k-convexity in several complex variables

by Hidetaka Hamada (Kitakyushu) and Gabriela Kohr (Cluj-Napoca)

Abstract. We define and investigate the notion of k-convexity in the sense of Mejia–Minda for domains in \mathbb{C}^n and also that of k-convex mappings on the Euclidean unit ball.

1. Introduction. Mejia [17] investigated the hyperbolic geometry of k-convex regions in \mathbb{C} . Mejia-Minda [18] studied the hyperbolic geometry of k-convex regions in \mathbb{C} and investigated k-convex functions on the unit disk U in \mathbb{C} . Ma-Mejia-Minda [16] obtained growth and distortion theorems for k-convex functions on U.

In this paper, we define and investigate the notion of k-convexity in the sense of Mejia-Minda for domains in \mathbb{C}^n and also that of k-convex mappings on the Euclidean unit ball in \mathbb{C}^n .

2. Preliminaries. Let \mathbb{C}^n denote the space of n complex variables $z=(z_1,\ldots,z_n)'$ with the Euclidean inner product $\langle z,w\rangle=\sum_{j=1}^n z_j\overline{w}_j$ and the Euclidean norm $\|z\|=\langle z,z\rangle^{1/2}$. The symbol ' means the transpose of vectors and matrices. For a domain Ω in \mathbb{C}^n , let $\delta_{\Omega}(a)=\inf\{\|z-a\|:z\in\partial\Omega\}$ denote the Euclidean distance from a to $\partial\Omega$. For open sets $G_1\subset\mathbb{C}^n$, $G_2\subset\mathbb{C}^m$, let $H(G_1,G_2)$ denote the set of holomorphic mappings from G_1 into G_2 . Let $B(z_0,r)=\{z\in\mathbb{C}^n:\|z-z_0\|< r\}$. B(0,r) is denoted by B_r and B(0,1) is denoted by \mathbb{B} . If $f\in H(B_r,\mathbb{C}^n)$, we say that f is normalized if f(0)=0 and Df(0)=I.

For a C^2 -curve C: z = z(t) in \mathbb{C} , let

$$k(z(t),C) = \frac{1}{|z'(t)|} \Im \left\{ \frac{z''(t)}{z'(t)} \right\}$$

denote the Euclidean curvature of C at z(t).

2000 Mathematics Subject Classification: Primary 32H99; Secondary 30C45. Key words and phrases: k-convexity.

For a bounded domain D in \mathbb{C}^n , the Carathéodory infinitesimal pseudometric is defined by

$$\gamma_D(z;X) = \sup\{|Df(z)X| : f \in H(D,U), \ f(z) = 0\},\$$

where U is the unit disc in \mathbb{C} .

Now we recall the notion of strong starlikeness due to Chuaqui [1] (cf. [6]). Let $\mathbb{B} \subset \mathbb{C}^n$. A normalized locally biholomorphic mapping $f \in H(\mathbb{B}, \mathbb{C}^n)$ is called *starlike* if f is biholomorphic on \mathbb{B} and $f(\mathbb{B})$ is a starlike domain, that is,

$$e^{-s}f(\mathbb{B}) \subset f(\mathbb{B}), \quad s \ge 0.$$

Suffridge [20] showed that if f is a normalized locally biholomorphic mapping on \mathbb{B} , then f is starlike if and only if

$$\Re\langle [Df(z)]^{-1}f(z), z\rangle > 0, \quad z \in \mathbb{B} \setminus \{0\}.$$

Let $w(z) = [Df(z)]^{-1}f(z)$. For $z \in \partial \mathbb{B}$ and $\zeta \in U$, let

$$\phi_z(\zeta) = \left\langle \frac{w(\zeta z)}{\zeta}, z \right\rangle$$

for $\zeta \neq 0$ and $\phi_z(0) = 1$. Since w(0) = 0 and Dw(0) = I, $\phi_z(\cdot)$ is a holomorphic function on U and $\Re \phi_z(\zeta) > 0$ for $\zeta \in U$ from (2.1).

If we put

$$\sigma_z(\zeta) = \frac{\phi_z(\zeta) - 1}{\phi_z(\zeta) + 1},$$

then $\sigma_z(\cdot)$ is a holomorphic function on U such that $\sigma_z(0) = 0$ and $|\sigma_z(\zeta)| < 1$ for $\zeta \in U$.

DEFINITION 2.1. f is said to be *strongly starlike* if $\phi_z(U)$ is contained in a compact subset of the right half-plane independent of $z \in \partial \mathbb{B}$. Or, equivalently, there exists a constant c with 0 < c < 1 such that $|\sigma_z(\zeta)| \le c$ uniformly for $z \in \partial \mathbb{B}$ and $\zeta \in U$.

