤ n − 1. From the first part of the proof, we now see
that for the generic M ∈ L(m− 1, n− 1),

(4) #[(M ◦ g)−1(0) \ g−1(0)] <∞.
Obviously the set U of all linear mappings M = (L2, . . . , Ln) ∈ L(m− 1,
n − 1) of the form Li(w2, . . . , wm) = L′i(w2, . . . , wn) + L′′i (wn+1, . . . , wm),
i = 2, . . . , n, such that Jac[L′2, . . . , L

′
n] 6= 0 is a Zariski open and dense subset

of L(m− 1, n− 1). Moreover, (L′2, . . . , L
′
n)−1 ◦M ∈ ∆(m− 1, n− 1). So, for

the generic M ∈ ∆(m−1, n−1) we have (4). Since L = (w1,M) ∈ ∆0(m,n)
for any M ∈ U , we obtain (ii).

2. The Łojasiewicz exponent at infinity. In this section we prove
Theorem 2.1 on reduction of calculations of the Łojasiewicz exponent at
infinity of a mapping Cn → Cm to the case Cn → Cn.

Let f : Cn → Cm be a polynomial mapping such that #f−1(0) < ∞.
Let

N∞(f) = {ν ∈ R : ∃C>0,R>0 ∀x∈Cn |x| > R ⇒ |f(x)| ≥ C|x|ν},
where |·| denotes the policylindric norm. We define the Łojasiewicz exponent
at infinity of the mapping f as supN∞(f) and denote it by L∞(f).

Theorem 2.1. Let f : Cn → Cm, m ≥ n, be a polynomial mapping such
that #f−1(0) <∞. Then for any L ∈ L(m,n) such that #(L◦f)−1(0) <∞
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we have

(5) L∞(f) ≥ L∞(L ◦ f).

Moreover , for the generic L ∈ L(m,n),
(6) L∞(f) = L∞(L ◦ f).

The proof of this theorem will be preceded by two lemmas.

Lemma 2.1. Let V ⊂ Cm be an algebraic set of dimension s. If s < n,
then there exists a Zariski open and dense subset U ⊂ L(m,n) such that for
any L ∈ U and for any ε > 0 there exists δ > 0 such that for any y ∈ V ,

|L(y)| < δ ⇒ |y| < ε.

Proof. There exists a Zariski open and dense subset U1 ⊂ L(m,n) such
that for any L ∈ U1,

(7) V ∩ kerL ⊂ {0}
(see Lemma 1.1(i)). By Sadullaev’s Theorem ([Ł], VII,7.1), there exists a
Zariski open and dense subset U ⊂ U1 such that for any L ∈ U there exists
CL > 0 such that V ⊂ {y ∈ Cm : |y| ≤ CL(1 + |L(y)|)}, which implies

(8) y ∈ V ∧ |y| > 2CL ⇒ |L(y)| > 1.

Let L ∈ U and ε > 0. If 0 6∈ V , then either A1 = {|L(y)| : y ∈ V ∧|y| ≤ 2CL}
is an empty set and we put δ1 = 1, or A1 6= ∅ and we put δ1 = minA1. By
(7) we have δ1 > 0. Putting δ = min(δ1, 1), by (8) and the definition of A1

we obtain |L(y)| ≥ δ for any y ∈ V . This gives the assertion in this case.
If 0 ∈ V , then either A2 = {|L(y)| : y ∈ V ∧ ε ≤ |y| ≤ 2CL} is an empty
set and we put δ2 = 1, or A2 6= ∅ and we put δ2 = minA2. By (7) we have
δ2 > 0. Putting δ = min(δ2, 1), by (8) and the definition of A2 we obtain
the assertion in this case. This ends the proof.

Lemma 2.2. Let f : Cn → Cm with m ≥ n be a polynomial mapping.
Then there exists a Zariski open and dense subset U ⊂ L(m,n) such that
for any L ∈ U and any ε > 0 there exist δ > 0 and r > 0 such that for any
x ∈ Cn,

|x| > r ∧ |L ◦ f(x)| < δ ⇒ |f(x)| < ε.

Proof. Let W = f(Cn). Then dimW ≤ n. Assume first that dimW < n.
Then, by Lemma 2.1, there exists a Zariski open and dense subset U ⊂
L(m,n) such that for any L ∈ U and any ε > 0 there exists δ > 0 such that
for any y ∈W ,

|L(y)| < δ ⇒ |y| < ε.

Then for any x ∈ Cn,

|L ◦ f(x)| < δ ⇒ |f(x)| < ε.

Thus we have the assertion in this case.
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Let now dimW = n. Then, by Proposition 3.15 of [M], we easily see
that there exists an algebraic set V ⊂ W such that dimV ≤ n− 1 and the
mapping

(9) f |Cn\f−1(V ) : Cn \ f−1(V )→W \ V
is a finite covering. Thus it is a proper mapping. By Lemma 2.1, there exists
a Zariski open and dense subset U1 ⊂ L(m,n) such that for any L ∈ U1 and
any ε > 0 there exists δ > 0 such that for any y ∈ V ,

(10) |L(y)| < δ ⇒ |y| < ε.

