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A local characterization of affine holomorphic immersions
with an anti-complex and V-parallel shape operator

by MARIA ROBASZEWSKA (Krakow)

Abstract. We study the complex hypersurfaces f : M™ — ¢! which together
with their transversal bundles have the property that around any point of M there exists
a local section of the transversal bundle inducing a V-parallel anti-complex shape opera-
tor S. We give a class of examples of such hypersurfaces with an arbitrary rank of S from
1 to [n/2] and show that every such hypersurface with positive type number and S # 0 is
locally of this kind, modulo an affine isomorphism of cntl,

1. Introduction. Among the connections induced on complex hyper-
surfaces f : M) — C"*! by C*° complex transversal bundles there are two
particular kinds of great interest: holomorphic connections and affine Kéhler
connections. The latter are meant to be a generalization of Kahler connec-
tions. In terms of the curvature tensor, a holomorphic affine connection is
characterized by the condition

R(JX,Y)=JR(X,Y) for all vector fields X,Y,
while for an affine Kéhler connection we have, by definition,
R(JX,JY)=R(X,Y) forall X,Y

(see [NS]). Since, provided the affine fundamental form h does not vanish
on M, a holomorphic connection is induced by a holomorphic transversal
bundle, it is possible to adapt the ideas from the real affine hypersurface ge-
ometry to this case. For instance, having a non-degenerate hypersurface one
can construct a holomorphic analogue of affine normal vector field [DVV].
Then one can consider the condition S = AI, A = const, which describes the
affine spheres [DVV].

On the contrary, the non-flat affine Kéhler connections induced on hy-
persurfaces (in particular, the non-flat Kéhler ones) cannot be treated in this
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way. Instead of the holomorphic transversal bundles, with the complex shape
operator, one has to consider the transversal bundles N having the property
that the shape operator corresponding to sections of N is anti-complex. This
property of A/ implies the desired condition for the curvature tensor R of
V and is necessary for V to be affine Kahler if ¢f > 1 at some point of M
(see [0]).

Clearly, no section & of such a bundle can induce S proportional to the
identity, except for the case S = 0. Being V-parallel is a weaker condi-
tion on S than S = AI, A = const. This condition is shown to have some
non-trivial realizations even if we require S to be anti-complex. It is worth
noting that we need to consider degenerate hypersurfaces, because the non-
degeneracy implies S = 0 (Lemma 2).

2. Preliminaries. Let M be an n-dimensional connected complex man-
ifold. We shall consider a holomorphic immersion f : M — C"*! together
with a C* complex transversal bundle . If ¢ : U — C"*! is a local section
of NV, then the induced connection V on M, the second fundamental form
h, the shape operator S and the transversal forms p and v are defined by
the following Gauss and Weingarten formulas [NS]:

Dxf.Y = f,.VxY + h(X,Y)¢ — h(JX,Y)JE,
D€ = —£.5X + p(X) + v(X).JE.
Here D denotes the standard connection on C**!, and J the complex struc-
ture on M and on C"*! as well.

Let m € M. The complex rank of the C-bilinear form AS, (-, ) = hp, (-, ) —

ihm(J-,-) depends on f only. It is called the type number of f at m and

denoted by tf,, (see [O]). We shall assume that it is positive everywhere
on M.

Our first requirement on the transversal bundle is that the induced shape
operator S is anti-complezx, i.e. SJ = —JS (see [O]). The fundamental
equations satisfied by V, h, i, v and such an S are the following:

R(X,Y)Z =h(Y,Z2)SX — h(X,Z)SY + h(JY,Z)STJX — h(JX,Z)STY
(Gauss),
(Vxh)(Y, Z) + u(X)h(Y, Z) + v(X)h(JY, 2)
=(Vyh)(X,2)+ p(Y)W(X,Z2)+v(Y)h(JX,Z) (Codazzi I),
(VxS)Y — u(X)SY + v(X)SJY = (VyS)X — u(Y)SX +v(Y)SJX
(Codazzi II),
h(X,SY) —h(Y,5X) =2du(X,Y) (Ricci I),
h(SX,JY)—h(SY,JX)=2dv(X,Y) (Ricci II).
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Furthermore, we shall assume that for every point m € M there exists a
local section & : U — C"*! of N with U 3 m such that V.S¢ = 0, where S¢
denotes the shape operator induced by &. If the points mq, mo € U can be
joined by a curve lying in U, and B; is a basis of T},, M, then by parallel
displacement we can obtain a basis Bs of T}, M with respect to which ang
has the same matrix as S§, with respect to B;. Hence rank 5§, = rank S§,_,
where rank S§, := dimcim S§,. The assumed connectedness of M and the
independence of rank S§, of ¢ at a fixed m imply that ¢ := rank S is well
defined for the whole M.

When studying immersions with V-parallel shape operator we shall make
use of the following remarks:

REMARK 1. If VS =0, then for every X,Y, Z,
R(X,Y)SZ =S(R(X,Y)Z).
Proof. This is an obvious consequence of the commutativity of S and
Vw for any W.
REMARK 2. If VS =0 and SJ = —JS, then ker S C keru Nkerv or
S =0.

Proof. Let SX = 0. By the second Codazzi equation we have —u(X)SY
+v(X)SJY =0 for any Y. If S # 0, then there exists Y such that SY # 0.
Since SY and SJY = —JSY are linearly independent over R, it follows that
u(X)=0and v(X)=0.

REMARK 3. If VS = 0, SJ = —JS and S # 0, then the section &
inducing S is anti-holomorphic, i.e. v(X) = u(JX) for any X.

Proof. We may assume that SX £ 0. The assertion follows easily from
the second Codazzi equation, written for ¥ = JX.

For an anti-holomorphic £ we can rewrite the first Codazzi equation as
(Vxh)(Y, Z) + n(X)h(Y, Z) + p(JX)h(JY, Z)
— (Vy h)(X, Z) + u(Y)h(X, Z) + p(JY)h(IX, Z).

