The Łojasiewicz exponent at infinity for overdetermined polynomial mappings

by S. Spodzieja (Łódź)

Abstract

We prove that the study of the Łojasiewicz exponent at infinity of overdetermined polynomial mappings $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m>n$, can be reduced to the one when $m=n$.

Introduction. In the paper we study the Łojasiewicz exponent at infinity for overdetermined polynomial mappings, i.e. polynomial mappings $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$, where $m>n$. In the case $m=n$ this exponent is well known (see $[\mathrm{C}],\left[\mathrm{CK}_{1}\right]-\left[\mathrm{CK}_{4}\right],\left[\mathrm{P}_{1}\right],\left[\mathrm{P}_{2}\right],[\mathrm{PT}]$). It is strongly related to the properties of properness and injectivity of polynomial mappings (see $[\mathrm{H}],[\mathrm{C}]$, $\left.\left[\mathrm{CK}_{1}\right],\left[\mathrm{CK}_{3}\right],\left[\mathrm{CK}_{4}\right],\left[\mathrm{P}_{1}\right],\left[\mathrm{P}_{2}\right],[\mathrm{PT}]\right)$. Numerous papers have been devoted to the estimation of this exponent from below and to the effective Nullstellensatz (see [C], $\left[\mathrm{B}_{1}\right],\left[\mathrm{B}_{2}\right],[\mathrm{JKS}],[\mathrm{K}],[\mathrm{S}],[\mathrm{BY}],\left[\mathrm{CK}_{5}\right]$). The deepest result in this direction is the Kollár inequality $[\mathrm{K}]$. We investigate it in Corollary 3.2.

We reduce the computation of the exponent of $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m>n$, to the case $m=n$ (see Theorem 2.1 and Corollary 3.1). The key point of the proof is the reduction of the study of the fibres of a polynomial mapping to the case of $m \leq n$ (Proposition 1.1). We obtain it by composing f with a linear mapping. This method can be applied to obtain a characterization of the Łojasiewicz exponent of a proper polynomial mapping (Corollary 3.3, cf. $[\mathrm{C}],\left[\mathrm{P}_{1}\right]$). Corollary 3.3 also gives a criterion for injectivity of polynomial mappings (cf. $\left[\mathrm{P}_{1}\right]$).

Additionally, using the Łojasiewicz exponent at infinity we prove a criterion of properness of polynomial mappings (Corollary 3.4, cf. [C], $\left[\mathrm{P}_{1}\right]$).

1. Fibres of polynomial mappings. In what follows we write "the generic $x \in A$ " instead of "there exists an algebraic set V such that $A \backslash V$ is a dense subset of A and $x \in A \backslash V$ ".
[^0]For any $m, k \in \mathbb{N}$ we denote by $\mathbf{L}(m, k)$ the set of all nonsingular linear mappings $\mathbb{C}^{m} \rightarrow \mathbb{C}^{k}$, where for $k=0$ we put $\mathbb{C}^{k}=\{0\}$. Let $m \geq k$. Denote by $\Delta(m, k)$ the set of all linear mappings $L=\left(L_{1}, \ldots, L_{k}\right) \in \mathbf{L}(m, k)$ of the form

$$
L_{i}\left(y_{1}, \ldots, y_{m}\right)=y_{i}+\sum_{j=k+1}^{m} \alpha_{i, j} y_{j}, \quad i=1, \ldots, k
$$

where $\alpha_{i, j} \in \mathbb{C} ; \Delta^{0}(m, k)$ is the set of all $L=\left(L_{1}, \ldots, L_{k}\right) \in \Delta(m, k)$ such that

$$
L_{1}\left(y_{1}, \ldots, y_{m}\right)=y_{1} .
$$

Proposition 1.1. Let $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping with $\operatorname{deg} f_{j}>0$ for $j=1, \ldots, m$, where $m \geq n \geq 1$.
(i) For the generic $L \in \mathbf{L}(m, n)$,

$$
\begin{equation*}
\#\left[(L \circ f)^{-1}(0) \backslash f^{-1}(0)\right]<\infty . \tag{1}
\end{equation*}
$$

(ii) For the generic $L \in \Delta^{0}(m, n)$, (1) holds.

