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k-convexity in several complex variables

by Hidetaka Hamada (Kitakyushu) and
Gabriela Kohr (Cluj-Napoca)

Abstract. We define and investigate the notion of k-convexity in the sense of Mejia–
Minda for domains in Cn and also that of k-convex mappings on the Euclidean unit ball.

1. Introduction. Mejia [17] investigated the hyperbolic geometry of
k-convex regions in C. Mejia–Minda [18] studied the hyperbolic geometry of
k-convex regions in C and investigated k-convex functions on the unit disk
U in C. Ma–Mejia–Minda [16] obtained growth and distortion theorems for
k-convex functions on U .

In this paper, we define and investigate the notion of k-convexity in the
sense of Mejia-Minda for domains in Cn and also that of k-convex mappings
on the Euclidean unit ball in Cn.

2. Preliminaries. Let Cn denote the space of n complex variables z =
(z1, . . . , zn)′ with the Euclidean inner product 〈z, w〉 =

∑n
j=1 zjwj and the

Euclidean norm ‖z‖ = 〈z, z〉1/2. The symbol ′ means the transpose of vectors
and matrices. For a domain Ω in Cn, let δΩ(a) = inf{‖z − a‖ : z ∈ ∂Ω}
denote the Euclidean distance from a to ∂Ω. For open sets G1 ⊂ Cn, G2 ⊂
Cm, let H(G1, G2) denote the set of holomorphic mappings from G1 into G2.
Let B(z0, r) = {z ∈ Cn : ‖z−z0‖ < r}. B(0, r) is denoted by Br and B(0, 1)
is denoted by B. If f ∈ H(Br,Cn), we say that f is normalized if f(0) = 0
and Df(0) = I.

For a C2-curve C : z = z(t) in C, let

k(z(t), C) =
1
|z′(t)|=

{
z′′(t)
z′(t)

}

denote the Euclidean curvature of C at z(t).

2000 Mathematics Subject Classification: Primary 32H99; Secondary 30C45.
Key words and phrases: k-convexity.

[85]



86 H. Hamada and G. Kohr

For a bounded domain D in Cn, the Carathéodory infinitesimal pseudo-
metric is defined by

γD(z;X) = sup{|Df(z)X| : f ∈ H(D,U), f(z) = 0},
where U is the unit disc in C.

Now we recall the notion of strong starlikeness due to Chuaqui [1] (cf.
[6]). Let B ⊂ Cn. A normalized locally biholomorphic mapping f ∈ H(B,Cn)
is called starlike if f is biholomorphic on B and f(B) is a starlike domain,
that is,

e−sf(B) ⊂ f(B), s ≥ 0.

Suffridge [20] showed that if f is a normalized locally biholomorphic
mapping on B, then f is starlike if and only if

<〈[Df(z)]−1f(z), z〉 > 0, z ∈ B \ {0}.(2.1)

Let w(z) = [Df(z)]−1f(z). For z ∈ ∂B and ζ ∈ U , let

φz(ζ) =
〈
w(ζz)
ζ

, z

〉

for ζ 6= 0 and φz(0) = 1. Since w(0) = 0 and Dw(0) = I, φz(·) is a holomor-
phic function on U and <φz(ζ) > 0 for ζ ∈ U from (2.1).

If we put

σz(ζ) =
φz(ζ)− 1
φz(ζ) + 1

,

then σz(·) is a holomorphic function on U such that σz(0)=0 and |σz(ζ)|<1
for ζ ∈ U .

Definition 2.1. f is said to be strongly starlike if φz(U) is contained
in a compact subset of the right half-plane independent of z ∈ ∂B. Or,
equivalently, there exists a constant c with 0 < c < 1 such that |σz(ζ)| ≤ c
uniformly for z ∈ ∂B and ζ ∈ U .