3. Theorem. We can now formulate our main result.

THEOREM. Let M be an n-dimensional connected complex manifold,
n>1, f: M — C" a holomorphic immersion and V a linear connection
induced on M by a transversal bundle N'. Let f and M satisfy the following
assumptions:

(1) tf > 0 everywhere on M,

(2) for every m € M there exists a neighbourhood U of m and a local
section & : U — C"*! of N inducing an anti-complex and ¥V -parallel shape
operator S,
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(3) ¢ :=rank S > 0.
Under the conditions stated above,
(i) g <n/2;
(ii) for every m € M there exists a neighbourhood V' of m, a complex

chart ¢ : V. — C" = C? x C"™ 24 % C9, q complex affine isomorphism
A:C — CL and a holomorphic functwn F such that

ofod) (a: I Y Y Lt I ooy 29)

=@, 30y, Lyt 2 Ft, Lyt L EY);

(i) if ¢ > 1, then the local section Ao & : V. — C'L of AN (where

A denotes the linear part of X) ducing the V-parallel shape operator is
described in this chart by the following formula:

Aoto (@, ... .79 9 ..., gn 20 2 ... 29 = (Z1,...,29,0,...,0,1);
N——

n—q times

(iv) if ¢ =1, then

Aogod (7,777 %7) = (G(3),0,...,0,eM3)

n—1 times

where G and M are holomorphic functions such that
G'(®) - M@EGE) =

In the real representation, setting T* = x?*~1 4 jz2F, §l~: y2=t il
2 =z 2= 1+222] for jk =1,...,¢;1 =1,....n —2q; F = F' +iF?,
G=G'+iG%, M = M! +iM2, we have

- o2n—4q 1 2
ofog t(at, ... a?t yt Lyt R 2%
1 2 1 o2n—4q 1 2 1 2
:(x7"'7xq7y7"'7yn q7z7"'7zq7f (y7z)7f (y’z))7
T —1/.1 2 1 2n—4q 1 2
Aolod (x,...,x0y ...,y 20 ... 2%
12 20—1 2
=(z7,—2%,...,2°9 " =2%1 0,...,0 ,1,0)
———
2n—2q times
if ¢q>1, and
on—4 1 2
Aog ¢ (x x7y7"'7yn 72 ’Z)

(GY(2),—G%(2), 0,...,0 ,eM @ cos M2(2), —eM @) sin M2(2))
——
2n—2 times

ifq=1.
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REMARK 4. An easy computation shows that the converse is also true:

(a) For any holomorphic function F of n — q variables, where ¢ < n/2,
the shape operator S induced on the hypersurface

~ ~q ~1 —2¢ +1 =

f:C"oU @Y., 20y, g 79
~1 ~q ~1 —2q +1 ~q T 1
— (':U ""’xq’y 7"'7&” q7z 7"'7Zq7f(y7:é—/)) 6 (Cn+

endowed with the transversal field

Lyt 2 = (71,...,74,0,...,0,1)
N——

n—q times

§(§17’ M 75’:(17?717

is parallel with respect to the induced connection and rank S = q.
(b) For any holomorphic function F of n — 1 variables and for any holo-
morphic functions G and M of one variable satisfying the equation

G'(7) - MG =1,
the shape operator S induced on the hypersurface
f:C"o U@, TR (@0, ..., 04 F(5,7) e C Y
endowed with the transversal field

f(fj’yvl?,..,@ﬂ—{g) — (5(2), 0,...,0,6/\7(5)

n—1 times

1s parallel with respect to the induced connection and has rank S = 1.

Proof of the Theorem. We begin by proving two lemmas in which we
establish some inclusions between im S, ker S and ker h.

LEmMmA 1. If tf > 0, SJ = —JS, and VS = 0, then the following
conditions are equivalent:

(1) du =0 and dv = 0,

(2) im S C ker h,

(3) im S C ker S.

Proof. (1)<(2). Suppose that dy = 0 and dv = 0. Let m’ € M and
X,Y € T,,, M. Applying the Ricci equations we have
0=2du(X,Y)+2dv(JX,Y)
= h(X,8Y) - h(Y,5X) — h(J*X,SY) + h(JY,SJX)
=h(X,S5Y) - h(Y,5X)+ h(X,SY) + h(JY,-JSX)
=h(X,SY) —h(Y,S5X)+ h(X,SY) + h(Y,SX) = 2h(X, SY),

hence for any X,Y € T,,,M we have h(X,SY) = 0. The Ricci equations
make it obvious that (2) implies (1).
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(2)=-(3). Suppose that im .S C ker h, which yields R(X,Y)SZ = 0 by
the Gauss equation. Since tf,, > 0, there exist Xg, Yy € T}, M such that
h(Xo,Yo) # 0. We first show that S? Xy = 0. Indeed, making use of Remark 1
we have

0 = S(R(Xo, JX0)Ys) = 2(h(J X0, Y5)S% X — h(Xo, Y)S*J Xy)

with h(Xo, Yy) # 0, which means that S%2X, and S2.J X, are linearly depen-
dent over R. This is possible only when $2X, = S2J X, = 0.
Now we take an arbitrary Z € T,,,, M. Then

0 = S(R(Xo, Z)Ye) = —h(Xo,Y0)S2Z — h(J X0, Y)S2J Z,

and by a similar argument S%2Z = 0.

(3)=(2). If S? = 0, then the right-hand side of the equality R(X,Y)SZ
= S(R(X,Y)Z) vanishes for every XY, Z. For S = 0, (2) holds, therefore
we can assume that S # 0. Take X such that SX, # 0. Since

0 = R(Xo, JX0)SZ =2(h(JXo,S52)SXo — h(Xo,5%)SJTXo)
and SXy, SJXg are linearly independent over R, we have
hXo,SZ) = h(JXy,SZ) =0 for any Z.
Now we can write for any Y, Z,
0=R(Xo,Y)SZ =h(Y,52)SXo+ h(JY,SZ)SJTX,.
Hence h(Y,SZ) =0forany Y, Z. =

LEMMA 2. Under the assumptions of Lemma 1, the equivalent conditions
(1), (2) and (3) are satisfied.

Proof. If V.S = 0, then rank S is constant on the domain of S. We have
to consider three cases.