The proof will be preceded by an easy lemma. We denote by $G_{k}\left(\mathbb{C}^{m}\right)$ the Grassmann space of k-dimensional linear subspaces of $\mathbb{C}^{m}, k<m$.

Lemma 1.1. Let $V \subset \mathbb{C}^{m}$ be an algebraic set of dimension s.
(i) If $s+k<m$, then for the generic $H \in G_{k}\left(\mathbb{C}^{m}\right)$,

$$
H \cap V \subset\{0\} .
$$

(ii) If $s+k=m$, then for the generic $H \in G_{k}\left(\mathbb{C}^{m}\right)$,

$$
\#(H \cap V)<\infty .
$$

Proof of Proposition 1.1. In the proof of (ii) we will need a version of (i) in the case of regular mappings. So, we prove (i) in the slightly general case of regular mappings $f=\left(f_{1}, \ldots, f_{m}\right): X \rightarrow \mathbb{C}^{m}$, where X is an irreducible algebraic set, $\operatorname{dim} X \leq n$ and $f_{j} \neq$ const. Let $W \subset \mathbb{C}^{m}$ be the closure of $f(X)$ and $k=\operatorname{dim} W$. Obviously $k \leq n$. We have two cases:
$1^{\circ} . k<n$. By Lemma 1.1(i) there exists a Zariski open and dense subset $U \subset G_{m-n}\left(\mathbb{C}^{m}\right)$ such that for any $H \in U$ we have $W \cap H \subset\{0\}$. Hence, the set $\mathcal{U}=\{L \in \mathbf{L}(m, n): \operatorname{ker} L \in U\}$ is a Zariski open and dense subset of $\mathbf{L}(m, n)$. Moreover, for any $L \in \mathcal{U}$ we have $f^{-1}(0)=(L \circ f)^{-1}(0)$. This gives (1) in this case.
$2^{\circ} . k=n$. Let

$$
\Gamma=\overline{\left\{w \in W: \operatorname{dim} f^{-1}(w)>0\right\}} .
$$

By Corollary 3.16 and Proposition 2.31 of [M], Γ is an algebraic set. Moreover $\operatorname{dim} \Gamma<n$, since in the opposite case, by the definition of Γ and

Corollary 3.15 of [M], we have

$$
n+1 \leq \operatorname{dim} f^{-1}(\Gamma) \leq \operatorname{dim} f^{-1}(W)=n,
$$

which is impossible. Thus, by Lemma 1.1, there exists a Zariski open and dense subset $U \subset G_{m-n}\left(\mathbb{C}^{m}\right)$ such that for any $H \in U$ we have

$$
\begin{equation*}
\#(W \cap H)<\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma \cap H \subset\{0\} . \tag{3}
\end{equation*}
$$

Let, by (2), $W \cap H=\left\{w^{1}, \ldots, w^{p}\right\}$ and $L \in \mathbf{L}(m, n)$ be such that $H=\operatorname{ker} L$. Then

$$
(L \circ f)^{-1}(0)=f^{-1}\left(w^{1}\right) \cup \ldots \cup f^{-1}\left(w^{p}\right) .
$$

From (3) it follows that $w^{i} \notin \Gamma$ if $w^{i} \neq 0$. In consequence for $w^{i} \neq 0$ we have $\# f^{-1}\left(w^{i}\right)<\infty$. This gives (1). Since $\{L \in \mathbf{L}(m, n): \operatorname{ker} L \in U\}$ is a Zariski open and dense subset of $\mathbf{L}(m, n)$, we have the assertion in this case. This gives (i).

To prove (ii), let $X^{\prime}=f^{-1}\left(\{0\} \times \mathbb{C}^{m-1}\right)$ and $g: X^{\prime} \rightarrow \mathbb{C}^{m-1}$ be a regular mapping of the form

$$
g(x)=\left(f_{2}(x), \ldots, f_{m}(x)\right), \quad x \in X^{\prime} .
$$

Since $f_{1} \neq 0, \operatorname{dim} X^{\prime} \leq n-1$. From the first part of the proof, we now see that for the generic $M \in \mathbf{L}(m-1, n-1)$,

$$
\begin{equation*}
\#\left[(M \circ g)^{-1}(0) \backslash g^{-1}(0)\right]<\infty \tag{4}
\end{equation*}
$$