Let Ω,Ω′ be domains in Rm. A homeomorphism f : Ω → Ω′ is said to
be quasiconformal if it is differentiable a.e., ACL (absolutely continuous on
lines) and

‖D(f ;x)‖m ≤ K|detD(f ;x)| a.e. in Ω,

where D(f ;x) denotes the (real) Jacobian matrix of f , K is a constant and

‖D(f ;x)‖ = sup{‖D(f ;x)(a)‖ : ‖a‖ = 1}.
Let G be a domain in Cn. A holomorphic mapping f : G → Cn is said

to be quasiregular if

‖Df(z)‖n ≤ K|detDf(z)|, z ∈ G,
where K is a constant and

‖Df(z)‖ = sup{‖Df(z)(a)‖ : ‖a‖ = 1}.
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3. k-convex domains in Cn. Suppose that k > 0, a, b ∈ Cn, a 6= b and
‖a − b‖ < 2/k. Let L be the complex line through a and b. Then there are
two distinct closed disks U 1 and U2 of radius 1/k in L such that a, b ∈ ∂U j

(j = 1, 2). Let Ek[a, b] = U1 ∩ U2. We also let E0[a, b] = [a, b], and for
‖a − b‖ = 2/k, Ek[a, b] is the closed disk in L with center (a + b)/2 and
radius 1/k.

Definition 3.1. Suppose that 0 ≤ k < ∞. A domain Ω ⊂ Cn is
called k-convex provided ‖a − b‖ < 2/k for any pair of points a, b ∈ Ω
and Ek[a, b]⊂Ω.

Example 3.1. The ellipsoid

E = {z ∈ Cn : |z1|2/r2
1 + . . .+ |zn|2/r2

n < 1}
is k-convex, but is not k′-convex for any k′ > k, where

k = 1/max{r1, . . . , rn},
since E ∩ L is a disk for any complex line L and the radius of the largest
disk contained in E is max{r1, . . . , rn}. Thus, for k > 0, an open Euclidean
ball of radius 1/k is k-convex, but is not k′-convex for any k′ > k.

First, we will give elementary properties of k-convex domains. For n = 1,
these properties were obtained by Mejia–Minda [18]. By definition, 0-convex
is the same as convex. If 0 ≤ k′ ≤ k and Ω is k-convex, then Ω is k′-convex.
In particular, a k-convex domain is always convex and so simply connected.
If Ω1, . . . , Ων are k-convex, then

⋂
Ωj is k-convex. If Ω1 ⊂ Ω2 ⊂ . . . is an

increasing sequence of k-convex domains, then
⋃
Ωj is k-convex.

We can prove the following propositions by an argument similar to
Mejia–Minda [18]. The exact proof is left to the reader.

First, recall that if Ω is convex, then for any a ∈ Ω and c ∈ ∂Ω, the
half segment [a, c) ⊂ Ω. The next result gives a refinement of this fact for
k-convex domains.

Proposition 3.1. Suppose that Ω is a k-convex domain. Then for any
a ∈ Ω and c ∈ ∂Ω, Ek[a, c] \ {c} ⊂ Ω.

Proposition 3.2. Suppose that Ω is a k-convex domain. If c, d ∈ ∂Ω,
then intEk[c, d] ⊂ Ω.

Proposition 3.3. Suppose that D is an open Euclidean ball or half-
space such that c ∈ ∂D ∩ ∂B(z0, 1/k) and D and B(z0, 1/k) are externally
tangent at c. If ‖a−c‖<2/k and a 6∈B(z0, 1/k), then (Ek[a, c]\{c})∩D 6=∅.

Proposition 3.4. Suppose that Ω is a k-convex domain. Assume that
a ∈ Ω, c ∈ ∂Ω and ‖a−c‖ = δΩ(a). If B is the open Euclidean ball of radius
1/k that is tangent to the sphere ‖z − a‖ = δΩ(a) at c and that contains a
in its interior , then Ω ⊂ B.
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Proposition 3.5. Suppose that Ω is k-convex. Assume that a ∈ Cn \Ω,
c ∈ ∂Ω and ‖a− c‖ = δΩ(a). If B is the open Euclidean ball of radius 1/k
that is tangent to the sphere ‖z − a‖ = δΩ(a) at c and that does not meet
the open segment (a, c), then Ω ⊂ B.

