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Width asymptotics for
a pair of Reinhardt domains

by A. Aytuna (Ankara), A. Rashkovskii (Kharkov) and
V. Zahariuta (Rostov-na-Donu and Ankara)

Abstract. For complete Reinhardt pairs “compact set – domain” K ⊂ D in Cn, we
prove Zahariuta’s conjecture about the exact asymptotics

ln ds(A
D
K) ∼ −

(
n! s

τ(K,D)

)1/n

, s→∞,

for the Kolmogorov widths ds(ADK) of the compact set in C(K) consisting of all analytic
functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser plurica-
pacity of K with respect to D.

1. Introduction. The Kolmogorov widths of a compact set A in a Ba-
nach space X are the numbers

ds(A) = ds(A,X) := inf
L

sup
x∈A

inf{‖x− y‖X : y ∈ L}, s ∈ Z+,

where L runs through the set of all s-dimensional subspaces of X.
Let K be a compact subset of an open set D ⊂ Cn and ADK be the

subset of C(K) consisting of all analytic functions in D whose moduli do
not exceed 1 in D. For quite general pairs (K,D), the weak asymptotics

(1) ln ds(ADK) � s1/n, s→∞,
is known to be true; it is equivalent to the result of Kolmogorov [8] on the
asymptotics for the ε-entropy of the set ADK :

(2) Hε(ADK) �
(

ln
1
ε

)n+1

, ε→ 0
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(the equivalence of the asymptotics (1) and (2) follows from the results of
Mityagin [10] and Levin–Tikhomirov [9]). Kolmogorov also suggested the
conjecture that in the one-dimensional case, for quite general pairs (K,D),
the strong asymptotics

(3) ln ds(ADK) ∼ − s

τ(K,D)

should be true, where τ(K,D) is the Green capacity of K with respect to
D (or the capacity of the condenser (K,D), see e.g. [7]). This conjecture
was confirmed by many authors ([5, 3, 17, 11, 6, 16, 14]; for more details
see [19]).

The problem of existence of the strong asymptotics

(4) ln ds(ADK) ∼ −σs1/n

for several variables was considered in [19], where some estimates from above
and from below for the numbers ds(ADK) were obtained and, as a conse-
quence, some sufficient conditions for the existence of the asymptotics (4)
were presented. Under those conditions (they seem to be quite general, al-
though it is not clear yet how to check them even for relatively simple specific
pairs (K,D)), the constant σ has a natural expression:

(5) σ =
(

n!
τ(K,D)

)1/n

,

where τ(K,D) = (2π)−nC(K,D) and C(K,D) is the pluricapacity of K
with respect to D, introduced by Bedford and Taylor [4]. On the ground of
this result it was conjectured ([19], Conjecture 3.1.3) that this asymptotics
should be true under quite general assumptions about the pairs (K,D).

Here we prove this conjecture for any pair K = D0, D = D1, where
Dν , ν = 0, 1, are bounded complete logarithmically convex Reinhardt (i.e.
n-circular) domains (Theorem 5). The main steps of the proof are as follows.
First, the strong asymptotics (4) is valid with some constant σ expressed
through the support functions of the domains Dν (see Section 3), which was
proved independently by L. Ronkin and V. Zahariuta (unpublished). On the
other hand, the pluripotential ω(D1,D0; z) can also be represented by means
of the support functions [19]. To compute the pluricapacity, we reduce the
problem to the real Monge–Ampère operator for convex functions, which
can be expressed in geometric terms [13]. The calculation gives us exactly
the value σ obtained.

2. Preliminaries. Let Ω be a bounded pseudoconvex domain in Cn
and K be a compact subset of Ω. The Green pluripotential ω(Ω,K; z) of K
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with respect to Ω is defined as

ω(Ω,K; z) = lim
ζ→z

sup{u(ζ) : u ∈ PSH(Ω), u ≤ 1, u|K ≤ 0},

PSH(Ω) being the cone of all plurisubharmonic functions in Ω.
The image (ddcu)n of any bounded plurisubharmonic function u in Ω

under the complex Monge–Ampère operator (see [4]) is a non-negative Borel
measure on Ω (here d = ∂+ ∂, dc = i(∂− ∂)). The pluricapacity τ(K,Ω) of
K with respect to Ω (in other words, of the condenser (K,Ω)) is the value

(6) τ(K,Ω) = (2π)−n
�

K

(ddcω(Ω,K; z))n,

which differs from the Bedford–Taylor pluricapacity ([4]) only by a constant
factor.

Given a bounded complete logarithmically convex Reinhardt domain
D ⊂ Cn, its support function is

hD(θ) = sup
{∑

θk log |zk| : z ∈ D
}
, θ ∈ Rn+,

where Rn+ = {θ = (θν) ∈ Rn : θν ≥ 0, ν = 1, . . . , n}. It is a convex
homogeneous function in Rn+ such that

(7) D =
{
z ∈ Cn :

∑
θk log |zk| ≤ hD(θ), θ ∈ Σ

}
,

where Σ := {θ = (θ1, . . . , θn) ∈ Rn+ :
∑n
k=1 θk = 1}.