CASE 1: rank S = 0. Then, of course, (3) holds.

CASE 2: rank S = 1. Suppose, contrary to our claim, that S? # 0.
Let m’ € M. We fix Xy € T, M such that S?X, # 0. We shall obtain a
contradiction with the assumption ¢f > 0.

STEP 1. ker S C ker h.
Let Z € ker S. Then
0 = R(Xo, JX0)SZ = S(R(Xo, JX0)Z)
=2(h(JXo, Z)S*Xo — h(Xo, 2)S%T Xy),

hence h(Xo, Z) = h(JXo,Z) = 0. For any Y we now have

0= R(X,,Y)SZ = S(R(X,,Y)Z) = h(Y, 2)S* X + h(JY, Z)5%J X,
which implies h(Y, Z) = 0 for any Z € ker S and for any Y.

STEP 2. (a) T, M =ker S & CXy and (b) T,y M = ker S & CSXj.
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Since dim¢ ker S = n — 1, it is sufficient and easy to check that ker S N
CXo = {0} and ker SN CSX, = {0}.

STEP 3. h(Xo,SXo) = h(JXo,SJXo) = 0.

If h(Xo, Xo) = 0 and h(Xy, JXo) = 0 then X € ker h by Steps 1 and
2(a), and so the claimed equality holds.
Assume now that h(Xg, Xo) # 0 or h(Xy, JXo) # 0. We have

0 = R(Xo, JX0)SXo — S(R(Xo, JX0)Xo
= 2S(h(J X0, 5X0)Xo — h(Xo, SX0)J X0
— h(JXo, X0)SXo + h(Xo, X0)SJ Xo),
therefore Zy € ker S, where
Zy = h(J Xy, SX0)Xo — h(Xo,5X0)JXo
— h(JXo, X0)SXo + h(Xo, Xo)SJ Xo.
According to Step 1, we have h(Zy, Xo) = 0 and h(Zy, JX() = 0, hence
h(JXo,SXo)h(Xo, Xo) — h(Xo, SXo)h(J X0, Xo)
— h(J X0, X0)h(SXo, Xo) + h(Xo, Xo)h(STXo, Xo) =0
and
h(JXo,SXo)h(Xo, JXo) — h(Xo, SXo)h(J X0, JXo)
— h(J X, X0)h(SXo, JXo) + h(Xo, Xo)h(SJTXo, JXp) = 0.
Thus we obtain
h(SXo, Xo)h(J X0, Xp) =0 and h(SXy, Xo)h(Xo, Xo) =0,

which implies h(SX(, Xo) = 0, and consequently, by the anti-complexity of
S and the properties of h(-,-), h(SJXo, JXy) = 0.

STEP 4. h(Z,SW)+ h(W,S5Z) =0 for any Z,W € T,/ M.
By Step 2(a) we have Z = Zy + aXo + JXo, W = W1 + vXo + §J Xo
with Z;, W1 € ker S and «, 3,7,0 € R. An easy computation gives
WMZ,SW) + h(W,52)
= h(aXo + BJ X0, S(vXo + 0JX0)) + h(vXo + 0J X0, S(aXo + B X)))
= 2avh(Xo, SXo) + 280h(J X0, ST Xo) + (ad + By)h(Xo, (ST + JS5)Xo),
which vanishes by the anti-complexity of S and by Step 3.
STEP 5. (Vwh)(Xo,SXo) = (Vwh)(JXo,SIXo) =0 for any W.

We extend X to a local vector field X such that S?X, # 0 at any point
of the domain of X;. We have
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(Vwh)(Xo, SXo)
= W (h(Xo,5Xo)) — h(Vw Xo, SXo) — h(Xo, Vi (SXo))
= W (h(Xo,S5X0)) — (W(Vw Xo, SXo) + h(Xo, S(Vw X0))) = 0.
The same is true for JXj in place of Xj.
STEP 6. Vh = —-2u® h.

If Y € ker S, then we can extend Y to a local section Y of ker.S. For
any X, Z,VxY € ker S and

(Vxh) (Y, Z2)=X(hY,Z2)) —h(VxY,Z) - h(Y,VxZ)=0
= 2u(X)h(Y, Z).
Let X € ker S. Then for any Y, Z we have

(Vxh)(Y,2) | = = u(X)h(Y,Z) = p(JX)R(TY, 2)

since ker S' C ker u N ker v and ker S C ker h.
It follows that (Vxh)(Y, ) = —2u(X)h(Y,-) if X € ker S or Y € ker S.
From the first Codazzi equation we obtain
(VXOh)(JX(], SX()) + M(Xo)h(JXo, SX()) + /J,(JXO)h(JQXo, SXO)
= (Vx,h)(Xo,SX0) + u(JXo)h(Xo, SXo) + u(J*Xo)h(J X0, S Xo).
Hence
(VXOh)(JXo, SX(]) = —QM(Xo)h(JXU, SX()),
by Steps 3 and 5.
Similarly,
(Vx,h)(J X0, STXo) + u(Xo)h(J X0, STXo) + u(JXo)h(J*Xo, ST Xo)
= (Vix,h)(Xo, ST X0) + pu(JXo)h(Xo, STXo) + u(J*Xo)h(J Xo, ST Xy),
which gives
(VJXOh)(XO, SJX()) = —Z/L(JXO)}L(X(), SJX())
We now have
(ngh)(XOa SX()) =0= —QM(Xo)h(Xo, SX()),
(VXOh)(Xo, SJX()) = —(VXOh)(JXO, SX()) = QH(XO)h(JXU, SX())
= —QM(Xo)h(XO, SJX())

and
(Vxoh)(Xo, Z) = =2u(Xo)h(Xo, Z)
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for Z € ker S. Therefore
(Vxoh)(Xo,- ) = =2u(Xo)h(Xo, - )
by Step 2(b).
In the same manner we can see that
(Vxoh)(JXo, ") = =2u(Xo)h(J Xo, "),
(Vixoh)(Xo, ) = =2p(J Xo)h(Xo, ),
(Vixoh)(JXo, ) = =2u(J Xo)h(J Xo, ),
which completes the proof of Step 6.
As a consequence of Step 6 we obtain
STEP 7. R(X,Y) -h=—4du(X,Y)h for any X,Y.
Applying the Ricci equation yields

STEP 8. R(X,Y) - -h = =2(h(X,SY) — h(Y,S5X))h. In particular, we
have R(Xo, JXo) - h = —4h(Xo, SJXo)h.