Let Ω, Ω' be domains in \mathbb{R}^m . A homeomorphism $f: \Omega \to \Omega'$ is said to be *quasiconformal* if it is differentiable a.e., ACL (absolutely continuous on lines) and

$$||D(f;x)||^m \le K|\det D(f;x)|$$
 a.e. in Ω ,

where D(f;x) denotes the (real) Jacobian matrix of f, K is a constant and

$$||D(f;x)|| = \sup\{||D(f;x)(a)|| : ||a|| = 1\}.$$

Let G be a domain in \mathbb{C}^n . A holomorphic mapping $f: G \to \mathbb{C}^n$ is said to be quasiregular if

$$||Df(z)||^n \le K|\det Df(z)|, \quad z \in G,$$

where K is a constant and

$$\|Df(z)\| = \sup\{\|Df(z)(a)\| : \|a\| = 1\}.$$

3. k-convex domains in \mathbb{C}^n . Suppose that k > 0, $a, b \in \mathbb{C}^n$, $a \neq b$ and ||a-b|| < 2/k. Let L be the complex line through a and b. Then there are two distinct closed disks \overline{U}_1 and \overline{U}_2 of radius 1/k in L such that $a, b \in \partial \overline{U}_j$ (j=1,2). Let $E_k[a,b] = \overline{U}_1 \cap \overline{U}_2$. We also let $E_0[a,b] = [a,b]$, and for ||a-b|| = 2/k, $E_k[a,b]$ is the closed disk in L with center (a+b)/2 and radius 1/k.

DEFINITION 3.1. Suppose that $0 \le k < \infty$. A domain $\Omega \subset \mathbb{C}^n$ is called k-convex provided ||a-b|| < 2/k for any pair of points $a, b \in \Omega$ and $E_k[a,b] \subset \Omega$.

Example 3.1. The ellipsoid

$$E = \{ z \in \mathbb{C}^n : |z_1|^2 / r_1^2 + \ldots + |z_n|^2 / r_n^2 < 1 \}$$

is k-convex, but is not k'-convex for any k' > k, where

$$k = 1/\max\{r_1, \dots, r_n\},\,$$

since $E \cap L$ is a disk for any complex line L and the radius of the largest disk contained in E is $\max\{r_1, \ldots, r_n\}$. Thus, for k > 0, an open Euclidean ball of radius 1/k is k-convex, but is not k'-convex for any k' > k.

First, we will give elementary properties of k-convex domains. For n=1, these properties were obtained by Mejia–Minda [18]. By definition, 0-convex is the same as convex. If $0 \le k' \le k$ and Ω is k-convex, then Ω is k'-convex. In particular, a k-convex domain is always convex and so simply connected. If $\Omega_1, \ldots, \Omega_{\nu}$ are k-convex, then $\bigcap \Omega_j$ is k-convex. If $\Omega_1 \subset \Omega_2 \subset \ldots$ is an increasing sequence of k-convex domains, then $\bigcup \Omega_j$ is k-convex.

We can prove the following propositions by an argument similar to Mejia–Minda [18]. The exact proof is left to the reader.

First, recall that if Ω is convex, then for any $a \in \Omega$ and $c \in \partial \Omega$, the half segment $[a, c) \subset \Omega$. The next result gives a refinement of this fact for k-convex domains.

PROPOSITION 3.1. Suppose that Ω is a k-convex domain. Then for any $a \in \Omega$ and $c \in \partial \Omega$, $E_k[a,c] \setminus \{c\} \subset \Omega$.

PROPOSITION 3.2. Suppose that Ω is a k-convex domain. If $c, d \in \partial \Omega$, then int $E_k[c, d] \subset \Omega$.

PROPOSITION 3.3. Suppose that D is an open Euclidean ball or half-space such that $c \in \partial D \cap \partial B(z_0, 1/k)$ and D and $B(z_0, 1/k)$ are externally tangent at c. If ||a-c|| < 2/k and $a \notin B(z_0, 1/k)$, then $(E_k[a, c] \setminus \{c\}) \cap D \neq \emptyset$.

PROPOSITION 3.4. Suppose that Ω is a k-convex domain. Assume that $a \in \Omega$, $c \in \partial \Omega$ and $||a-c|| = \delta_{\Omega}(a)$. If B is the open Euclidean ball of radius 1/k that is tangent to the sphere $||z-a|| = \delta_{\Omega}(a)$ at c and that contains a in its interior, then $\Omega \subset B$.

PROPOSITION 3.5. Suppose that Ω is k-convex. Assume that $a \in \mathbb{C}^n \setminus \Omega$, $c \in \partial \Omega$ and $||a - c|| = \delta_{\Omega}(a)$. If B is the open Euclidean ball of radius 1/k that is tangent to the sphere $||z - a|| = \delta_{\Omega}(a)$ at c and that does not meet the open segment (a, c), then $\Omega \subset B$.