In the following, we give a necessary and sufficient condition of k-convex-
ity for a bounded domain in Cn whose boundary is a real hypersurface of
class C2 as follows:

∂Ω = {z ∈ V : ϕ(z) = 0},(3.1)

where V is a neighborhood of ∂Ω and ϕ is a real-valuedC2 function such that
ϕ(z) < 0 on V ∩Ω and ∂ϕ/∂z(z) 6= 0 on V . Mejia–Minda [18, Proposition 1]
showed the following necessary and sufficient condition for k-convexity using
the Euclidean curvature of ∂Ω, when Ω is a simply connected region in C
bounded by a closed Jordan C2 curve.

Proposition 3.6. Let k > 0 and let Ω be a simply connected domain
in C bounded by a closed Jordan C2 curve ∂Ω. Then Ω is k-convex if and
only if k(c, ∂Ω) ≥ k for all c ∈ ∂Ω.

We will give a necessary and sufficient condition for a bounded domain
in Cn with C2 boundary to be a k-convex domain.

Theorem 3.1. Let k ≥ 0 and let Ω be a bounded domain in Cn with C2

boundary. Assume that ∂Ω is as in (3.1). Then Ω is k-convex if and only if

<
[
v′
∂2ϕ

∂z2 (c)v
]

+ v′
∂2ϕ

∂z∂z
(c)v ≥ k

∣∣∣∣
〈
v,
∂ϕ

∂z
(c)
〉∣∣∣∣‖v‖(3.2)

for all c ∈ ∂Ω and v ∈ Tc(∂Ω).

Proof. By Krantz [14, Propositions 3.1.6 and 3.1.7], Ω is convex if and
only if

<
[
v′
∂2ϕ

∂z2 (c)v
]

+ v′
∂2ϕ

∂z∂z
(c)v ≥ 0

for all c ∈ ∂Ω and v ∈ Tc(∂Ω). So, we may assume that k > 0 and that Ω
is convex. Let L be a complex line such that Ω ∩ L 6= ∅. We can write L as
follows:

L = {c+ ζu : ζ ∈ C},
where c ∈ ∂Ω ∩ L and ‖u‖ = 1. Then

∂(Ω ∩ L) = {ϕ(c+ ζu) = 0 : c+ ζu ∈ V }.
Since Ω is convex and Ω∩L 6= ∅,

〈
u, ∂ϕ∂z (c)

〉
6= 0. This implies that ∂(Ω∩L)

is a C2 curve near c. Let z(t) be a curve in C such that

ϕ(c+ z(t)u) = 0,(3.3)
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z(0) = 0 and |z′(t)| = 1 for t near 0. Differentiating (3.3) two times at t = 0,
we have

<
〈
v,
∂ϕ

∂z
(c)
〉

= 0(3.4)

and

<
[
v′
∂2ϕ

∂z2 (c)v
]

+ v′
∂2ϕ

∂z∂z
(c)v + <

〈
z′′(0)
z′(0)

v,
∂ϕ

∂z
(c)
〉

= 0,(3.5)

where v = z′(0)u. Since
〈
v, ∂ϕ∂z (c)

〉
is non-zero and purely imaginary by (3.4),

we may assume that 〈
v,
∂ϕ

∂z
(c)
〉

= yi

with y > 0. Therefore,

<
〈
z′′(0)
z′(0)

v,
∂ϕ

∂z
(c)
〉

= − 1
|z′(0)|=

(
z′′(0)
z′(0)

)
y = −k(c, ∂(Ω ∩ L))|y|.(3.6)

From (3.5) and (3.6), we have

<
[
v′
∂2ϕ

∂z2 (c)v
]

+ v′
∂2ϕ

∂z∂z
(c)v = k(c, ∂(Ω ∩ L))|y|.

Thus, by Proposition 3.6, Ω is k-convex if and only if (3.2) holds. This
completes the proof.

Let
λΩ(z) = sup

‖X‖=1
γΩ(z;X),

where γΩ(z;X) denotes the Carathéodory infinitesimal metric on Ω. The
following theorem is a generalization of Mejia–Minda [18, Theorem 1].