Obviously the set \mathcal{U} of all linear mappings $M=\left(L_{2}, \ldots, L_{n}\right) \in \mathbf{L}(m-1$, $n-1)$ of the form $L_{i}\left(w_{2}, \ldots, w_{m}\right)=L_{i}^{\prime}\left(w_{2}, \ldots, w_{n}\right)+L_{i}^{\prime \prime}\left(w_{n+1}, \ldots, w_{m}\right)$, $i=2, \ldots, n$, such that $\operatorname{Jac}\left[L_{2}^{\prime}, \ldots, L_{n}^{\prime}\right] \neq 0$ is a Zariski open and dense subset of $\mathbf{L}(m-1, n-1)$. Moreover, $\left(L_{2}^{\prime}, \ldots, L_{n}^{\prime}\right)^{-1} \circ M \in \Delta(m-1, n-1)$. So, for the generic $M \in \Delta(m-1, n-1)$ we have (4). Since $L=\left(w_{1}, M\right) \in \Delta^{0}(m, n)$ for any $M \in \mathcal{U}$, we obtain (ii).
2. The Łojasiewicz exponent at infinity. In this section we prove Theorem 2.1 on reduction of calculations of the Łojasiewicz exponent at infinity of a mapping $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ to the case $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping such that $\# f^{-1}(0)<\infty$. Let

$$
N_{\infty}(f)=\left\{\nu \in \mathbb{R}: \exists_{C>0, R>0} \forall_{x \in \mathbb{C}^{n}}|x|>R \Rightarrow|f(x)| \geq C|x|^{\nu}\right\},
$$

where $|\cdot|$ denotes the policylindric norm. We define the Lojasiewicz exponent at infinity of the mapping f as $\sup N_{\infty}(f)$ and denote it by $\mathcal{L}_{\infty}(f)$.

Theorem 2.1. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, m \geq n$, be a polynomial mapping such that $\# f^{-1}(0)<\infty$. Then for any $L \in \mathbf{L}(m, n)$ such that $\#(L \circ f)^{-1}(0)<\infty$
we have

$$
\begin{equation*}
\mathcal{L}_{\infty}(f) \geq \mathcal{L}_{\infty}(L \circ f) \tag{5}
\end{equation*}
$$

Moreover, for the generic $L \in \mathbf{L}(m, n)$,

$$
\begin{equation*}
\mathcal{L}_{\infty}(f)=\mathcal{L}_{\infty}(L \circ f) \tag{6}
\end{equation*}
$$

The proof of this theorem will be preceded by two lemmas.
Lemma 2.1. Let $V \subset \mathbb{C}^{m}$ be an algebraic set of dimension s. If $s<n$, then there exists a Zariski open and dense subset $U \subset \mathbf{L}(m, n)$ such that for any $L \in U$ and for any $\varepsilon>0$ there exists $\delta>0$ such that for any $y \in V$,

$$
|L(y)|<\delta \Rightarrow|y|<\varepsilon .
$$

Proof. There exists a Zariski open and dense subset $U_{1} \subset \mathbf{L}(m, n)$ such that for any $L \in U_{1}$,

$$
\begin{equation*}
V \cap \operatorname{ker} L \subset\{0\} \tag{7}
\end{equation*}
$$

(see Lemma 1.1(i)). By Sadullaev's Theorem ([モ], VII,7.1), there exists a Zariski open and dense subset $U \subset U_{1}$ such that for any $L \in U$ there exists $C_{L}>0$ such that $V \subset\left\{y \in \mathbb{C}^{m}:|y| \leq C_{L}(1+|L(y)|)\right\}$, which implies

$$
\begin{equation*}
y \in V \wedge|y|>2 C_{L} \Rightarrow|L(y)|>1 \tag{8}
\end{equation*}
$$

Let $L \in U$ and $\varepsilon>0$. If $0 \notin V$, then either $A_{1}=\left\{|L(y)|: y \in V \wedge|y| \leq 2 C_{L}\right\}$ is an empty set and we put $\delta_{1}=1$, or $A_{1} \neq \emptyset$ and we put $\delta_{1}=\min A_{1}$. By (7) we have $\delta_{1}>0$. Putting $\delta=\min \left(\delta_{1}, 1\right)$, by (8) and the definition of A_{1} we obtain $|L(y)| \geq \delta$ for any $y \in V$. This gives the assertion in this case. If $0 \in V$, then either $A_{2}=\left\{|L(y)|: y \in V \wedge \varepsilon \leq|y| \leq 2 C_{L}\right\}$ is an empty set and we put $\delta_{2}=1$, or $A_{2} \neq \emptyset$ and we put $\delta_{2}=\min A_{2}$. By (7) we have $\delta_{2}>0$. Putting $\delta=\min \left(\delta_{2}, 1\right)$, by (8) and the definition of A_{2} we obtain the assertion in this case. This ends the proof.