In the following, we give a necessary and sufficient condition of k-convexity for a bounded domain in \mathbb{C}^n whose boundary is a real hypersurface of class C^2 as follows:

(3.1)
$$\partial \Omega = \{ z \in V : \varphi(z) = 0 \},$$

where V is a neighborhood of $\partial\Omega$ and φ is a real-valued C^2 function such that $\varphi(z)<0$ on $V\cap\Omega$ and $\partial\varphi/\partial z(z)\neq 0$ on V. Mejia–Minda [18, Proposition 1] showed the following necessary and sufficient condition for k-convexity using the Euclidean curvature of $\partial\Omega$, when Ω is a simply connected region in $\mathbb C$ bounded by a closed Jordan C^2 curve.

PROPOSITION 3.6. Let k > 0 and let Ω be a simply connected domain in \mathbb{C} bounded by a closed Jordan C^2 curve $\partial \Omega$. Then Ω is k-convex if and only if $k(c, \partial \Omega) \geq k$ for all $c \in \partial \Omega$.

We will give a necessary and sufficient condition for a bounded domain in \mathbb{C}^n with C^2 boundary to be a k-convex domain.

THEOREM 3.1. Let $k \geq 0$ and let Ω be a bounded domain in \mathbb{C}^n with C^2 boundary. Assume that $\partial \Omega$ is as in (3.1). Then Ω is k-convex if and only if

$$(3.2) \Re \left[v' \frac{\partial^2 \varphi}{\partial z^2}(c) v \right] + \overline{v}' \frac{\partial^2 \varphi}{\partial \overline{z} \partial z}(c) v \ge k \left| \left\langle v, \frac{\partial \varphi}{\partial \overline{z}}(c) \right\rangle \right| \|v\|$$

for all $c \in \partial \Omega$ and $v \in T_c(\partial \Omega)$.

Proof. By Krantz [14, Propositions 3.1.6 and 3.1.7], \varOmega is convex if and only if

$$\Re \left[v' \frac{\partial^2 \varphi}{\partial z^2}(c) v \right] + \overline{v}' \frac{\partial^2 \varphi}{\partial \overline{z} \partial z}(c) v \geq 0$$

for all $c \in \partial \Omega$ and $v \in T_c(\partial \Omega)$. So, we may assume that k > 0 and that Ω is convex. Let L be a complex line such that $\Omega \cap L \neq \emptyset$. We can write L as follows:

$$L = \{c + \zeta u : \zeta \in \mathbb{C}\},\$$

where $c \in \partial \Omega \cap L$ and ||u|| = 1. Then

$$\partial(\Omega \cap L) = \{ \varphi(c + \zeta u) = 0 : c + \zeta u \in V \}.$$

Since Ω is convex and $\Omega \cap L \neq \emptyset$, $\langle u, \frac{\partial \varphi}{\partial \overline{z}}(c) \rangle \neq 0$. This implies that $\partial(\Omega \cap L)$ is a C^2 curve near c. Let z(t) be a curve in $\mathbb C$ such that

(3.3)
$$\varphi(c+z(t)u) = 0,$$

z(0) = 0 and |z'(t)| = 1 for t near 0. Differentiating (3.3) two times at t = 0, we have

(3.4)
$$\Re\left\langle v, \frac{\partial \varphi}{\partial \overline{z}}(c) \right\rangle = 0$$

and

(3.5)
$$\Re\left[v'\frac{\partial^2\varphi}{\partial z^2}(c)v\right] + \overline{v}'\frac{\partial^2\varphi}{\partial \overline{z}\partial z}(c)v + \Re\left\langle\frac{z''(0)}{z'(0)}v, \frac{\partial\varphi}{\partial\overline{z}}(c)\right\rangle = 0,$$

where v = z'(0)u. Since $\langle v, \frac{\partial \varphi}{\partial \overline{z}}(c) \rangle$ is non-zero and purely imaginary by (3.4), we may assume that

$$\left\langle v, \frac{\partial \varphi}{\partial \overline{z}}(c) \right\rangle = yi$$

with y > 0. Therefore,

$$(3.6) \qquad \Re\left\langle \frac{z''(0)}{z'(0)}v, \frac{\partial \varphi}{\partial \overline{z}}(c) \right\rangle = -\frac{1}{|z'(0)|} \Im\left(\frac{z''(0)}{z'(0)}\right) y = -k(c, \partial(\Omega \cap L))|y|.$$

From (3.5) and (3.6), we have

$$\Re \left[v' \frac{\partial^2 \varphi}{\partial z^2}(c) v \right] + \overline{v}' \frac{\partial^2 \varphi}{\partial \overline{z} \partial z}(c) v = k(c, \partial (\Omega \cap L)) |y|.$$

Thus, by Proposition 3.6, Ω is k-convex if and only if (3.2) holds. This completes the proof.