By Sadullaev’s Theorem there exists a Zariski open and dense subset U2 ⊂
L(m,n) such that for any L ∈ U2 there exists CL > 0 such that

(11) W ⊂ {y ∈ Cm : |y| ≤ CL(1 + |L(y)|)}.
Take any L ∈ U1 ∩ U2 and ε > 0. Assume to the contrary that there exists
a sequence {xn} such that |xn| → ∞, |L(f(xn))| → 0 and

|f(xn)| ≥ ε.
Without loss of generality, by (11), we may assume that f(xn)→ y0, where
y0 ∈ Cm. Since the mapping (9) is proper, we see that y0 ∈ V . So, |y0| ≥ ε
and L(y0) = 0. This contradicts (10) and ends the proof.

Proof of Theorem 2.1. Let

U = {L ∈ L(m,n) : #[(L ◦ f)−1(0)] <∞}.
Let L ∈ U . Then there exists M ∈ L(m,m − n) such that L̃ = (L,M) ∈
L(m,m) and L∞(f) = L∞(L̃◦f). Obviously for x ∈ Cn we have |L̃◦f(x)| ≥
|L ◦ f(x)|, so L∞(L̃ ◦ f) ≥ L∞(L ◦ f). This gives (5).

To prove the “moreover” part, let W = f(Cn). Consider two cases:
L∞(f) > 0 and L∞(f) ≤ 0.

First, assume that L∞(f) > 0. Since dimW ≤ n, Sadullaev’s Theorem
yields a Zariski open and dense subset U1 ⊂ L(m,n) such that for any
L ∈ U1 there exist r > 0 and M ∈ L(m,m− n) such that (L,M) ∈ L(m,n)
and for any y ∈W ,

|y| ≥ r ⇒ |M(y)| ≤ |L(y)|.
So,

(12) |y| > r ⇒ |(L,M)(y)| = |L(y)|.
By Proposition 1.1(i), U ∩ U1 contains a Zariski open and dense subset of
L(m,n). Let L ∈ U∩U1 and M ∈ L(m,m−n) be as above. Since L∞(f) > 0,
there exists R1 > 0 such that |f(x)| > r for any x ∈ Cn with |x| > R1. Then,
from (12),

|x| > R1 ⇒ |(L,M) ◦ f(x)| = |L ◦ f(x)|.
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Thus, L∞(L ◦ f) = L∞((L,M) ◦ f). Since (L,M) is a linear automorphism,
we have L∞((L,M) ◦ f) = L∞(f), so we obtain (6) in this case.

Consider the case L∞(f) ≤ 0. If 0 6∈ W , then L∞(f) = 0 and, by
Lemma 2.2, for the generic L ∈ L(m,n), there exist δ > 0 and r > 0 such
that |L ◦ f(x)| ≥ δ for any x ∈ Cn with |x| > r. Thus L∞(L ◦ f) = 0. This
gives (6) in this case. Now, let 0 ∈ W and let C0(W ) be the tangent cone
to W at 0 ∈ Cm (see [W], p. 510). By Sadullaev’s Theorem, there exists
a Zariski open and dense subset U2 ⊂ L(m,n) such that for any L ∈ U2

there exists M ∈ L(m,m − n) such that (L,M) ∈ L(m,m) and for any
y ∈ C0(W ),

|M(y)| ≤ 1
2 |L(y)|.

Thus there exists ε > 0 such that for any y ∈W with |y| < ε,

|M(y)| ≤ |L(y)|.
Hence, by Lemma 2.2, for L ∈ U2 ∩U there exist δ > 0 and r > 0 such that
for any x ∈ Cn with |x| > r we have

|L ◦ f(x)| < δ ⇒ |f(x)| < ε,

so, there exists M ∈ L(m,m− n) such that (L,M) ∈ L(m,m) and

|L ◦ f(x)| < δ ⇒ |(L,M) ◦ f(x)| = |L ◦ f(x)|.
Thus, since L∞(f) ≤ 0, we have L∞(L ◦ f) = L∞((L,M) ◦ f). Since (L,M)
is a linear automorphism, it follows that L∞(f) = L∞((L,M) ◦ f), so we
have (6) in this case.

This ends the proof.

3. Corollaries. From Theorem 2.1 we easily obtain the following corol-
lary.

Corollary 3.1. Let f = (f1, . . . , fm) : Cn → Cm be a polynomial
mapping , where m ≥ n ≥ 1 and #f−1(0) <∞, dj = deg fj > 0,

d2 ≥ . . . ≥ dm ≥ d1.

Then for the generic L = (L1, . . . , Ln) ∈ ∆0(m,n) we have

degLj ◦ f = dj for j = 1, . . . , n,(13)

#(L ◦ f)−1(0) <∞,(14)

L∞(f) ≥ L∞(L ◦ f).(15)

Proof. By Proposition 1.1(ii) and Theorem 2.1, for the generic L ∈
∆0(m,n) we have (14) and (15). By the assumption on the degrees dj and
the definition of ∆0(m,n), for the generic L ∈ ∆0(m,n) we have (13). This
ends the proof.
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For (d1, . . . , dm) ∈ Zm, define

B(n; d1, . . . , dm) =
{
d1 . . . dm if m ≤ n,
d1 . . . dn−1dm if m > n.