On the other hand, a direct computation gives
(R(Xo, JXo) - h)(Xo, Xo)
= —2h(R(Xo, JX0)Xo, Xo)
= —2h(2(h(J X0, X0)SXo — h(Xo, X0)SJTXp), Xo)
= —4h(J X, X0)h(SXo, Xo) + 4h(Xo, Xo)h(SJT X0, Xo)
= 4h(Xo, Xo)h(Xo, ST Xp),
and
(R(Xo, JXo) - h)(Xo, J Xo)
= — h(R(Xo, JX0)Xo, JXo) — h(Xo, R(X0, JX0o)J X0)
= — h(2(h(JXo, X0)SXo — h(Xo, X0)SJTXp), JX0o)
— h(Xo,2(h(J X0, JX0)SXo — h(Xo, JX0)SJT X0))
= —2h(J Xy, Xo)h(SXo, JXo) + 2h(Xo, Xo)h(SJI X0, JXo)
—2h(J X0, J Xo)h(Xo, SXo) + 2h(Xo, J Xo)h(X0, ST X0)
= 4h(J X, Xo)h(Xo, ST Xp).
A comparison with Step 8 gives
h(Xo,SJXo) =0 or h(Xo,Xo)=h(Xo,JXy) =0,

which together with Steps 1-3 leads to a contradiction with the assumption

)
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CASE 3: rank S > 1. If SX =0, then, by Remark 2, p(X) =v(X) =0.
Let SX # 0. Then there exists Y such that SX and SY are linearly inde-
pendent over C. From Codazzi 11 we have

(1(X) + (X))SY — (u(Y) + iv(Y))SX =0,
which implies (X) = v(X) = 0. Therefore (1) of Lemma 1 holds. =

We now return to the proof of the theorem.
Fix m € M. Let £ : U — C"*! be defined on a connected neighbourhood
U of m and have the property described in assumption (2) of the Theorem.

LEMMA 3. There exists a q-dimensional complex subspace W of C"t1
such that f.im S, =W for every m’ € U.

Proof. 1t is sufficient to show that f,im S, = f.imS,, . Let v : [0,1] —
U be a C! curve joining m and m’; v(0) = m, v(1) = m’. We choose
Xims -y, Xgm € Ty M such that SXi,,,..., 59X, form a basis over C of
f«im S,,. Let )?1, e ,)?q be the vector fields defined along the curve -,
parallel with respect to V, )?1(0) = Xy for i € {1,...,q}. It is easy to
check that the map

[0,1] 5t = fuSyn Xi(t) € C

is constant. Indeed,
d ~ ~
7= fSy0Xi(t)) = Dy f5 X
= V40 SXi + h(3(t), SXi(1)&, )
— h(JTA (), SXi(D)TE1)-

The last two terms vanish because im .S C ker h, and vﬁ(t)S)?,- = SV&(t))?i
= 50 = 0. It follows that

spanc{ foSmX;(0) i =1,...,q} = spanc{f S X;(1) :i = 1,...,q},
that is, f,im Sy, = foim S,y =: W. =
Let A; : C**1 — C"*+! be a linear isomorphism such that
AW = spanc{ey, . .. ,€q}-

Here and subsequently €i,...,¢,+1 denotes the standard basis of C"*1,
whereas €1, ..., ea,12 is the standard basis of R2+2,

LEMMA 4. There exists an 1o € {¢ + 1,...,n + 1} such that €;, ¢
(A1 o /)T M and the igth coordinate of A1&,, does not vanish.

Proof. Suppose that the assertion is false. Then €; € (Zl o f)T;n M for
every j € {¢g+1,...,n+ 1} such that the jth coordinate of A;£ does not
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vanish at m. Then obviously Zlﬁm € (ﬁl o )T M, which contradicts the
transversality of €. m

Let Zg be the linear isomorphism of C™*! defined by
_ ek ifk‘g{ig,n—l-l},
Aggk = gn+1 if k= io,
Let gz = jg o gl. Now €, is transversal to (22 o )T M and ;{25 has
the non-vanishing (n+1)th coordinate at m. Moreover, the isomorphism AY
does not change the subspace (A1 o f),im S = spanc{e, ..., e}

We denote by 7 the projection 7 : C**+1 3 (¢t ..., (") (¢H,...,¢")
€ C™. It is easy to check that

dp(mo Ayo f) : TuM — C"
is a monomorphism. Indeed, if d,, (roAzo f).V = 0, then (Agof),V € Cép 1.
But (Asof). T, MNCe,1+1 = {0} and (Az0f), is a monomorphism; therefore
V =0.
We can now take ggl =10 Ay0 f as a complex chart on some neigh-
bourhood U; C U of m. In this chart

AVZ Ofogfl(cla"' 7Cn) = (Cl)-"agn’@(C)%

with a holomorphic function .
In the real representation, identifying C* with R2¥,

e R s (wh L w) = (wh Fiw?, L w4 iw?R) e CF,
we can write
Ayo foort(wh, ... w?) = (w',..., 0", o' (w), P (w)).
Here Ay := 1,41 1o 112 and ¢1 :=1, 'o {51.

LEMMA 5. (a) 0¢*/0w® =0 fork=1,2 and s =1,...,2q.
(b) im S = spang{d/0w® : s = 1,...,2q}.

Proof. At any point m’ € U; we have

0 op! Op?
(A20 f). <8w5> =es + s C2n 1 + s C2n
If s e {1,...,2q}, then e; = (Az o f).SW, with some Wy € T,,,» M, because
es € spang{er, ..., e} = (Az o f),im S,,/. Therefore we have
0 Ot Op?

(A2 9] f)* <aw5 - SW3> = %62n+1 + %62n+2.

