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Nonexistence results for the Cauchy problem

of some systems of hyperbolic equations

by Mokhtar Kirane (Amiens) and
Salim Messaoudi (Dhahran)

Abstract. We consider the systems of hyperbolic equations

{

utt = ∆(a(t, x)u) + ∆(b(t, x)v) + h(t, x)|v|p, t > 0, x ∈ R
N ,

vtt = ∆(c(t, x)v) + k(t, x)|u|q, t > 0, x ∈ R
N ,

(S1)

{

utt = ∆(a(t, x)u) + h(t, x)|v|p, t > 0, x ∈ R
N ,

vtt = ∆(c(t, x)v) + l(t, x)|v|m + k(t, x)|u|q, t > 0, x ∈ R
N ,

(S2)

{

utt = ∆(a(t, x)u) + ∆(b(t, x)v) + h(t, x)|u|p, t > 0, x ∈ R
N ,

vtt = ∆(c(t, x)v) + k(t, x)|v|q, t > 0, x ∈ R
N ,

(S3)

in (0,∞) × R
N with u(0, x) = u0(x), v(0, x) = v0(x), ut(0, x) = u1(x), vt(0, x) = v1(x).

We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B

solutions to the systems blow up in finite time.

1. Introduction. We consider the three nonlinear systems of hyperbolic
equations (S1)–(S3) where N, p, q, m ≥ 1 and pq > 1, and a(t, x), b(t, x),
c(t, x) are positive, bounded and measurable functions. The initial values
are not necessarily compactly supported; however, they satisfy

Condition (H1).
�

RN

ut(0, x)ξ(0, x) dx ≥ 0,
�

RN

vt(0, x)ξ(0, x) dx ≥ 0

where

ξ(t, x) = φλ
(

t2 + |x|2
R2

)

, R > 0, λ large,(1)
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and φ ∈ C2(R; R
+) is such that

φ(r) =

{

1 for r ≤ 1,
0 for r ≥ 2,

0 ≤ φ ≤ 1 and r|φ′(r)| ≤ C for any r > 0.

Concerning the functions h(t, x) ≥ 0, k(t, x) ≥ 0 and l(t, x) ≥ 0, we
assume that they satisfy:

Condition (H2).










h(τR, yR) ≃ C0R
µ,

k(τR, yR) ≃ C0R
κ,

l(τR, yR) ≃ C0R
λ,

(2)

for R large, and for any (τ, y) in a bounded subset of R
+ × R

N ; C0 is a
positive constant.

For example:

h(t, x) = tσ1 |x|̺1 , k(t, x) = tσ2 |x|̺2 , l(t, x) = tσ3 |x|̺3 .

Before discussing our results in detail, let us briefly recall some results
related to the single equation

utt = ∆u + |u|p, x ∈ R
N , t > 0,(3)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
N .

(i) For N = 1, if 1 < p < ∞, every nontrivial solution of (3) blows up
in finite time.

(ii) For N = 2, 3, there exists a “critical index” pc(N) such that if 1 < p
≤ pc(N) then (3) has no nontrivial global solutions, while it admits non-
trivial global small solutions if p > pc(N), where 2pc(2) = 3 +

√
17 and

pc(3) = 1 +
√

2.

Statement (i) was established by Glassey [3], Kato [5], and Sideris [10].
In statement (ii) the subcritical case was proved by John [4] when N = 3
and by Glassey [3] for N = 2, 3; the critical case was settled by Schaeffer [9]
for N = 2, 3; and the supercritical case was proved by Glassey [3] when
N = 2 and by John [4] for N = 3. A valuable review of results on blowing
up solutions to evolution equations is presented in [6].

Remark 1. The case of (S1) with a(t, x) = c(t, x) = h(t, x) = k(t, x) = 1,
b = 0 was considered by Keng Deng [1], [2]. His method of proof is based on
the explicit formula for the required solution in terms of the fundamental
solution for the wave equation. His method of proof is inoperative in our
situation.

Our method of proof has been introduced in [7] and [8].
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2. Results. In this section, the results concerning the nonexistence of
nontrivial global solutions to (S1)–(S3) are presented.