Proposition 1.10 of [K] gives immediately

Kollár inequality. Let f = (f1, . . . , fm) : Cn → Cm be a polynomial
mapping such that #(f−1(0)) < ∞. Let dj = deg fj , d1 ≥ . . . ≥ dm > 0.
Then

(∗) L∞(f) ≥ dm −B(n; d1, . . . , dm).

For m = n = 2 this inequality was obtained by Chądzyński [C]. The
proof of Proposition 1.10 in [K] is based on Proposition 4.1 of [K], where it
is assumed that m ≤ n. Reduction of the case m > n to the case m ≤ n is
not clearly explained. Corollary 3.1 gives us such a reduction:

Corollary 3.2. Under the assumptions of the Kollár inequality , if (∗)
holds for m ≤ n, then it also holds for m > n.

Proof. For m > n the inequality (∗) follows from Corollary 3.1 and from
(∗) for m ≤ n.

Let us give some corollaries on proper polynomial mappings.

Corollary 3.3 ([P1], for m = n). Let f = (f1, . . . , fm) : Cn → Cm be
a polynomial mapping with di = deg fi, d1 ≥ . . . ≥ dm > 0. If f is a proper
mapping , then

(16) L∞(f) ≥ dm/B(n; d1, . . . , dm).

If

(17) L∞(f) = dm/B(n; d1, . . . , dm),

then f is injective, and so C[f1, . . . , fm] = C[x1, . . . , xn].

Proof. From the assumption we have m ≥ n. Since f is a proper map-
ping, it is well known that L∞(f) > 0 (see [CK1], Corollary 2). From The-
orem 2.1 it follows that there exists L = (L1, . . . , Ln) ∈ ∆(m,n) such that

degLj ◦ f = dj , j = 1, . . . , n,(18)

L∞(f) = L∞(L ◦ f).(19)

Then L∞(L ◦ f) > 0, and so L ◦ f is a proper mapping. Thus, by (18) and
Corollary 1.13 of [P1] we have

L∞(L ◦ f) ≥ 1
d1 . . . dn−1

=
dm

B(n; d1, . . . , dm)
.

Now (19) gives (16).
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Assume that (17) holds. Then, by (19),

L∞(L ◦ f) =
dn

d1 . . . dn
,

so, by Corollary 1.13 of [P1], L◦f : Cn → Cn is a polynomial automorphism.
This shows that f is injective, completing the proof.

Remark 3.1. Let f = (f1, . . . , fm) : Cn → Cm be a polynomial mapping
with di = deg fi, d1 ≥ . . . ≥ dm > 0. If

L∞(f) <
dm

B(n; d1, . . . , dm)
,

then L∞(f) ≤ 0. Indeed, by Corollary 3.3, f is not a proper mapping. So,
by Corollary 2 of [CK1], L∞(f) ≤ 0.

Corollary 3.4 ([C] for n = m = 2, [P1] for m = n). Let f =
(f1, . . . , fm) : Cn → Cm be a polynomial mapping with di = deg fi, d1 ≥
. . . ≥ dm > 0. If

B(n; d1, . . . , dm)− dm < #f−1(0) <∞,
then f is a proper mapping. In particular the ring extension C[f1, . . . , fm] ⊂
C[x1, . . . , xn] is integral.

Proof. From the assumption we have m ≥ n. By Corollary 3.1, there
exists L = (L1, . . . , Ln) ∈ L(m,n) such that

degLj ◦ f = dj , j = 1, . . . , n− 1, degLn ◦ f = dm,(20)

#f−1(0) ≤ #(L ◦ f)−1(0) <∞,(21)

L∞(f) ≥ L∞(L ◦ f).(22)

By (21) and the assumption, B(n; d1, . . . , dm)− dm < #(L ◦ f)−1(0) <∞,
so L ◦ f : Cn → Cn is a dominating mapping and for the generic y ∈ Cn,

B(n; d1, . . . , dm)− dm < #(L ◦ f)−1(y) <∞.
Hence, from (20) and Proposition 1.3 of [P1] it follows that the mapping L◦f
is proper. Thus, from Corollary 3.3, L∞(L◦f) > 0. So, by (22), L∞(f) > 0.
In consequence f is a proper mapping. The second assertion is an algebraic
equivalent of the first one.

Remark 3.2. Let f = (f1, . . . , fm) : Cn → Cm be a polynomial mapping
with di = deg fi, d1 ≥ . . . ≥ dm > 0. From Corollaries 3.3 and 3.4 we see
that if maxj=1,...,m dj > 1 and

B(n; d1, . . . , dm)− dm < #f−1(0) <∞,
then

L∞(f) > dm/B(n; d1, . . . , dm).
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