From the transversality of es,,+1 and eay, 42 to (Ao f),T'M and from the
injectivity of (As o f). it follows that (a) holds, and 9/0w® — SW, = 0 for
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s = 1,...,2q. Hence spang{9/0w® : s = 1,...,2q} C im S, which implies
(b), because the dimensions are equal. m

LEMMA 6. The transversal field A>€ does not depend on w', ... w?e.

Proof. We use the Weingarten formula

0 0 0
Da/awsAgf = —(A2 o f)*S% + M(@)Agf + I/(ﬁ)JAgf

According to Lemmas 5(b), 2 and Remark 2, for s =1,...,2q,

0
—— €im S C ker S C ker uNkerv,
ows?

hence D8/8w3A2§ =0.m

We now introduce the functions =1,..., 52"*2 by
n+1
(Aa€odr )(w) = Y [E H(w)ear—1 — 57 (w)ex].
k=1
LEMMA 7.
o=>
rankg [ A (w)] = 2¢q
ow’ k=1,...,.2n+2; j=2¢+1,...,.2n

for w € ¢1(Uy).

Proof. We have
=k

rankg { = (m}

k=1,..., 2n+2; j=2q+1,...,2n

o=k
= rankR |:(—1)k1 %

()

k=1,...,.2n42; j=2¢+1,....2n
= dimg span{ Dy g A2§ 1 j =2¢ +1,...,2n}
= dimg span{ Dy g, A2§ 1 j = 1,...,2n}
= dimpg im S¢1_1(w).
The last equality is due to the isomorphism of im S and im{X — Dx A2&}.
A consequence of Lemma 7 is
COROLLARY. 1 > 2q.

LEMMA 8. EF = Z2F-1 1 52k s o holomorphic function for k =

1,...,n+1.
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Proof. It is sufficient to show that Z2*~1 and Z2* satisfy the Cauchy—
Riemann equations. From Remark 3 it follows that

Djx(A28) = —JDx(A29)
for any X € T,y M. Let X = §/0w?*~1. Then JX = 9/0w?* and

ntl oo =2l
Dyx(Az8) = [W@l—l - mezl],
=1

ntlrg=2i—1 952l
—JDx (A2¢) ——JZ [8 5T €2l-1 — W@l}

ntlr gg20-1 952
- Z[ Jw2s—12 ~ aw2s—1€2l1:|'
Therefore
852l71 852l 852l71 852l
Gz~ gzt Ml gaT =g "
Now =k , k =1,...,n+ 1, are holomorphic functions of the complex
variables (* = w?*~! +4w?%, s = ¢+ 1,...,n. By Lemma 7, we have
=k
rankc [—} =gq.
1
ac k=1,..., n+1;l=q+1,.

LEMMA 9. Letr < N < M. Let U be an open set in KV, where K =R
or C. Let F :U — KM be a C* mapping such that rank F'(x) = r for every
rE€U. Let xg €U and let i1 < ... < i, and j1 < ... < j. be chosen so that

OF
det |: - (SCO):| 75 0.
dxht k=1,...,r;l=1, ..,

-----

Then there exist a neighbourhood U' C U of xo and a diffeomorphism & :
U — &U'") c KN such that

(Fod VYk(yl, ...,y =9/ fork=1,...,r

and N
O(F o®~ . ) )
(Tyl)z() lfl¢{317-~-7]r}; k‘E{l,,M}
Proof. We define
k . . .
=1 NNk __ x 1fk¢{]la"'7]7’}7
@(ZB,...,?E ) _{FiS(xl,...,:cN) ifk?:js.
Since
PF OFis
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there exists a neighbourhood U’ C U of xy such that @ := $|u' is a diffeo-
morphism.

It remains to prove that Fo®~! depends only on the variables 371, ..., yIr.

Let y € &U). Then (F o &Y (y) = F' (P 1(y)) o (¢71)(y) and
rank(F o ®71)'(y) = rank F/(®~1(y)) = r, because (#~1)(y) is an isomor-
phism.

Suppose that for some kg € {1,...,M}andly € {1,..., N}\{j1,---,dr}s

o od1 ko
%(y) # 0.

Then ko ¢ {7:1, N ,iT} and

det [“F;ijl)k@)} 40,

kef{ir,....ir,ko}; 1€{J1,...dr 00}
which contradicts the rank assumption. =

We now restrict our attention to the case ¢ > 1.
LEMMA 10. If ¢ > 1, then

(a) rimkc[agk/ad]kzlw,q;l:q+1,.~-7n =4

(b) E*(-) =bF = const fork=q+1,...,n+1,
(c) o™t £ 0.

Proof. Since, for ¢ > 1, 4 = 0 and v = 0 (see proof of Lemma 2, Case 3),
we have
Dy /ot A2€ € (Ag 0 f).im S = spang{es, ..., e},

therefore 05%/ow! = 0 for k =2¢+1,...,2n+2and [ =2¢+1,...,2n
which implies

=k
azl :0 fork:q+17"‘7n+17l:q+17"‘7n7
and
gk sk
rankc [—] = rankc [ }
aCl .n+1;l=q+1,..., acl k=1,...,q;l=q+1,....,n

Point (c) is a consequence of Lemma 4 and the definition of Ay m

_ We may now apply I Lemma 9, takingr = ¢, N=n, M =n+1,U =
»n(U1), K=C, F = (..., "+1), (t1,...,0g) = (1,...,¢) and j; < ...
< jqfrom {g+1,...,n} Chosen so that

Hk

det | 5 Gatm) 0.