Definition 1. For 0 < T ≤ ∞ and u0, u1, v0, v1 ∈ L1
loc(R

N ), we say
that (u, v) is a weak solution of (S1) if u, v are locally integrable functions
on R

+ ×R
N , u ∈ Lq

loc(R
+ ×R

N , k(t, x) dt dx) := {u : R
+ × R

N → R | for
any compact K,

	
K |u|q k(t, x) dt dx <∞}, v ∈ Lp

loc(R
+ × R

N , h(t, x) dt dx),
and for all 0 < S < T ,

(4)
S�

0

�

RN

(h|v|pϕ − uϕtt + au∆ϕ + bv∆ϕ) dt dx

−
�

RN

u0(x)ϕt(0, x) dx +
�

RN

u1(x)ϕ(0, x) dx = 0,

and

(5)
S�

0

�

RN

(k|u|qϕ − vϕtt + cv∆ϕ) dt dx

−
�

RN

v0(x)ϕt(0, x) dx +
�

RN

v1(x)ϕ(0, x) dx = 0

for all 0 ≤ ϕ ∈ C2([0, S] × R
N ), with ϕ(S, x) = 0 on R

N and ϕ = 0 for
t ∈ [0, S] and |x| → ∞. If T = ∞, we say that (u, v) is a global weak

solution.

The definitions of the solutions to (S2) and (S3) are clear.

Theorem 1. Assume that

N ≤ B := min

(

µ + 1 + p(κ + q + 2)

pq − 1
,
µ + p + 1

p − 1

)

and (H1), (H2) are satisfied. Then the system (S1) admits no solutions

defined on R
+ × R

N .

Theorem 2. Assume that m > p,

N ≤ B :=
1

pq − 1
max(µ + p(κ + 2 + q), κ + q(µ + 2 + p)),

and (H1), (H2) are satisfied. Then the system (S2) admits no solutions

defined on R
+ × R

N .

Theorem 3. Assume that

N ≤ B := min

{

p + 1 + µ

p − 1
,
q + 1 + κ

q − 1

}

,

and (H1), (H2) are satisfied. Then the system (S3) admits no solutions

defined on R
+ × R

N .
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Remark. The integrability assumption on u1, v1 can be relaxed and the
sign condition replaced by

0 ≤ lim sup
R→∞

�

RN

u1(x)φ(|x|2/R2) dx, 0 ≤ lim sup
R→∞

�

RN

v1(x)φ(|x|2/R2) dx.

For the proofs of the theorems concerning (S1) and (S3), the following
lemma is used in a crucial manner.

Lemma. Assume that α, β, y ∈ [0,∞) and σ ∈ (0, 1). Then

y ≤ α + βyσ ⇒ y ≤ α

1 − σ
+ β1/(1−σ).(6)

Proof. For all α ∈ (0,∞) the equation

x = α + βxσ(7)

has exactly one solution x = x(α) ∈ (0,∞). Hence (7) defines a function

x : α ∈ (0,∞) 7→ x(α) ∈ (0,∞).

Differentiating (7) with respect to α yields after some calculations

x′(α) =
x(α)

(1 − σ)x(α) + σα
,

hence

x′(α) <
1

1 − σ
for all α ∈ (0,∞).(8)

Thus

x(α) ≤ α max
α≥0

x′(α) + x(0) =
α

1 − σ
+ β1/(1−σ).

Since y ≤ x(α) this proves the assertion (6).

Proof of Theorem 1. Assume to the contrary that (S1) has a global
solution (u, v). If we take as a test function the function ξ defined in (1),
we obtain �

h|v|pξ ≤
�
(uξtt − au∆ξ − bv∆ξ);

in the above inequality and hereafter,
	

:=
	
supp ξ (supp stands for support).