Let

$$\lambda_{\Omega}(z) = \sup_{\|X\|=1} \gamma_{\Omega}(z; X),$$

where $\gamma_{\Omega}(z;X)$ denotes the Carathéodory infinitesimal metric on Ω . The following theorem is a generalization of Mejia–Minda [18, Theorem 1].

Theorem 3.2. Suppose that Ω is a k-convex domain. Then for $z \in \Omega$,

(3.7)
$$\lambda_{\Omega}(z) \ge \frac{1}{\delta_{\Omega}(z)[2 - k\delta_{\Omega}(z)]}.$$

Proof. First, assume that $\Omega = B(a, 1/k)$. Then

$$\gamma_{\Omega}(z;X) = \sqrt{\frac{\|X\|^2}{\delta_{\Omega}(z)(2/k - \delta_{\Omega}(z))} + \frac{|\langle z - a, X \rangle|^2}{\delta_{\Omega}(z)^2(2/k - \delta_{\Omega}(z))^2}}.$$

Therefore,

(3.8)
$$\lambda_{\Omega}(z) = \frac{1}{\delta_{\Omega}(z)[2 - k\delta_{\Omega}(z)]}.$$

Next, consider any k-convex domain Ω . Fix $a \in \Omega$. Choose $c \in \partial \Omega$ with $||a - c|| = \delta_{\Omega}(a)$. Let B be the open Euclidean ball of radius 1/k that is tangent to the sphere $||z - a|| = \delta_{\Omega}(a)$ at c and contains a in its interior. By

Proposition 3.4, we have $\Omega \subset B$. Then

$$\gamma_B(a;X) \le \gamma_\Omega(a;X).$$

Therefore,

$$(3.9) \lambda_B(a) \le \lambda_{\Omega}(a).$$

Since $\delta_{\Omega}(a) = \delta_{B}(a)$, we obtain (3.7) from (3.8) and (3.9). This completes the proof.

4. k-convex mappings in several complex variables

DEFINITION 4.1. A holomorphic mapping $f: \mathbb{B} \to \mathbb{C}^n$ is called k-convex if f is biholomorphic and $f(\mathbb{B})$ is a k-convex domain. Moreover, for $\alpha > 0$, let $K(k,\alpha)$ denote the family of all k-convex mappings such that f(0) = 0, $Df(0) = \alpha I$.

Note that K(0,1) is the same as the family K of normalized convex mappings on \mathbb{B} .

The following theorem is a generalization of Mejia–Minda [18, Corollary 2 to Theorem 1].

THEOREM 4.1. Suppose that $f \in K(k, \alpha)$. Then $\alpha k \leq 1$ and the Euclidean ball $B(0, \alpha/(1 + \sqrt{1 - \alpha k}))$ is contained in $f(\mathbb{B})$.

Proof. Let $\Omega = f(\mathbb{B})$. Since holomorphic mappings are contractions of the infinitesimal Carathéodory pseudometric, we have

$$\alpha \gamma_{\Omega}(0, X) = \gamma_{\Omega}(f(0), Df(0)X) \le \gamma_{\mathbb{B}}(0, X) = ||X||.$$

Then we have

$$\alpha \lambda_{\Omega}(0) \leq \lambda_{\mathbb{B}}(0) = 1.$$

Also.

$$\frac{\alpha}{\delta_{\Omega}(0)[2 - k\delta_{\Omega}(0)]} \le \alpha \lambda_{\Omega}(0)$$

by Theorem 3.2. Therefore,

$$\frac{\alpha}{\delta_{\Omega}(0)[2 - k\delta_{\Omega}(0)]} \le 1.$$

Thus, $\alpha k \leq 1$ and

$$\delta_{\Omega}(0) \ge \frac{1 - \sqrt{1 - \alpha k}}{k} = \frac{\alpha}{1 + \sqrt{1 - \alpha k}}.$$

This completes the proof.

Example 4.1. Let k > 0. For $u \in \mathbb{C}^n$ with ||u|| = 1, let

$$f_{k,u}(z) = \frac{\alpha z}{1 - \sqrt{1 - \alpha k} \langle z, u \rangle}.$$

Then $f_{k,u} \in K(k,\alpha)$. This can be verified as follows. We may assume that $u = (1,0,\ldots,0)'$. Clearly, $f_{k,u}(0) = 0$, $Df_{k,u}(0) = \alpha I$ and $f_{k,u}$ is biholomorphic on a neighborhood of $\overline{\mathbb{B}}$. Since

$$f_{k,u}^{-1}(w) = \frac{w}{\alpha + \sqrt{1 - \alpha k} w_1},$$

we have

$$f_{k,u}(\mathbb{B}) = \left\{ w \in \mathbb{C}^n : \left\| \frac{w}{\alpha + \sqrt{1 - \alpha k} w_1} \right\| < 1 \right\}$$
$$= \left\{ w = (w_1, w')' \in \mathbb{C}^n : \frac{|w_1 - k^{-1} \sqrt{1 - \alpha k}|^2}{k^{-2}} + \frac{\|w'\|^2}{\alpha k^{-1}} < 1 \right\}.$$

Since $\sqrt{\alpha k^{-1}} = k^{-1} \sqrt{\alpha k} \le k^{-1}$, $f_{k,u}(\mathbb{B})$ is k-convex by Example 3.1.