Lemma 2.2. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ with $m \geq n$ be a polynomial mapping. Then there exists a Zariski open and dense subset $U \subset \mathbf{L}(m, n)$ such that for any $L \in U$ and any $\varepsilon>0$ there exist $\delta>0$ and $r>0$ such that for any $x \in \mathbb{C}^{n}$,

$$
|x|>r \wedge|L \circ f(x)|<\delta \Rightarrow|f(x)|<\varepsilon
$$

Proof. Let $W=\overline{f\left(\mathbb{C}^{n}\right)}$. Then $\operatorname{dim} W \leq n$. Assume first that $\operatorname{dim} W<n$. Then, by Lemma 2.1, there exists a Zariski open and dense subset $U \subset$ $\mathbf{L}(m, n)$ such that for any $L \in U$ and any $\varepsilon>0$ there exists $\delta>0$ such that for any $y \in W$,

$$
|L(y)|<\delta \Rightarrow|y|<\varepsilon
$$

Then for any $x \in \mathbb{C}^{n}$,

$$
|L \circ f(x)|<\delta \Rightarrow|f(x)|<\varepsilon
$$

Thus we have the assertion in this case.

Let now $\operatorname{dim} W=n$. Then, by Proposition 3.15 of $[\mathrm{M}]$, we easily see that there exists an algebraic set $V \subset W$ such that $\operatorname{dim} V \leq n-1$ and the mapping

$$
\begin{equation*}
\left.f\right|_{\mathbb{C}^{n} \backslash f-1}(V): \mathbb{C}^{n} \backslash f^{-1}(V) \rightarrow W \backslash V \tag{9}
\end{equation*}
$$

is a finite covering. Thus it is a proper mapping. By Lemma 2.1, there exists a Zariski open and dense subset $U_{1} \subset \mathbf{L}(m, n)$ such that for any $L \in U_{1}$ and any $\varepsilon>0$ there exists $\delta>0$ such that for any $y \in V$,

$$
\begin{equation*}
|L(y)|<\delta \Rightarrow|y|<\varepsilon \tag{10}
\end{equation*}
$$

By Sadullaev's Theorem there exists a Zariski open and dense subset $U_{2} \subset$ $\mathbf{L}(m, n)$ such that for any $L \in U_{2}$ there exists $C_{L}>0$ such that

$$
\begin{equation*}
W \subset\left\{y \in \mathbb{C}^{m}:|y| \leq C_{L}(1+|L(y)|)\right\} \tag{11}
\end{equation*}
$$

Take any $L \in U_{1} \cap U_{2}$ and $\varepsilon>0$. Assume to the contrary that there exists a sequence $\left\{x_{n}\right\}$ such that $\left|x_{n}\right| \rightarrow \infty,\left|L\left(f\left(x_{n}\right)\right)\right| \rightarrow 0$ and

$$
\left|f\left(x_{n}\right)\right| \geq \varepsilon
$$

Without loss of generality, by (11), we may assume that $f\left(x_{n}\right) \rightarrow y_{0}$, where $y_{0} \in \mathbb{C}^{m}$. Since the mapping (9) is proper, we see that $y_{0} \in V$. So, $\left|y_{0}\right| \geq \varepsilon$ and $L\left(y_{0}\right)=0$. This contradicts (10) and ends the proof.