Writing �
|u| · |ξtt| =

�
|u|(|ξ|k)1/q(|ξ|k)−1/q|ξtt|,

�
a|u| · |∆ξ| =

�
a|u|(|ξ|k)1/q(|ξ|k)−1/q|∆ξ|,

�
b|v| · |∆ξ| =

�
b|v|(|ξ|h)1/p(|ξ|h)−1/p|∆ξ|,

and using the Hölder inequality, we obtain
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�
h|v|pξ dx ≤

( �
k|u|qξ

)1/q{( �
k−q′/qξ−q′/q|ξtt|q

′
)1/q′

(9)

+ ‖a‖∞
( �

k−q′/qξ−q′/q|∆ξ|q′
)1/q′}

+ ‖b‖∞
( �

h|v|pξ
)1/p( �

h−p′/pξ−p′/p|∆ξ|p′
)1/p′

where 1/p+1/p′ = 1/q +1/q′ = 1, ‖a‖∞ := supt,x |a(t, x)|, because of (H1),
and the choice of the test function which ensures�

RN

u0(x)ξt(0, x) dx = 0,(10)

since

ξt = 2λtR−2φ′

(

t2 + |x|2
R2

)

φλ−1
(

t2 + |x|2
R2

)

.

Observe that for λ ≫ 1, we have
�
k−q′/qξ−q′/q|ξtt|q

′

< ∞,
�
k−q′/qξ−q′/q|∆ξ|q′ < ∞,

�
h−p′/pξ−p′/p|ξtt|p

′

< ∞,
�
h−p′/pξ−p′/p|∆ξ|p′ < ∞.

For simplicity we write (9) in the form
�
h|v|pξ dx ≤

( �
k|u|qξ

)1/q
Aa,k,q + B

( �
h|v|pξ

)1/p
,(11)

with a clear meaning of Aa,k,q and B. Similarly, we have
�
k|u|qξ ≤

( �
h|v|pξ

)1/p
Ac,h,p.(12)

Estimates (11) and (12) then give
�
h|v|pξ ≤ A1/q

c,h,p Aa,k,q

( �
h|v|pξ

)1/(pq)
+ B

( �
h|v|pξ

)1/p
.(13)

Now, estimate (13) can be arranged into
( �

h|v|pξ
)(pq−1)/(pq)

≤ A1/q
c,h,p Aa,k,q + B

( �
h|v|pξ

)(q−1)/(pq)
.

By setting

X :=
( �

h|v|pξ
)(pq−1)/(pq)

,

the latter inequality becomes

X ≤ A + BX σ,(14)

where 0 < σ := (q − 1)/(pq − 1) < 1, and A := A1/q
c,h,p Aa,k,q.

Now, using the Lemma, we obtain

X ≤ A

1 − σ
+ B1/(1−σ).
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At this stage, we introduce the scaled variables

τ := R−1t, y := R−1x.

We then obtain

dt dx = R1+N dτdy, ξt = R−1 ξτ , ∆xξ = R−1 ∆yξ,

Aa,k,q ≤ CR−κ/q−1+N−1/q−N/q, Ac,h,p ≤ CR−µ/p−1+N−1/p−N/p.

So

A ≤ CRs1 , B ≤ CRs2 ,

for some constant C that may change from line to line, and where

s1 :=
1

q

(

−µ

p
− 1 + N − 1

p
− N

p

)

− κ

q
− 1 + N − 1

q
− N

q
,

s2 := − µ

p
− 1 + N − 1

p
− N

p
.

Accordingly

X ≤ C

1 − σ
Rs1 + CRs2/(1−σ).(15)

Now, we require s1 ≤ 0, s2 ≤ 0, which implies

N ≤ min

(

µ + 1 + p(κ + q + 2)

pq − 1
,
µ + p + 1

p − 1

)

.

We have two cases:

(i) max(s1, s2) < 0; in this case, when R → ∞ in (15), the right-hand
side will go to zero and hence

	
h|v|p = 0, so that v = 0, and u = 0 by (12).

(ii) If max(s1, s2) = 0, say s1 = 0, then from (15), if D := {(t, x) |
R2 ≤ t2+|x|2 ≤ 2R2}, we have

	
h|v|p ≤ C < ∞ and so limR→∞

	
D

h|v|p = 0.
We then use �

k|u|q ξ ≤
( �

D

h|v|p ξ
)1/p

Ac,h,p

and let R → ∞ to obtain
	
k|u|q = 0, and therefore u = 0, which in turn

implies v = 0 via (9).