Theorem 3.2. Suppose that Ω is a k-convex domain. Then for z ∈ Ω,

λΩ(z) ≥ 1
δΩ(z)[2− kδΩ(z)]

.(3.7)

Proof. First, assume that Ω = B(a, 1/k). Then

γΩ(z;X) =

√
‖X‖2

δΩ(z)(2/k − δΩ(z))
+

|〈z − a,X〉|2
δΩ(z)2(2/k − δΩ(z))2 .

Therefore,

λΩ(z) =
1

δΩ(z)[2− kδΩ(z)]
.(3.8)

Next, consider any k-convex domain Ω. Fix a ∈ Ω. Choose c ∈ ∂Ω with
‖a − c‖ = δΩ(a). Let B be the open Euclidean ball of radius 1/k that is
tangent to the sphere ‖z− a‖ = δΩ(a) at c and contains a in its interior. By
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Proposition 3.4, we have Ω ⊂ B. Then

γB(a;X) ≤ γΩ(a;X).

Therefore,
λB(a) ≤ λΩ(a).(3.9)

Since δΩ(a) = δB(a), we obtain (3.7) from (3.8) and (3.9). This completes
the proof.

4. k-convex mappings in several complex variables

Definition 4.1. A holomorphic mapping f : B→ Cn is called k-convex
if f is biholomorphic and f(B) is a k-convex domain. Moreover, for α > 0,
let K(k, α) denote the family of all k-convex mappings such that f(0) = 0,
Df(0) = αI.

Note that K(0, 1) is the same as the family K of normalized convex
mappings on B.

The following theorem is a generalization of Mejia–Minda [18, Corollary
2 to Theorem 1].

Theorem 4.1. Suppose that f ∈ K(k, α). Then αk ≤ 1 and the Eu-
clidean ball B(0, α/(1 +

√
1− αk)) is contained in f(B).

Proof. Let Ω = f(B). Since holomorphic mappings are contractions of
the infinitesimal Carathéodory pseudometric, we have

αγΩ(0,X) = γΩ(f(0),Df(0)X) ≤ γB(0,X) = ‖X‖.
Then we have

αλΩ(0) ≤ λB(0) = 1.

Also,
α

δΩ(0)[2− kδΩ(0)]
≤ αλΩ(0)

by Theorem 3.2. Therefore,
α

δΩ(0)[2− kδΩ(0)]
≤ 1.

Thus, αk ≤ 1 and

δΩ(0) ≥ 1−
√

1− αk
k

=
α

1 +
√

1− αk
.

This completes the proof.

Example 4.1. Let k > 0. For u ∈ Cn with ‖u‖ = 1, let

fk,u(z) =
αz

1−
√

1− αk 〈z, u〉
.
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Then fk,u ∈ K(k, α). This can be verified as follows. We may assume that
u = (1, 0, . . . , 0)′. Clearly, fk,u(0) = 0, Dfk,u(0) = αI and fk,u is biholomor-
phic on a neighborhood of B. Since

f−1
k,u(w) =

w

α+
√

1− αk w1
,

we have

fk,u(B) =
{
w ∈ Cn :

∥∥∥∥
w

α+
√

1− αk w1

∥∥∥∥ < 1
}

=
{
w = (w1, w

′)′ ∈ Cn :
|w1 − k−1

√
1− αk|2

k−2 +
‖w′‖2
αk−1 < 1

}
.

Since
√
αk−1 = k−1

√
αk ≤ k−1, fk,u(B) is k-convex by Example 3.1.

Mejia–Minda [18, Corollary 1 to Theorem 8] gave a necessary and suf-
ficient analytic condition for a locally biholomorphic mapping on the unit
disc U in C to be k-convex. We will give a sufficient analytic condition for
a locally biholomorphic mapping on the Euclidean unit ball B in Cn to be
k-convex.