:| k=1,...,q;5=1,...,q
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In this Way we obtain a new chart (;52 = do 51 on the neighbourhood
Us —¢1 LU’y of m. Since
fork=1,...,q

=k —1y/,.1 nok
Zkod
(0@ )(n,...,n") = {bk fork=q+1,...,n+1,

the transversal field is now described by the formula
n+1

(Aot 0 33" an o+ > W

k=q+1

Let A be the linear isomorphism of (C”*l which transforms the basis
(é1,...,€nt1) onto the basis

(Bl €y Catts s €hrree s Egure s Crs €ar e Eos i)
and let
qgg(nl,...,n") = (n',...,n%n ,773'\1,...,771'\(1,...,n",njl,...,njq).
Taking As := ,Zg o Ay, b3 = ¢3 0 ¢y, We may write
Asofogs'(3,..., 501", ... "2 gt . 09)

= (gla'-wgqv?lv' : -,t~n72q,5€1(aﬂ)w-->>?q(t~,ﬂ)7é~7(£a))

Q+1 .

and
q n+1
A€oz M(3Y,... 5000, Z Gt Y dbE.
k=1 k=q+1

Applying now the isomorphism A4, where
10z ::{5k_ . _ fork=1,...,n
4%k (1/a" 1) (=321 @ €k + €nqr) fork=n+1,
and A := A% 0 A3, we obtain
Agofogs (3., 500, ... "2 0t .. 09)
= (3',...,59.5' (40),..., 6" (L, 0), O, 0))

and
q R
A4€ ¢3 ( ) 7Sq7t17 tn 2q7u17 7”,1111) = Zﬂk gk + €n+1
k=1
Here
~ q+k ~
tk a_ﬁ(t,ﬂ) for k=1,...,n— 2q,
kT ~ n+1
7 (7,7) = a -
~ a ~ o~
XF-(n=29) (¢ 7)) — o(t,u) fork=n—2q¢+1,....n—q;
anJrl
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We now turn to the case ¢ = 1.
By Lemmas 7-9, on a connected neighbourhood Us of m we may define

a complex chart 52 in which the coordinates of the transversal field are
functions of one variable n* only, with ig > 1.
Next we apply the isomorphisms

o3t ™) = (0t i, ™ ™)

and - .
AY(OY, .. 0ty = (01,0, ... Gio, .. 67 0%, g,
to obtain
Asofogz (3 Y., "2 0) = (5,1, ..., 0" 2, X(t,0), o(t, w))

and

~ ~ B n+1

Asgodg ' (3,1, .. 12 0) = Y O (W) &

k=1

with 071 (gs(m)) # 0; ¢3 := ¢>3 ¢~52 and Z:a = Zs o Ay.
In the real representation xy = x' +ix?, 0 = o' +i0?, OF = 92F~1 492,
we have

Ag,ofogi)3 (st sttt u?)
= (8178 7t17" * 7t2n747X1(t’ u)’XQ(t’ u)’gl(t’ u)’QQ(t’ u))

and
n+1

Aoy t(s', st at2n_47u17u2):Zwﬂj_l(u)emcfl_ﬁzk(U)BQk]'
k=1

Let 7 denote the projection
C"> (5,th,...,t" 20 —ueC.

LEMMA 11. There exist ca,...,cni1 € C, cna1 # 0, a neighbourhood (73
of m and a holomorphic function H such that

ok @) = et ®
Jork=1,....n+1 and t € 7(¢3(U3)).
Proof. We fix j € {2,...,n + 1}. Since 67 is a holomorphic function,
and since (72 is assumed to be connected, there are two possibilities: either
©7 =0 on 7o p3(Us) or there exists a neighbourhood W; of ug := m(¢3(m))

such that @7 (u) # 0 for any u € W \ {uo}.
In the former case we take c; = 0.
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Suppose that ©7 # 0. We can find r > 0 such that B(ug,r) C Wj. Then

W]’ := B(ug,r) \ {u: Reu = Rewp, Imu < Imugy}

is a simply connected domain and ©7(u) # 0 for any u € W’ If thls is the
case, there exists a holomorphic function A’ on W’ such that e* = @3|~j
and (M) = 67" /67 on WJ’
On the other hand, using the real representation we may write
o9¥—t 9y
_l’_

.
(67) Oul Z(‘)ul'

From the Weingarten formula

3 0 0
Dyjour A3 = —(Az o f).S +M(8 >A3§+V(8 )JA3€

it follows that for any j € {2,...,n+ 1},
o92—1 0 9j-1 0 oy
oul (au >19 +”<w>ﬂ
092 0 oy 0 2j-1
dul —“(ww B (a 1)19

(@) = <u<%> —il/(%))(ﬁ%l 9%,

We may also assume that U o is simply connected, and from Lemma 2 we
know that the 1-forms p, v are closed; therefore there exist functions K and £
on Us such that u=dK, v = —dL. The functions Koqbgl and £o¢§1 do not
depend on the variables s and ¢, because 9/9s*,9/0t7 € ker S C ker uNker v,

K o g3 2\ 2\
Js’ _dlc<8si> M(&sl)_o’

and similarly for £ in place of K or t in place of s. It follows that there
exist functions H' and H? defined on some open subset of R? such that
IC0¢3_1 =Hlom andﬁoqﬁg_l = H? o 7. We now have

and

Hence

0 2 P OH*
M<8u3> = dK((¢3 1)*62n—2+s) = dH (Teeon_24s) = dH'(es) = s

and

1/< 9 ) = —dﬁ((qﬁ;l)*egn,gﬂ) = —dH2(%*62n72+5)

ous
OH?

= —dH?(es) = — S
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According to Remark 3, H! and H? satisfy the Cauchy-Riemann equa-
tions, therefore H := H! 4 i’H? is a holomorphic function.

Since ~ OHY  OH? 0 d
(H) = Pl +Z'W = ,u<w> - il/(w),
we may go back to the (©7)" and write
() =H'OI
on some neighbourhood %(23(17 5)) of o (including ug). Comparing this
with (M)’ we obtain H' = ()\j)’ on W' := W N7(¢3(Us)). Hence there
exists d; € C such that MV = H + d; and
@F — Htd; — cjeH
with a non-zero constant c; := edi. We may extend this equality from WJ”

to some neighbourhood 7(¢3(U3)) of @y, because both sides are continuous
and well defined in the neighbourhood of . Since ©"*! # 0, we have in
particular ¢,41 # 0. =

Next we use the following isomorphism of C™*!:

205, . ek fork=1,...,n,
A (1/n41)(€ng1 — Yo Cs€s) for k=n+1.