Mejia-Minda [18, Corollary 1 to Theorem 8] gave a necessary and sufficient analytic condition for a locally biholomorphic mapping on the unit disc U in \mathbb{C} to be k-convex. We will give a sufficient analytic condition for a locally biholomorphic mapping on the Euclidean unit ball \mathbb{B} in \mathbb{C}^n to be k-convex.

THEOREM 4.2. Let $k \geq 0$ and let $f : \mathbb{B} \to \mathbb{C}^n$ be a locally biholomorphic mapping. Suppose that

$$||v||^2 - \Re\langle [Df(z)]^{-1}D^2f(z)(v,v), z\rangle \ge k|\langle z, v\rangle| ||Df(z)v||$$

for all $z \in \mathbb{B}$ and $v \in \mathbb{C}^n$ with $\Re\langle z, v \rangle = 0$. Then f is k-convex.

Proof. Since

$$||v||^2 - \Re\langle [Df(z)]^{-1}D^2f(z)(v,v), z\rangle \ge 0,$$

f is biholomorphic and $f(\mathbb{B})$ is a convex domain by Kikuchi [12, Theorem 2.1] or Gong-Wang-Yu [4, Theorem 2].

Let 0 < r < 1 and let $\varphi(w) = ||f^{-1}(w)||^2 - r^2$. Then

$$\partial f(B_r) = f(\partial B_r) = \{ w \in f(\mathbb{B}) : \varphi(w) = 0 \}.$$

Let $w_0 \in \partial f(B_r)$ and let $u \in T_{w_0}(\partial f(B_r))$. Then

$$\frac{\partial \varphi}{\partial \overline{w}}(w_0) = \overline{[Df(z_0)']^{-1}} z_0,$$

where $z_0 = f^{-1}(w_0) \in \partial B_r$,

$$\overline{u}' \frac{\partial^2 \varphi}{\partial \overline{w} \partial w}(w_0) u = \overline{u}' \overline{[Df(z_0)']^{-1}} [Df(z_0)]^{-1} u = ||[Df(z_0)]^{-1} u||^2,$$

and

$$u'\frac{\partial^2 \varphi}{\partial w^2}(w_0)u = -\overline{z_0}'[Df(z_0)]^{-1}D^2f(z_0)([Df(z_0)]^{-1}u, [Df(z_0)]^{-1}u).$$

Let $v_0 = [Df(z_0)]^{-1}u$. Since $u \in T_{w_0}(f(\partial B_r))$, we have

$$\Re\langle v_0, z_0 \rangle = \Re\{u'([Df(z_0)]^{-1})'\overline{z_0}\} = \Re\left\langle u, \frac{\partial \varphi}{\partial \overline{w}}(w_0) \right\rangle = 0.$$

Therefore, $v_0 \in T_{z_0}(\partial B_r)$. Thus,

$$\Re\left[u'\frac{\partial^{2}\varphi}{\partial w^{2}}(w_{0})u\right] + \overline{u}'\frac{\partial^{2}\varphi}{\partial \overline{w}\partial w}(w_{0})u$$

$$= \|v_{0}\|^{2} - \Re\langle[Df(z_{0})]^{-1}D^{2}f(z_{0})(v_{0}, v_{0}), z_{0}\rangle$$

$$\geq k|\langle z_{0}, v_{0}\rangle|\|Df(z_{0})v_{0}\|$$

$$= k\left|\langle\frac{\partial\varphi}{\partial \overline{w}}(w_{0}), u\rangle\right|\|u\|.$$

By Theorem 3.1, $f(B_r)$ is a k-convex domain. Therefore, $f(\mathbb{B})$ is k-convex. This completes the proof.

Example 4.2. For
$$z = (z_1, z_2)' \in \mathbb{C}^2$$
, let $f(z) = (z_1 + az_2^2, z_2)'$,

where a is a constant. Suffridge [21, Example 9] showed that $f \in K$ if $|a| \le 1/2$. We will show that if |a| < 1/2, then $f \in K(k, 1)$, where

$$k = \frac{1 - 2|a|}{1 + 2|a|}.$$

By a direct computation, we have

$$||v||^2 - \Re\langle [Df(z)]^{-1}D^2f(z)(v,v), z\rangle = ||v||^2 - \Re(2av_2^2\overline{z}_1)$$

and

$$Df(z)v = v + 2az_2(v_2, 0)'.$$

Then we have

$$||v||^2 - \Re\langle [Df(z)]^{-1}D^2f(z)(v,v), z\rangle \ge (1 - 2|a|)||v||^2$$

and

$$|\langle z, v \rangle| ||Df(z)v|| \le (1 + 2|a|) ||v||^2.$$

Therefore, the assumption of Theorem 4.2 holds for k = (1-2|a|)/(1+2|a|).