Proof of Theorem 2.1. Let

$$
U=\left\{L \in \mathbf{L}(m, n): \#\left[(L \circ f)^{-1}(0)\right]<\infty\right\}
$$

Let $L \in U$. Then there exists $M \in \mathbf{L}(m, m-n)$ such that $\widetilde{L}=(L, M) \in$ $\mathbf{L}(m, m)$ and $\mathcal{L}_{\infty}(f)=\mathcal{L}_{\infty}(\widetilde{L} \circ f)$. Obviously for $x \in \mathbb{C}^{n}$ we have $|\widetilde{L} \circ f(x)| \geq$ $|L \circ f(x)|$, so $\mathcal{L}_{\infty}(\widetilde{L} \circ f) \geq \mathcal{L}_{\infty}(L \circ f)$. This gives (5).

To prove the "moreover" part, let $W=\overline{f\left(\mathbb{C}^{n}\right)}$. Consider two cases: $\mathcal{L}_{\infty}(f)>0$ and $\mathcal{L}_{\infty}(f) \leq 0$.

First, assume that $\mathcal{L}_{\infty}(f)>0$. Since $\operatorname{dim} W \leq n$, Sadullaev's Theorem yields a Zariski open and dense subset $U_{1} \subset \mathbf{L}(m, n)$ such that for any $L \in U_{1}$ there exist $r>0$ and $M \in \mathbf{L}(m, m-n)$ such that $(L, M) \in \mathbf{L}(m, n)$ and for any $y \in W$,

$$
|y| \geq r \Rightarrow|M(y)| \leq|L(y)|
$$

So,

$$
\begin{equation*}
|y|>r \Rightarrow|(L, M)(y)|=|L(y)| \tag{12}
\end{equation*}
$$

By Proposition 1.1(i), $U \cap U_{1}$ contains a Zariski open and dense subset of $\mathbf{L}(m, n)$. Let $L \in U \cap U_{1}$ and $M \in \mathbf{L}(m, m-n)$ be as above. Since $\mathcal{L}_{\infty}(f)>0$, there exists $R_{1}>0$ such that $|f(x)|>r$ for any $x \in \mathbb{C}^{n}$ with $|x|>R_{1}$. Then, from (12),

$$
|x|>R_{1} \Rightarrow|(L, M) \circ f(x)|=|L \circ f(x)|
$$

Thus, $\mathcal{L}_{\infty}(L \circ f)=\mathcal{L}_{\infty}((L, M) \circ f)$. Since (L, M) is a linear automorphism, we have $\mathcal{L}_{\infty}((L, M) \circ f)=\mathcal{L}_{\infty}(f)$, so we obtain (6) in this case.

Consider the case $\mathcal{L}_{\infty}(f) \leq 0$. If $0 \notin W$, then $\mathcal{L}_{\infty}(f)=0$ and, by Lemma 2.2, for the generic $L \in \mathbf{L}(m, n)$, there exist $\delta>0$ and $r>0$ such that $|L \circ f(x)| \geq \delta$ for any $x \in \mathbb{C}^{n}$ with $|x|>r$. Thus $\mathcal{L}_{\infty}(L \circ f)=0$. This gives (6) in this case. Now, let $0 \in W$ and let $C_{0}(W)$ be the tangent cone to W at $0 \in \mathbb{C}^{m}$ (see [W], p. 510). By Sadullaev's Theorem, there exists a Zariski open and dense subset $U_{2} \subset \mathbf{L}(m, n)$ such that for any $L \in U_{2}$ there exists $M \in \mathbf{L}(m, m-n)$ such that $(L, M) \in \mathbf{L}(m, m)$ and for any $y \in C_{0}(W)$,

$$
|M(y)| \leq \frac{1}{2}|L(y)|
$$

Thus there exists $\varepsilon>0$ such that for any $y \in W$ with $|y|<\varepsilon$,

$$
|M(y)| \leq|L(y)|
$$

Hence, by Lemma 2.2, for $L \in U_{2} \cap U$ there exist $\delta>0$ and $r>0$ such that for any $x \in \mathbb{C}^{n}$ with $|x|>r$ we have

$$
|L \circ f(x)|<\delta \Rightarrow|f(x)|<\varepsilon
$$

so, there exists $M \in \mathbf{L}(m, m-n)$ such that $(L, M) \in \mathbf{L}(m, m)$ and

$$
|L \circ f(x)|<\delta \Rightarrow|(L, M) \circ f(x)|=|L \circ f(x)|
$$

Thus, since $\mathcal{L}_{\infty}(f) \leq 0$, we have $\mathcal{L}_{\infty}(L \circ f)=\mathcal{L}_{\infty}((L, M) \circ f)$. Since (L, M) is a linear automorphism, it follows that $\mathcal{L}_{\infty}(f)=\mathcal{L}_{\infty}((L, M) \circ f)$, so we have (6) in this case.