Theorem 4.2. Let k ≥ 0 and let f : B→ Cn be a locally biholomorphic
mapping. Suppose that

‖v‖2 − <〈[Df(z)]−1D2f(z)(v, v), z〉 ≥ k|〈z, v〉|‖Df(z)v‖
for all z ∈ B and v ∈ Cn with <〈z, v〉 = 0. Then f is k-convex.

Proof. Since

‖v‖2 − <〈[Df(z)]−1D2f(z)(v, v), z〉 ≥ 0,

f is biholomorphic and f(B) is a convex domain by Kikuchi [12, Theorem
2.1] or Gong–Wang–Yu [4, Theorem 2].

Let 0 < r < 1 and let ϕ(w) = ‖f−1(w)‖2 − r2. Then

∂f(Br) = f(∂Br) = {w ∈ f(B) : ϕ(w) = 0}.
Let w0 ∈ ∂f(Br) and let u ∈ Tw0(∂f(Br)). Then

∂ϕ

∂w
(w0) = [Df(z0)′]−1z0,

where z0 = f−1(w0) ∈ ∂Br,

u′
∂2ϕ

∂w∂w
(w0)u = u′[Df(z0)′]−1[Df(z0)]−1u = ‖[Df(z0)]−1u‖2,

and

u′
∂2ϕ

∂w2 (w0)u = −z0
′[Df(z0)]−1D2f(z0)([Df(z0)]−1u, [Df(z0)]−1u).
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Let v0 = [Df(z0)]−1u. Since u ∈ Tw0(f(∂Br)), we have

<〈v0, z0〉 = <{u′([Df(z0)]−1)′z0} = <
〈
u,
∂ϕ

∂w
(w0)

〉
= 0.

Therefore, v0 ∈ Tz0(∂Br). Thus,

<
[
u′
∂2ϕ

∂w2 (w0)u
]

+ u′
∂2ϕ

∂w∂w
(w0)u

= ‖v0‖2 − <〈[Df(z0)]−1D2f(z0)(v0, v0), z0〉
≥ k|〈z0, v0〉|‖Df(z0)v0‖

= k

∣∣∣∣
〈
∂ϕ

∂w
(w0), u

〉∣∣∣∣‖u‖.

By Theorem 3.1, f(Br) is a k-convex domain. Therefore, f(B) is k-convex.
This completes the proof.

Example 4.2. For z = (z1, z2)′ ∈ C2, let

f(z) = (z1 + az2
2, z2)′,

where a is a constant. Suffridge [21, Example 9] showed that f ∈ K if
|a| ≤ 1/2. We will show that if |a| < 1/2, then f ∈ K(k, 1), where

k =
1− 2|a|
1 + 2|a| .

By a direct computation, we have

‖v‖2 − <〈[Df(z)]−1D2f(z)(v, v), z〉 = ‖v‖2 − <(2av2
2z1)

and
Df(z)v = v + 2az2(v2, 0)′.

Then we have

‖v‖2 − <〈[Df(z)]−1D2f(z)(v, v), z〉 ≥ (1− 2|a|)‖v‖2

and
|〈z, v〉|‖Df(z)v‖ ≤ (1 + 2|a|)‖v‖2.

Therefore, the assumption of Theorem 4.2 holds for k = (1−2|a|)/(1+2|a|).
For w = (w1, . . . , wn)′ ∈ Cn and u ∈ Cn with ‖u‖ = 1, let

Su(w) =
w

α− (1−
√

1− αk)〈w, u〉
.

We obtain the following result as in Ma–Mejia–Minda [16, Theorem 1].

Theorem 4.3. If f ∈ K(k, α), then Su ◦ f ∈ K for every u ∈ Cn with
‖u‖ = 1.
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Proof. It suffices to show the case when k > 0. By Theorem 4.1, we have
B(0, α/(1 +

√
1− αk)) ⊂ f(B). Also, by Proposition 3.4, f(B) is contained

in an open Euclidean ball of radius 1/k. Thus, for z ∈ B, we have

‖f(z)‖ < 2
k
− α

1 +
√

1− αk
=

α

1−
√

1− αk
.