For $w = (w_1, \dots, w_n)' \in \mathbb{C}^n$ and $u \in \mathbb{C}^n$ with ||u|| = 1, let

$$S_u(w) = \frac{w}{\alpha - (1 - \sqrt{1 - \alpha k})\langle w, u \rangle}.$$

We obtain the following result as in Ma-Mejia-Minda [16, Theorem 1].

THEOREM 4.3. If $f \in K(k, \alpha)$, then $S_u \circ f \in K$ for every $u \in \mathbb{C}^n$ with ||u|| = 1.

Proof. It suffices to show the case when k > 0. By Theorem 4.1, we have $B(0, \alpha/(1 + \sqrt{1 - \alpha k})) \subset f(\mathbb{B})$. Also, by Proposition 3.4, $f(\mathbb{B})$ is contained in an open Euclidean ball of radius 1/k. Thus, for $z \in \mathbb{B}$, we have

$$||f(z)|| < \frac{2}{k} - \frac{\alpha}{1 + \sqrt{1 - \alpha k}} = \frac{\alpha}{1 - \sqrt{1 - \alpha k}}.$$

Hence, $g = S_u \circ f$ is a biholomorphic mapping on \mathbb{B} with g(0) = 0, Dg(0) = I.

Now, we will show that $q(\mathbb{B})$ is convex. Let L be an arbitrary complex line such that $g(\mathbb{B}) \cap L \neq \emptyset$. It suffices to show that $\Delta = g(\mathbb{B}) \cap L$ is convex. For any point $a \in \Delta$, there exists a point $c \in \partial \Delta$ such that $||a - c|| = \delta_{\Delta}(a)$, where $\delta_{\Delta}(a)$ denotes the Euclidean distance from a to $\partial \Delta$. Let Γ be the circle $\{\zeta \in L : \|\zeta - a\| = \delta_{\Delta}(a)\}, l$ be the tangent line to Γ in L at c, Hbe the half-plane bounded by l in L and containing a and $d = (S_u)^{-1}(c)$. Since $L' = (S_u)^{-1}(L)$ is a complex line, $(S_u)^{-1}(\Gamma)$ is a circle or a straight line in L' passing through d. Because the open disk in L bounded by Γ is contained in Δ , its image under $(S_u)^{-1}$ lies in $(S_u)^{-1}(\Delta) \subset f(\mathbb{B})$. Since $f(\mathbb{B})$ is bounded by Proposition 3.4, $(S_u)^{-1}(\Gamma)$ must be a circle. Let l' be the circle of radius 1/k in L' that is tangent to $(S_u)^{-1}(\Gamma)$ at d such that its interior meets the interior of $(S_u)^{-1}(\Gamma)$ and H' be the open disk in L' bounded by l'. Then $(S_n)^{-1}(\Delta) \subset H'$ by Mejia-Minda [18, Proposition 3]. On the other hand, $S_u(l')$ is a circle or a straight line in L which is tangent to Γ at c. If $S_u(l')$ is a straight line, then $S_u(l') = l$ and $S_u(H') = H$. If $S_u(l')$ is a circle, then $S_u(H')$ is a disk in L contained in H. In both cases, we have $\Delta \subset S_u(H') \subset H$. Let λ_{Δ} (resp. λ_H) denote the density of the hyperbolic metric on Δ (resp. H). From the monotonicity of the hyperbolic metric, we have

$$\lambda_{\Delta}(a) \ge \lambda_{H}(a) = \frac{1}{2\delta_{H}(a)} = \frac{1}{2\delta_{\Delta}(a)}.$$

Since $a \in \Delta$ is arbitrary, it follows that $\lambda_{\Delta}(z) \geq 1/(2\delta_{\Delta}(z))$ for all $z \in \Delta$. By Mejia–Minda [18, Theorem 2], Δ is convex. This completes the proof.