This ends the proof.
3. Corollaries. From Theorem 2.1 we easily obtain the following corollary.

Corollary 3.1. Let $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping, where $m \geq n \geq 1$ and $\# f^{-1}(0)<\infty, d_{j}=\operatorname{deg} f_{j}>0$,

$$
d_{2} \geq \ldots \geq d_{m} \geq d_{1}
$$

Then for the generic $L=\left(L_{1}, \ldots, L_{n}\right) \in \Delta^{0}(m, n)$ we have

$$
\begin{gather*}
\operatorname{deg} L_{j} \circ f=d_{j} \quad \text { for } j=1, \ldots, n \tag{13}\\
\#(L \circ f)^{-1}(0)<\infty \tag{14}\\
\mathcal{L}_{\infty}(f) \geq \mathcal{L}_{\infty}(L \circ f) \tag{15}
\end{gather*}
$$

Proof. By Proposition 1.1(ii) and Theorem 2.1, for the generic $L \in$ $\Delta^{0}(m, n)$ we have (14) and (15). By the assumption on the degrees d_{j} and the definition of $\Delta^{0}(m, n)$, for the generic $L \in \Delta^{0}(m, n)$ we have (13). This ends the proof.

For $\left(d_{1}, \ldots, d_{m}\right) \in \mathbb{Z}^{m}$, define

$$
B\left(n ; d_{1}, \ldots, d_{m}\right)= \begin{cases}d_{1} \ldots d_{m} & \text { if } m \leq n \\ d_{1} \ldots d_{n-1} d_{m} & \text { if } m>n\end{cases}
$$

Proposition 1.10 of $[\mathrm{K}]$ gives immediately
Kollár inequality. Let $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping such that $\#\left(f^{-1}(0)\right)<\infty$. Let $d_{j}=\operatorname{deg} f_{j}, d_{1} \geq \ldots \geq d_{m}>0$. Then

$$
\begin{equation*}
\mathcal{L}_{\infty}(f) \geq d_{m}-B\left(n ; d_{1}, \ldots, d_{m}\right) \tag{*}
\end{equation*}
$$

For $m=n=2$ this inequality was obtained by Chądzyński [C]. The proof of Proposition 1.10 in [K] is based on Proposition 4.1 of [K], where it is assumed that $m \leq n$. Reduction of the case $m>n$ to the case $m \leq n$ is not clearly explained. Corollary 3.1 gives us such a reduction:

Corollary 3.2. Under the assumptions of the Kollár inequality, if (*) holds for $m \leq n$, then it also holds for $m>n$.

Proof. For $m>n$ the inequality (*) follows from Corollary 3.1 and from (*) for $m \leq n$.

Let us give some corollaries on proper polynomial mappings.
Corollary $3.3\left(\left[\mathrm{P}_{1}\right]\right.$, for $\left.m=n\right)$. Let $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping with $d_{i}=\operatorname{deg} f_{i}, d_{1} \geq \ldots \geq d_{m}>0$. If f is a proper mapping, then

$$
\begin{equation*}
\mathcal{L}_{\infty}(f) \geq d_{m} / B\left(n ; d_{1}, \ldots, d_{m}\right) . \tag{16}
\end{equation*}
$$

If

$$
\begin{equation*}
\mathcal{L}_{\infty}(f)=d_{m} / B\left(n ; d_{1}, \ldots, d_{m}\right), \tag{17}
\end{equation*}
$$

then f is injective, and so $\mathbb{C}\left[f_{1}, \ldots, f_{m}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
Proof. From the assumption we have $m \geq n$. Since f is a proper mapping, it is well known that $\mathcal{L}_{\infty}(f)>0$ (see [CK $\left.{ }_{1}\right]$, Corollary 2). From Theorem 2.1 it follows that there exists $L=\left(L_{1}, \ldots, L_{n}\right) \in \Delta(m, n)$ such that

$$
\begin{gather*}
\operatorname{deg} L_{j} \circ f=d_{j}, \quad j=1, \ldots, n, \tag{18}\\
\mathcal{L}_{\infty}(f)=\mathcal{L}_{\infty}(L \circ f) . \tag{19}
\end{gather*}
$$