Let Dν , ν = 1, 2, be a pair of bounded complete logarithmically convex
Reinhardt domains, and D0 ⊂ D1. The following formula for the pluripo-
tential of D0 with respect to D1 was given in [19], Proposition 1.4.3:

(8) ω(D1,D0; z) = sup
{∑

θk log |zk| − hD0(θ)
hD1(θ)− hD0(θ)

: θ ∈ Σ
}

for z ∈ D1 \D0, and ω(D1,D0; z) = 0 for all z ∈ D0 (see Lemmas 1 and 4
below). Note that, due to homogeneity of the support functions, the set Σ
can be changed to Rn+ in (7) and (8).

3. Width asymptotics. First we consider a Hilbert version of the prob-
lem about the asymptotics (4), which is much more convenient to study.
Let Dν , ν = 0, 1, be bounded complete logarithmically convex Reinhardt
domains such that D0 ⊂ D1 and Hν be any pair of Hilbert spaces such that
there are linear continuous embeddings

(9) A(D1) ⊂ H1 ⊂ A(D1) ⊂ A(D0) ⊂ H0 ⊂ A(D0).

Consider a common orthogonal basis {ej(z)}i∈N for the spaces H0 and H1,
which we suppose being normalized and rearranged in such a way that

(10) ‖ej‖H0 = 1, µj(H0,H1) := ‖ej‖H1 ↑ ∞.
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The following fact is a particular case of well known results ([19], 3.1.2, see
also [18, 1]).

Lemma 1. Let H0, H1 be any pair of Hilbert spaces complying with the
linear continuous embeddings (9) and {ej(z)} be their common orthogonal
basis satisfying the conditions (10). Then

(11) ω(D1,D0; z) = lim sup
ζ→z

lim sup
j→∞

ln |ej(ζ)|
lnµj(H0,H1)

for z ∈ D1 \D0. Therefore we have the asymptotics

lnµj(H0,H1) ∼ − ln dj(A
D0
D1

), j →∞.

Thus the problem about the asymptotics (4), in the caseK=D0, D=D1,
is reduced to the problem about the asymptotics

(12) lnµj(H0,H1) ∼ σj1/n, j →∞,
in view of the fact that neither the existence of such asymptotics nor the
constant σ depends on the concrete choice of the spaces H0, H1 ([19], 3.1.2).
Therefore we choose our Hilbert spaces in a way most convenient for cal-
culations, so that the system of all monomials gj(z) = zk(j) enumerated
according to non-decreasing degrees s(j) := k1(j) + . . .+ kn(j) ↑ ∞ forms a
common orthogonal basis for H0, H1. Namely, we set (ν = 0, 1)

(13) Hν :=
{
x =

∞∑

j=1

cjgj : ‖x‖Hν :=
( ∞∑

j=1

|cj|2 exp 2hDν (k(j))
)1/2

<∞
}
.

It can be easily checked that the Hilbert spaces (13) satisfy the conditions
of Lemma 1 and, by construction, we have

(14) lnµj(H0,H1) = hD1(k(j))− hD0(k(j)), j ∈ N.
Instead of directly studying the asymptotics of this sequence it is more
convenient to consider its counting function

ϕ(t) := |{j : lnµj(H0,H1) ≤ t}| = |{k ∈ Zn+ : hD1(k)− hD0(k) ≤ t}|,
where |A| denotes the number of elements of a finite set A. Then to prove
the asymptotics (12) it is sufficient to show that (see, e.g., [2])

ϕ(t) ∼ (t/σ)n, t→∞.
The value ϕ(t) is just the number of points k ∈ Zn+ lying in the closed
domain tΘ, t > 0, where

(15) Θ = {θ ∈ Rn+ : hD1(θ)− hD0(θ) ≤ 1}.
Now we use the following elementary fact (see, e.g., [15]).
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Lemma 2. Let G be a closed domain in Rn measurable in the sense of
Jordan and ϕ(t) := |{k ∈ Zn : k ∈ tG}|. Then

ϕ(t) ∼ tn VolG, t→∞.
Since the domain (15) is obviously measurable in the sense of Jordan,

the following theorem is proved.

Theorem 3. For K,D satisfying the condition of this section, the asym-
ptotics (4), (12) hold with the constant

σ =
(

1
VolΘ

)1/n

.

From (11), due to the special choice of Hilbert spaces, we can also obtain

Lemma 4. The formula (8) is true.

Since the proof is only sketched in [19], here we consider it in more detail.
Applying (11) to the basis ej(z) = exp{−hD0(k(j))}zk(j), j ∈ N, and taking
into account (14), we get

ω(D1,D0; z) = lim sup
ζ→z

lim sup
j→∞

∑n
s=1 ks(j) ln |zs| − hD0(k(j))
hD1(k(j))− hD0(k(j))

.