Let $f \in K$. Then Liu [15], Suffridge [22], FitzGerald–Thomas [2] and the second author [13] independently obtained the following growth theorem (cf. Hamada [5], Hamada–Kohr [9]):

(4.1)
$$\frac{1}{1+\|z\|} \le \|f(z)\| \le \frac{1}{1-\|z\|} \quad \text{for } z \in \mathbb{B}.$$

Also, Gong-Liu [3] and Pfaltzgraff-Suffridge [19] independently proved the following distortion theorem (cf. Gong-Wang-Yu [4], Hamada-Kohr [8]):

(4.2)
$$\frac{1}{(1+\|z\|)^2} \le \|Df(z)\| \le \frac{1}{(1-\|z\|)^2} \quad \text{for } z \in \mathbb{B}.$$

Theorem 4.4. Let $f \in K(k, \alpha)$ with k > 0. Then

(4.3)
$$\frac{\alpha \|z\|}{1 + \sqrt{1 - \alpha k} \|z\|} \le \|f(z)\| \le \frac{\alpha \|z\|}{1 - \sqrt{1 - \alpha k} \|z\|}, \quad z \in \mathbb{B},$$

and

(4.4)
$$\frac{\alpha}{(1+\|z\|)(1+\sqrt{1-\alpha k}\|z\|)} \le \|Df(z)\|, \quad z \in \mathbb{B}.$$

Proof. Fix $z_0 \in \mathbb{B} \setminus \{0\}$. There exists a unitary matrix U such that $Uf(z_0) = (\|f(z_0)\|, 0, \ldots, 0)'$. Let $u = (-1, 0, \ldots, 0)'$. Then $\langle Uf(z_0), u \rangle = -\|f(z_0)\|$. Let $F(z) = Uf(U^{-1}z)$. Then $F \in K(k, \alpha)$. By Theorem 4.3, $S_u \circ F \in K$. By making use of the growth and distortion theorems (4.1) and (4.2) for the class K at $z_1 = Uz_0$, we have

(4.5)
$$\frac{\|f(z_0)\|}{\alpha + (1 - \sqrt{1 - \alpha k})\|f(z_0)\|} = \|S_u \circ F(z_1)\| \ge \frac{\|z_0\|}{1 + \|z_0\|}$$

and

$$(4.6) \quad \left\| \frac{\left[(\alpha + (1 - \sqrt{1 - \alpha k}) \| f(z_0) \|) I - (1 - \sqrt{1 - \alpha k}) \| f(z_0) \| E_{11} \right] U D f(z_0)}{(\alpha + (1 - \sqrt{1 - \alpha k}) \| f(z_0) \|)^2} \right\| \\ \ge \frac{1}{(1 + \|z_0\|)^2},$$

where $E_{11} = (1, 0, ..., 0)(1, 0, ..., 0)'$. From (4.5), we have the lower estimate of (4.3). From the lower estimate in (4.3) and (4.6), we have (4.4). If we take u = (1, 0, ..., 0)', then we obtain

$$\frac{\|f(z_0)\|}{\alpha - (1 - \sqrt{1 - \alpha k})\|f(z_0)\|} \le \frac{\|z_0\|}{1 - \|z_0\|}$$

as above. This inequality implies the upper estimate in (4.3).

Since a k-convex mapping is convex, it is a starlike mapping. Chuaqui [1] obtained a quasiconformal extension of a quasiconformal strongly starlike mapping with $||[Df(z)]^{-1}f(z)||$ uniformly bounded on the Euclidean unit ball \mathbb{B} in \mathbb{C}^n . The first author [6] extended this result to a bounded balanced domain Ω with C^1 plurisubharmonic defining functions in \mathbb{C}^n , and the authors [10] generalized this to the unit ball with respect to an arbitrary norm on \mathbb{C}^n . The authors also gave a quasiconformal extension of a quasiconformal strongly spirallike mapping of type α with $||[Df(z)]^{-1}f(z)||$ uniformly bounded on a bounded balanced domain Ω with C^1 plurisubharmonic defining functions in \mathbb{C}^n [7] and on the unit ball with respect to an arbitrary norm on \mathbb{C}^n [11]. As a corollary of the above theorem, we obtain the following theorem.

Theorem 4.5. Let $f \in K(k, \alpha)$, where k > 0. Assume that f is a quasiregular strongly starlike mapping. Then f extends to a quasiconformal homeomorphism of \mathbb{R}^{2n} onto itself.

Proof. It suffices to show that $[Df(z)]^{-1}f(z)$ is uniformly bounded in \mathbb{B} . By Theorem 4.4, there exists a constant c > 0 such that

$$||Df(z)|| \ge c, \quad ||f(z)|| \le c, \quad z \in \mathbb{B}.$$

Also, since f is quasiregular, there exists a constant K > 0 such that

$$(4.8) ||Df(z)||^n \le K|\det Df(z)|, z \in \mathbb{B}.$$

Fix $z \in \mathbb{B}$ and let A = Df(z). Since A^*A is a Hermitian matrix with $\langle A^*Ax, x \rangle \geq 0$ for all $x \in \mathbb{C}^n$, where $A^* = \overline{A}'$, the eigenvalues of A^*A are real and non-negative. Let $\lambda_1^2, \ldots, \lambda_n^2$ be the eigenvalues of A^*A , where $\lambda_1, \ldots, \lambda_n \geq 0$. We may assume that $\lambda_1 \leq \ldots \leq \lambda_n$. Since $\lambda_1^2 \ldots \lambda_n^2 = \det(A^*A) = |\det(A)|^2 > 0$, it follows that $\lambda_1 > 0$. Also, from (4.7) and (4.8), we have

$$\lambda_n \geq c, \quad \lambda_n^n \leq K\lambda_1 \dots \lambda_n.$$

The latter inequality implies that $\lambda_n \leq K\lambda_1$.