Then $\mathcal{L}_{\infty}(L \circ f)>0$, and so $L \circ f$ is a proper mapping. Thus, by (18) and Corollary 1.13 of $\left[\mathrm{P}_{1}\right]$ we have

$$
\mathcal{L}_{\infty}(L \circ f) \geq \frac{1}{d_{1} \ldots d_{n-1}}=\frac{d_{m}}{B\left(n ; d_{1}, \ldots, d_{m}\right)} .
$$

Now (19) gives (16).

Assume that (17) holds. Then, by (19),

$$
\mathcal{L}_{\infty}(L \circ f)=\frac{d_{n}}{d_{1} \ldots d_{n}},
$$

so, by Corollary 1.13 of $\left[\mathrm{P}_{1}\right], L \circ f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a polynomial automorphism. This shows that f is injective, completing the proof.

Remark 3.1. Let $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping with $d_{i}=\operatorname{deg} f_{i}, d_{1} \geq \ldots \geq d_{m}>0$. If

$$
\mathcal{L}_{\infty}(f)<\frac{d_{m}}{B\left(n ; d_{1}, \ldots, d_{m}\right)},
$$

then $\mathcal{L}_{\infty}(f) \leq 0$. Indeed, by Corollary $3.3, f$ is not a proper mapping. So, by Corollary 2 of $\left[\mathrm{CK}_{1}\right], \mathcal{L}_{\infty}(f) \leq 0$.

Corollary 3.4 ([C] for $n=m=2,\left[\mathrm{P}_{1}\right]$ for $m=n$). Let $f=$ $\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping with $d_{i}=\operatorname{deg} f_{i}, d_{1} \geq$ $\ldots \geq d_{m}>0$. If

$$
B\left(n ; d_{1}, \ldots, d_{m}\right)-d_{m}<\# f^{-1}(0)<\infty,
$$

then f is a proper mapping. In particular the ring extension $\mathbb{C}\left[f_{1}, \ldots, f_{m}\right] \subset$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is integral.

Proof. From the assumption we have $m \geq n$. By Corollary 3.1, there exists $L=\left(L_{1}, \ldots, L_{n}\right) \in \mathbf{L}(m, n)$ such that

$$
\begin{gather*}
\operatorname{deg} L_{j} \circ f=d_{j}, \quad j=1, \ldots, n-1, \quad \operatorname{deg} L_{n} \circ f=d_{m}, \tag{20}\\
\# f^{-1}(0) \leq \#(L \circ f)^{-1}(0)<\infty, \tag{21}\\
\mathcal{L}_{\infty}(f) \geq \mathcal{L}_{\infty}(L \circ f) . \tag{22}
\end{gather*}
$$

By (21) and the assumption, $B\left(n ; d_{1}, \ldots, d_{m}\right)-d_{m}<\#(L \circ f)^{-1}(0)<\infty$, so $L \circ f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a dominating mapping and for the generic $y \in \mathbb{C}^{n}$,

$$
B\left(n ; d_{1}, \ldots, d_{m}\right)-d_{m}<\#(L \circ f)^{-1}(y)<\infty .
$$

Hence, from (20) and Proposition 1.3 of $\left[\mathrm{P}_{1}\right]$ it follows that the mapping $L \circ f$ is proper. Thus, from Corollary 3.3, $\mathcal{L}_{\infty}(L \circ f)>0$. So, by $(22), \mathcal{L}_{\infty}(f)>0$. In consequence f is a proper mapping. The second assertion is an algebraic equivalent of the first one.