In this way we obtain

Agofoos G TY,... .2 0) = (3,5'Ea), ..., 5" (1), OF, 1))

and

Aoy (3,1, "2 0) = Ol(@) &y + M@ &y,

with 54 = ZZ OZ?), Rt ) == t* — (cpy1/Cnr1) 0(t, 1) for k=1,...,n—2,

L= X(4,0) — (cha1/Cnt1) 0(t, 1) and O(F, @) := (1/cni1) o(t, 0).

~

__ Thus for any ¢ > 0 it is possible to find a map ¢3 and an isomorphism
Ay of C"1 such that the immersion and the transversal field have the shape

Ajofogs'(3,..., 308", ... " 2@, ... a9
=EY,..,50.5 G a), ..., 0" (L w), O, 1))
and

1T -1+ ~ 71 Tn—2q ~1 ~
Aoy (s, ..,s0 7, ..., t" L u,...,ul)

q
=" k(@) & + O (@) Enp1,
k=1

where 7, @, ©7 are holomorphic functions and on+l #0.
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Since A4 o f is an immersion, and A4 o £ is transversal to (A4 o f).TM,
we have

0 0 0 o &
I, :

0 0 0 0 Oa
0 0 0 0.
Do [@] [66’“] 7
o g ThEE mhagTt

ile} ile} ile) 09  @n+1
0 0 & Gonm oul s O
Therefore

~k
o (|5] o )+
ot k=1,...,n—q;l=1,....n—2q ou k=1,....n—q;l=1,....q

and there exist i1 < ... < 7,,_24 such that
O ]

7 # 0.

n—2q;1=1,. —2q

det [

By an appropiate isomorphism Ag we may vary the order of basis vectors in
C™*1, putting %, . .. ,Ei”:?q at positions ¢+ 1, ...,n — ¢. This permutation
does not affect the field A4, because its coordinates from the (¢ + 1)th to
the nth vanish.
Applying now the local diffeomorphism
NE, s T gL )
= (3,...,30, 61 (t,0),...,0m 2 (t,0),d,...,09)
gives a new chart 54 = 591 o q§3 such that ;4\5 o f and A\g) o & are described by
the formulas
Aso fod  (FY, ..., 700", ..., 7" 20,3, 29)
= (§17' * '7%q7g1""7§’n’72 ’w (y7:£/)"' '717Z}q(g7:£/)’f(g7%/))

and

" 1 ~1 ~q ~1 —2¢ ~1 ~
Asoo¢, (z°,....,2%y ,...,y" "1, z",..., 29

q
= 6@ e+ 0" () e
k=1

LEMMA 12. Fork=1,...,q

q
VR E) =) Crgt + I (R),
s=1
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where C*y, s =1,...,n—2q, are complex numbers, and % isa holomorphic
function.

Proof. We now use the real representation of A5 o f and A5 o &, setting
Pl=2=1 42 for l=1,...,q, F = FL +iF?, and % = 6251 4 i92s:

Aso fodt(at, ... a2yt . yPnTta Bt 22
= ('r:l?"'?xzq?yl?"'7y2n_4q?¢1(y7z)7"'7/(/)2q(y7Z)7f1(y7z)7f2(y7z))7
Asotod M (at,. .. a2yt yPnTAe Rt 22
q

[QQkfl(z)egk_l — @2’“(2)6%] + 0" (Degni1 — O (2)ean o
k=1
At any point m’ of the domain U of ¢4, ker S is spanned by
0 0 0 0
@,...,m,a—yl,...,m.
For any W € T,,,, M and any j =1,...,2n — 4q,

0 0
o) (s -

therefore
2n—4q
Vo ayJ ZO‘SJ@ T Z ﬁwa I
k=1
9 2n— 4q
vaayg Z7saak 258381
k=1
We have

>:€k,

29 . -
oy” OF*! 0F?
> = €egq+1 T+ Z a—ilezn—zqw + 8—yl€2n+1 + 8—yle2n+2;
r=1

Q
g\@

(s o ).

Q’)‘%

iso 1) (5

hence

(A5 0 f)« (Va/ays%)

2n—4q 2n—4q l 81LT
_ Zasjek-F Z ﬁsje2q+l+2( Z ﬂsja—yl)egnqurr

1=1
2n—4q - 2n—4q
OF* OF?
+( Z /Béja_:lﬂ)e2n+1+< Z ij 3 l>€2n+2
1=1

=1
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and

- 0
(A5 0 f)« <Va/azs W)
2n—4q 2q

2n—4q awr
_ z%]eﬁ > %egﬁﬁz( > LAY —
r=1
2n—4q =1 2n—4q )
oF oF
l l
(G G e (w7 )ee

On the other hand, using the Gauss formula we may write
i Vo/oy
(A5 0 f)«| Vayays oy

. 0 0 0 . 0 0 .
= Dojoy (450155 ‘h(— 7)“‘55*’”‘(“’7’7)"455

S i o)

) (r )0

2q 924"

+ ; aysayf €2n—2¢+r

O>*F! 0 0 32n+1 9 9 2n+2
(o = )"0+ 3 )70 Jn

92 F2 0 0\ gonso o 0 ot
+ <3y53yj +h<a—ys,@)9 (Z)—i_h(J@ys’@yﬂ)@ (2 ))€2n+2

and similarly

y 0
(As 0 f)x (Va/azs 8—y7>

i 0 a9 o 0\ .-
_Da/azS(AE)Of)*a_yj _h<825 3 ]> sE+h ( %’@—yj)‘]f%g
q
0\ s26—1 9 0\ so
;K <325 8y1>@ (z)+h<Jazs’ayj>@ (2) |ear—1

9 90\ 9 0\ xok—1
+(h<6zs’8yﬂ')@ (z)+h(J8z5’8yj>@ (2) | eax
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29 H2 nr

+ ; 8z58yj €2n—2g+r
82.¢1 8 a on+1 a 6 2n+2
G R O R G ) S )

% F? a 0 42 o 0 _—
*(azsayﬁh(azs 8y3>8 ”*’l(JasaJ)@ <z>)e2n+g.