Fix $y \in \mathbb{C}^n$ with ||y|| = 1. Let $x = A^{-1}y$. Then $||Ax||^2 = \langle A^*Ax, x \rangle \ge \lambda_1^2 ||x||^2$. Therefore,

$$||A^{-1}y|| = ||x|| \le \frac{||Ax||}{\lambda_1} = \frac{1}{\lambda_1}.$$

This implies that

$$||A^{-1}|| \le \frac{1}{\lambda_1} \le \frac{K}{\lambda_n} \le \frac{K}{c}.$$

Thus, we have

$$||[Df(z)]^{-1}f(z)|| \le ||[Df(z)]^{-1}|| \cdot ||f(z)|| \le K.$$

This completes the proof.

References

- M. Chuaqui, Applications of subordination chains to starlike mappings in Cⁿ, Pacific J. Math. 168 (1995), 33–48.
- [2] C. FitzGerald and C. Thomas, Some bounds of convex mappings in several complex variables, ibid. 165 (1994), 295–320.
- [3] S. Gong and T. Liu, Distortion theorems for biholomorphic convex mappings on bounded convex circular domains, Chinese Ann. Math. Ser. B 20 (1999), 297–304.
- [4] S. Gong, S. Wang and Q. Yu, Biholomorphic convex mappings of ball in Cⁿ, Pacific J. Math. 161 (1993), 287–306.
- [5] H. Hamada, The growth theorem of convex mappings on the unit ball of \mathbb{C}^n , Proc. Amer. Math. Soc. 127 (1999), 1075–1077.

- [6] H. Hamada, Starlike mappings on bounded balanced domains with C¹-plurisubharmonic defining functions, Pacific J. Math. 194 (2000), 359–371.
- [7] H. Hamada and G. Kohr, The growth theorem and quasiconformal extension of strongly spirallike mappings of type α, Complex Variables 44 (2001), 281–297.
- [8] —, —, Φ -like and convex mappings in infinite dimensional spaces, Rev. Roumaine Math. Pures Appl., to appear.
- [9] —, —, Growth and distortion results for convex mappings in infinite dimensional spaces, Complex Variables, to appear.
- [10] —, —, Quasiconformal extension of strongly starlike mappings on the unit ball of \mathbb{C}^n , submitted.
- [11] —, —, Loewner chains and quasiconformal extension of holomorphic mappings, submitted.
- [12] K. Kikuchi, Starlike and convex mappings in several complex variables, Pacific J. Math. 44 (1973), 569–580.
- [13] G. Kohr, On starlikeness and strongly starlikeness of order alpha in \mathbb{C}^n , Mathematica (Cluj) 40 (63) (1998), 95–109.
- [14] S. G. Krantz, Function Theory of Several Complex Variables, Wadsworth & Brooks/ Cole Advanced Books & Software, 1992.
- [15] T. Liu, The growth theorems, covering theorems and distortion theorems for biholomorphic mappings on classical domains, thesis, Univ. of Science and Technology of China, 1989.
- [16] W. Ma, D. Mejia and D. Minda, Distortion theorems for Euclidean k-convex functions, Complex Variables 19 (1992), 259–269.
- [17] D. Mejia, The hyperbolic metric in k-convex regions, Ph.D. dissertation, Univ. of Cincinnati, 1986.
- [18] D. Mejia and D. Minda, Hyperbolic geometry in k-convex regions, Pacific J. Math. 141 (1990), 333–354.
- [19] J. A. Pfaltzgraff and T. J. Suffridge, Norm order and geometric properties of holomorphic mappings in Cⁿ, J. Anal. Math. 82 (2000), 285–313.
- [20] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math. 33 (1970), 241–248.
- [21] —, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, in: Lecture Notes in Math. 599, Springer, 1976, 146–159.
- [22] —, Biholomorphic mappings of the ball onto convex domains, Abstracts Amer. Math. Soc. 11 (1990), 46.

Faculty of Engineering Kyushu Kyoritsu University 1-8 Jiyugaoka, Yahatanishi-ku Kitakyusu 807-8585, Japan E-mail: hamada@kyukyo-u.ac.jp Faculty of Mathematics Babeş-Bolyai University 1 M. Kogălniceanu Str. 3400 Cluj-Napoca, Romania E-mail: gkohr@math.ubbcluj.ro