Remark 3.2. Let $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial mapping with $d_{i}=\operatorname{deg} f_{i}, d_{1} \geq \ldots \geq d_{m}>0$. From Corollaries 3.3 and 3.4 we see that if $\max _{j=1, \ldots, m} d_{j}>1$ and

$$
B\left(n ; d_{1}, \ldots, d_{m}\right)-d_{m}<\# f^{-1}(0)<\infty,
$$

then

$$
\mathcal{L}_{\infty}(f)>d_{m} / B\left(n ; d_{1}, \ldots, d_{m}\right) .
$$

Acknowledgments．I am deeply grateful to Professors Jacek Chądzyń－ ski and Tadeusz Krasiński for their valuable comments and advice．

References

［ATW］R．Achilles，P．Tworzewski and T．Winiarski，On improper isolated intersection in complex analytic geometry，Ann．Polon．Math． 51 （1990），21－36．
［BY］C．A．Berenstein et A．Yger，Une formule de Jacobi et ses conséquences，Ann． Sci．École Norm．Sup． 24 （1991），363－377．
［ B_{1} ］W．D．Brownawell，Bounds for the degree in Nulstellensatz，Ann．of Math． 126 （1987），577－592．
$\left[\mathrm{B}_{2}\right] \quad$ ，Distance to common zeros and lower bounds for polynomials，in：Approxi－ mations diophantiennes et nombers transcendants（Luminy，1990），de Gruyter， Berlin，1992，51－60．
［C］J．Chądzyński，On proper polynomial mappings，Bull．Acad．Polon．Math． 31 （1983），115－120．
［CK ${ }_{1}$ ］J．Chądzyński and T．Krasiński，A set on which the Eojasiewicz exponent at infinity is attained，Ann．Polon．Math． 67 （1997），191－197．
$\left[\mathrm{CK}_{2}\right]-$ ，一，Exponent of growth of polynomial mappings of \mathbb{C}^{2} into \mathbb{C}^{2} ，in：Singu－ larities，S．Łojasiewicz（ed．），Banach Center Publ．20，PWN，Warszawa，1988， 147－160．
$\left[\mathrm{CK}_{3}\right]$－，—，Sur l＇exponent de Eojasiewicz à l＇infini pour les applications polyno－ miales de \mathbb{C}^{2} dans \mathbb{C}^{2} et les composantes des automorphismes polynomiaux de \mathbb{C}^{2} ，C．R．Acad．Sci．Paris Sér．I Math． 315 （1992），1399－1402．
$\left[\mathrm{CK}_{4}\right]$－，一，On the Eojasiewicz exponent at infinity for polynomial mappings from \mathbb{C}^{2} to \mathbb{C}^{2} and components of polynomial automorphisms，Ann．Polon．Math． 57 （1992），291－302．
$\left[\mathrm{CK}_{5}\right]-$ ，一，On Kollár＇s type estimations of polynomial mappings，Univ．Iagel．Acta Math． 37 （1999），69－74．
$[\mathrm{H}] \quad$ L．Hörmander，On the division of distribution by polynomials，Ark．Mat． 3 （1958），555－568．
［JKS］S．Ji，J．Kollár and B．Shiffman，A global Łojasiewicz inequality for algebraic varieties，Trans．Amer．Math．Soc． 329 （1992），813－818．
［K］J．Kollár，Sharp effective Nullstellensatz，J．Amer．Math．Soc． 1 （1988），963－975．
［モ］S．Łojasiewicz，Introduction to Complex Analytic Geometry，Birkhäuser，Basel， 1991.
［M］D．Mumford，Algebraic Geometry I．Complex Projective Varieties，Springer， Berlin， 1976.
［ $\left.\mathrm{P}_{1}\right] \quad$ A．Płoski，On the growth of proper polynomial mappings，Ann．Polon．Math． 45 （1985），297－309．
［ P_{2} ］－，A note on the Lojasiewicz exponent at infinity，Bull．Soc．Sci．Lettres Łódź 44 （1994），1－15．
［PT］A．Płoski and P．Tworzewski，A separation condition for polynomial mappings， Bull．Polish Acad．Sci．Math． 44 （1996），327－331．
［S］B．Shiffman，Degree bounds for the division problem in polynomial ideals，Michi－ gan Math．J． 36 （1989），163－171．
[W] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496-549.
Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: spodziej@imul.uni.lodz.pl

> Reçu par la Rédaction le 30.4.1999
> Révisé le 21.12.2000 et 28.9.2001

[^0]: 2000 Mathematics Subject Classification: Primary 14R99; Secondary 32H35.
 Key words and phrases: polynomial mapping, Łojasiewicz exponent at infinity.
 This research was partially supported by KBN Grant No. 2 P03A 00718.