Since in the second pair of expressions there are no terms containing the
basis vectors e; with ¢t € {2¢ + 1,...,2n — 2q}, we conclude that ﬂéj =0
and 5ij = 0 for any [, s,j. Comparing now the coefficients of e, with t' €
{2n —2¢ +1,...,2n} we obtain

S - =0 and Oy - =0
oy oy’ 0z30y7
for any r, s, j.
It follows that
81;74 T nr E= T, ] T
o =E] =const and "(y,2) = Jz; Ely’ + 1" (2).

The Cauchy-Riemann equations for ¢" imply that [17 := IT2"~14{I1%" is

a holomorphic function and Eg;*ll = E22]7’7 EZT’ —E%;fl forr=1,...,q,

j=1,...,n—2q Weset C¥; := Egjk L+ zE2 *_, and the lemma follows. m

We define the isomorphism gg of C"*1 by

05 €k itk {q+1,...,n—q},
CF T e = Y Clpngry fke{g+1,...,n—q}.

Let Ag := ;4\8 o As. Then

n -1/~ ~q ~1 —2q #1 o~
Agofoo, (z°,....,20y,...,y" "4, z",..., 2%

= (gl’”.?%q’yl’."’gn—2q’ﬁ1(g)"_.’ﬁq(g)’]?(g’a)
and Eﬁg o 521 is given by the same formula as Eg,g ) quSZl.

LEmMA 13. If ¢ > 1 then
q
or(z) =Y C" 7 +Cy"
s=1

with Clrs, Cy" e C.
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Proof. Recall that for ¢ > 1,

@’“(51,...,2‘1) =z fork=1,...,q,
orti(z,... Z9) = 1.
Therefore we have
Ag€ o qﬁ;l(:rl, e Y VeI Vel IO 2 )|

2k—1 2k
[2°" ear—1 — 2% ear| + €an+1,

[M]=

k=1

and

Doy (466) = (1" ex = ~(s o /). (-1 5 ).

which implies
0 0
S =(-1)° .
0z% (=1) oxs
Applying the covariant derivative Vyy to the right-hand side of the above
formula we obtain zero, therefore

0 0
() = v (s.2) =

and so Vy (0/0z°) € ker S for any tangent vector W. We can now proceed
analogously to the proof of Lemma 12. m

q
T e -1 ~q ~1 ~n—2q 1 L
A€o, (T°,..., 2%y ,...,y" = z", ..., 29 = E ZF ek + ent1

is a transversal field. Let

(C3"Dij=t, g = [(C1" )rsm1, gl L

To complete the proof of the theorem in the case ¢ > 1 it remains to apply
the affine isomorphism AY of C"*1, where

q
AL, ... 0m T = (01, ce, 0T Z Cgljl(m*qﬂl — Oy, ..,
ji=1
q . .

5 G4t v 07,

Jq=1
The linear part of g(% does not change the transversal field g(;f , therefore
we have A o f and 12[5 as claimed, with A= 12[9 ) EG, F= ﬁ, gE: ¢A54.
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For ¢ =1,
Asofodr (@0, 0" %3 = @0, 0" L), F(7,2))

with 11’ # 0 in the neighbourhood of $4(m). We define a local diffeomor-
phism

REF .. 72D = @ T ()

and obtain

Aso fods @i .. " 53) = @G ... 0" L5 F(1.3)),
At 0 o Y@ . 28D =G(3) & + eMP &,y
with]?:fOIAY*I, ﬁ:ﬁoﬁ’l, 529101?71, gs =¢72054-
LEMMA 14. 5’ — /’\75: const # 0.

Proof. Let 5: G!' +iG? and Mv = M +iM?. Then

5 w6

OG!  0G? oMY  OM?
:<W“W>‘<W+ al>(Gl+ iG7)

oG!  aM' ., M2 )\  (9G* OM? _, OM' ,
:<8zl B 821G * azlG)+Z(W_ 821G B 3z1G>'

It is easily seen that

g0 :<_aal oM, _ OM? 2) 9

91 o 921

21 ozt
0G?*  OM? 1 oOM?! 5\ O
(ﬁ_ 921 ¢ - 921 ¢ )W’
because
OG! 0G?
D8/6z1A6§ = ﬁel - ﬁez

oM* oM?
+ < a1 eM’ cos M2 — WBMI sinM2>€2n+1

oOM? OM?
+ <— eM1 sin M? — eM1 cos M2> €2n+2

0z1 0z1
oGt oM! oM?
- <821 ozt G+ 0z1 G2>61

2 M2 Ml Ml M2
+(_8G o o GQ) o OM |\ e

ez + 551 Ag€ — 91
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For any vector W,

9 9
oxl’ Ox2

9 OF! OF>
DW(A60f)*§=W<6 1>€2n+1+W< >€2n+2

Vwaa € spang { } C ker S,

since

21
€ spang{ey, ea, AgE, JAE}.
It follows that Vyy (S9/92') = 0 for any W. Therefore
oGt oM? oM
e * 0z1 G 0z!

2
—G? =: —B; = const,

oG*  oM?* _, oM' ,
50 o, e G* =: By = const.
Moreover, (B1)? + (B2)? # 0, because S # 0. m

Let
%(5 U2 = (3,0 (B +iB2)2),
AO(C T = (L T (BB M.

Now Z7 ofo gg and A7§ (;56 have the same shape as /TG ofo Zgl and
g(;{ o 5;1 with F, Q M replaced by F, G /\/l where

~ 2 z ~ = z
7 ':F(B1+Z'Bz>’ 9(3) ':g<Bl+iB2)7

—~ == z
6= ()
It is easy to check that o
G -MG=1.
This finishes the proof of the theorem. m

There are many examples of functions G and M satisfying the above
equation. In fact, for any holomorphic M (and so for any u, v, because

,u(@/fizk) iQMl/azk and v(0/02%) = —OM?'/0zF) there exists G such
that G’ — M’G = 1. For example
G@® =% M@E) =0
(that is what we obtain also for ¢ > 1, with p = v = 0);
GE =1, M@ =-%
GZ) =€, M@E) =%+e "
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