Setting θ(j) = (θs(j)) := k(j)/|k(j)| and using the homogeneity of the
support functions, we can rewrite the right-hand side of this equality in the
form (the first upper limit can be dropped, because the expression within it
turns out to be continuous)

sup
θ∈Σ

lim sup
θ(j)→θ

∑n
s=1 θs(j) ln |zs| − hD0(θ(j))
hD1(θ(j))− hD0(θ(j))

= sup
θ∈Σ

∑n
s=1 θs ln |zs| − hD0(θ)
hD1(θ)− hD0(θ)

,

which completes the proof of the lemma.

In the next section we will compute the pluricapacity of the condenser
(D0,D1); then the following main result will be derived immediately from
Theorem 3.

Theorem 5. For any pair (K,D) with K = D0 ⊂ D1 = D, were Dν are
bounded complete logarithmically convex Reinhardt domains, the asymptotics
(4) is true with the constant (5).

4. Pluricapacity of a pair of Reinhardt domains. In what follows
we will employ the correspondence between multicircular domains in Cn and
convex ones in Rn by means of the transformation

Exp t = (et1 , . . . , etn), t = (t1, . . . , tn) ∈ Rn.
Indeed, the pull-back function

(16) g(t) := (Exp∗ ω)(t) = ω(D1,D0; Exp t)
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is convex on the convex set G1 = {t ∈ Rn : Exp t ∈ D1} and identically
zero on G0 = {t ∈ Rn : Exp t ∈ D0}.

Then the complex Monge–Ampère operator (ddc)n is transformed into
the real Monge–Ampère operatorMA defined for smooth convex functions
v as

MA[v](t) = det
(
∂2v(t)
∂tj∂tk

)

and extended as a positive measure to all convex functions in Rn (see [13]).
So, for any bounded plurisubharmonic function u in D1 which depends only
on |z1|, . . . , |zn| and for any multicircular Borel set A ⊂⊂ D1 we have

(17)
�

A

(ddcu)n = (2π)nn!MA[Exp∗ u](Ã)

with Ã = {t ∈ Rn : Exp t ∈ A}, since (ddcu)n cannot charge the pluripolar
set A ∩ {z : z1 . . . zn = 0} (see details in [12]). Moreover, by [13], for any
convex function v in a domain G1 and any measurable set B⊂G1, we have
(18) MA[v](B) = Vol γ(B, v),
where

γ(B, v) =
⋃

t0∈B

{
b ∈ Rn : v(t) ≥ v(t0) +

∑

k

bk(tk − t0k) ∀t ∈ G1

}

is the gradient image of the set B for the surface {y = v(x) : x ∈ G1}.
Let F := {t ∈ Rn : Exp t ∈ ∂D0}. The Monge–Ampère measure (ddcω)n

is supported by ∂D0, so, by (16) and (17), we have
�

D1

(ddcω)n =
�

∂D0

(ddcω)n = (2π)nn!MA[g](F ).

Thus, due to (6), (18),

(19) τ(D0,D1) = n! Vol γ(F, g).

Note that since g = 0 on F ,

γ(F, g) =
⋃

t0∈F

{
b ∈ Rn : g(t) ≥

∑

k

bk(tk − t0k) ∀t ∈ G1

}
.

Lemma 6. The relation γ(F, g) = Θ holds with Θ defined in (15).

Proof. Let b ∈ γ(F, g). Then there is a point t0 ∈ F such that g(t) ≥∑
k bk(tk− t0k) for all t ∈ G1. In particular,

∑
k bk(tk− t0k) ≤ 0 for all t ∈ G0

and so b ∈ Rn+.
For each b ∈ γ(F, g) we have

hD1(b)− hD0(b) ≤ sup
t∈G1

∑

k

bk(tk − t0k) ≤ 1

and thus γ(F, g) ⊂ Θ.
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Conversely, let b ∈ Θ. Then hD0(b) =
∑
k bkt

0
k for some t0 ∈ F . Take

any t ∈ G1. If
∑
k bk(tk − t0k) ≤ 0, then certainly

∑
k bk(tk − t0k) ≤ g(t). On

the other hand if
∑
k bk(tk − t0k) > 0, then, taking into account (8),

∑

k

bk(tk − t0k) ≤
∑
k bk(tk − t0k)

hD1(b)− hD0(b)
=
∑
k bktk − hD0(b)

hD1(b)− hD0(b)

≤ sup
a∈Rn+

∑
k aktk − hD0(a)

hD1(a)− hD0(a)
= g(t),

and so b ∈ γ(F, g), which completes the proof.

Lemma 6 together with (19) implies

Theorem 7. τ(D0,D1) = n! VolΘ.

Comparing this fact with Theorem 3, we get Theorem 5 immediately.
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