Proof of Theorem 2. The proof is similar to the one of Theorem 1. We
have �

h|v|pξ ≤
( �

k|u|qξ
)1/q

Aa,k,q.(16)

Also, �
l|v|mξ +

�
k|u|qξ ≤

( �
h|v|pξ

)1/p
Ac,h,p.(17)

For the rest of the proof, we keep only the estimate
�
k|u|qξ ≤

( �
h|v|pξ

)1/p
Ac,h,p.(18)
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So �
k|u|qξ ≤

( �
h|v|pξ

)1/(pq)
A1/q

c,h,p.(19)

Using (19) in (16), we obtain
�
h|v|pξ ≤

( �
h|v|pξ

)1/(pq)
A1/q

c,h,p Aa,k,q,

or
( �

h|v|pξ
)(pq−1)/(pq)

≤ A1/q
c,h,p Aa,k,q.

Using the scaling, we obtain

Ac,h,p ≤ CR
−

µ

pq
−

p

pq
+N p−1

pq
− 1

pq ,

so

A1/q
c,h,p Aa,k,q ≤ CRs,

with

s :=
1

pq
(−µ − p − 1 − N(p − 1)) +

1

q
(−κ − q + N(q − 1) − 1).

Now, we require s ≤ 0, and therefore

N ≤ µ + p(κ + 2 + q)

pq − 1
.

We could also start from the inequality
�
k|u|qξ ≤

( �
k|u|qξ

)1/(pq)
Aa,k,q

1

p
Ac,h,p,

which implies
( �

k|u|qξ
)(pq−1)/(pq)

≤ Aa,k,q
1

p
Ac,h,p.

The latter estimate analyzed through the scaling gives

N ≤ κ + q(µ + 2 + p)

pq − 1
.

So,

N ≤ 1

pq − 1
max(µ + p(κ + 2 + q), κ + q(µ + 2 + p)).

An analogous analysis as before leads to the result of Theorem 2.

Proof of Theorem 3. Here again, we present only the relevant estimates.
We have

Y :=
�
k|v|qξ ≤

( �
k|v|qξ

)1/q{( �
k−q′/qξ−q′/q|ξtt|q

′
)1/q′

+ ‖c‖∞
( �

k−q′/qξ−q′/q|∆ξ|q′
)1/q′}

,
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or
( �

k|v|qξ
)(q−1)/q

≤
( �

k−q′/qξ−q′/q|ξtt|q
′
)1/q′

(20)

+ C
( �

k−q′/qξ−q′/q|∆ξ|q′
)1/q′

,

with 1/q + 1/q′ = 1.

We also have
�
h|u|pξ ≤

�
(‖a‖∞|u| · |∆ξ| + ‖b‖∞|v| · |∆ξ| + |u| · |ξtt| ).(21)

Using the Hölder inequality, we obtain

X :=
�
h|u|pξ ≤

( �
h|u|pξ

)1/p
Dh,p +

( �
k|v|qξ

)1/q
L,(22)

where

Dh,p :=
( �

h−p′/pξ−p′/p|ξtt|p
′
)1/p′

+ ‖a‖∞
( �

h−p′/pξ−p′/p|∆ξ|p′
)1/p′

,

L :=
( �

k−q′/qξ−q′/q|∆ξ|q′
)1/q′

‖b‖∞.

So

X ≤ X 1/pDh,p + Y1/qL.

From (20), Y(q−1)/q ≤ Dk,q, so

X ≤ X 1/pDh,p + LD1/(q−1)
k,q ,

and by the Lemma,

X ≤
pLD1/(q−1)

k,q

p − 1
+ Dp/(p−1)

h,p .

Using the scaling, we obtain

L ≤ CR−κ/q−1+N−1/q−N/q, Dk,q ≤ CR−µ/p−1+N−1/p−N/p.

So

L D1/(q−1)
k,q ≤ CR−κ/q−1+N−1/q−N/q.

An analysis of the inequalities leads to

N ≤ min

{

p + 1 + µ

p − 1
,

q + 1 + κ

q − 1

}

,

which is the constraint required in the theorem.

The rest of the proof is analogous to that of Theorem 1, hence is omitted.
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