Hence, g = Su◦f is a biholomorphic mapping on B with g(0) = 0,Dg(0) = I.
Now, we will show that g(B) is convex. Let L be an arbitrary complex

line such that g(B)∩L 6= ∅. It suffices to show that ∆ = g(B)∩L is convex.
For any point a ∈ ∆, there exists a point c ∈ ∂∆ such that ‖a− c‖ = δ∆(a),
where δ∆(a) denotes the Euclidean distance from a to ∂∆. Let Γ be the
circle {ζ ∈ L : ‖ζ − a‖ = δ∆(a)}, l be the tangent line to Γ in L at c, H
be the half-plane bounded by l in L and containing a and d = (Su)−1(c).
Since L′ = (Su)−1(L) is a complex line, (Su)−1(Γ ) is a circle or a straight
line in L′ passing through d. Because the open disk in L bounded by Γ
is contained in ∆, its image under (Su)−1 lies in (Su)−1(∆) ⊂ f(B). Since
f(B) is bounded by Proposition 3.4, (Su)−1(Γ ) must be a circle. Let l′ be
the circle of radius 1/k in L′ that is tangent to (Su)−1(Γ ) at d such that
its interior meets the interior of (Su)−1(Γ ) and H ′ be the open disk in L′

bounded by l′. Then (Su)−1(∆) ⊂ H ′ by Mejia–Minda [18, Proposition 3].
On the other hand, Su(l′) is a circle or a straight line in L which is tangent
to Γ at c. If Su(l′) is a straight line, then Su(l′) = l and Su(H ′) = H. If
Su(l′) is a circle, then Su(H ′) is a disk in L contained in H. In both cases,
we have ∆ ⊂ Su(H ′) ⊂ H. Let λ∆ (resp. λH) denote the density of the
hyperbolic metric on ∆ (resp. H). From the monotonicity of the hyperbolic
metric, we have

λ∆(a) ≥ λH(a) =
1

2δH(a)
=

1
2δ∆(a)

.

Since a ∈ ∆ is arbitrary, it follows that λ∆(z) ≥ 1/(2δ∆(z)) for all z ∈ ∆.
By Mejia–Minda [18, Theorem 2], ∆ is convex. This completes the proof.

Let f ∈ K. Then Liu [15], Suffridge [22], FitzGerald–Thomas [2] and the
second author [13] independently obtained the following growth theorem (cf.
Hamada [5], Hamada–Kohr [9]):

1
1 + ‖z‖ ≤ ‖f(z)‖ ≤ 1

1− ‖z‖ for z ∈ B.(4.1)

Also, Gong–Liu [3] and Pfaltzgraff–Suffridge [19] independently proved the
following distortion theorem (cf. Gong–Wang–Yu [4], Hamada–Kohr [8]):

1
(1 + ‖z‖)2 ≤ ‖Df(z)‖ ≤ 1

(1− ‖z‖)2 for z ∈ B.(4.2)
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Theorem 4.4. Let f ∈ K(k, α) with k > 0. Then

α‖z‖
1 +
√

1− αk‖z‖
≤ ‖f(z)‖ ≤ α‖z‖

1−
√

1− αk‖z‖
, z ∈ B,(4.3)

and

α

(1 + ‖z‖)(1 +
√

1− αk‖z‖)
≤ ‖Df(z)‖, z ∈ B.(4.4)

Proof. Fix z0 ∈ B \ {0}. There exists a unitary matrix U such that
Uf(z0) = (‖f(z0)‖, 0, . . . , 0)′. Let u = (−1, 0, . . . , 0)′. Then 〈Uf(z0), u〉
= −‖f(z0)‖. Let F (z) = Uf(U−1z). Then F ∈ K(k, α). By Theorem 4.3,
Su ◦F ∈ K. By making use of the growth and distortion theorems (4.1) and
(4.2) for the class K at z1 = Uz0, we have

‖f(z0)‖
α+ (1−

√
1− αk)‖f(z0)‖

= ‖Su ◦ F (z1)‖ ≥ ‖z0‖
1 + ‖z0‖

(4.5)

and

(4.6)
∥∥∥∥

[(α+(1−
√

1−αk)‖f(z0)‖)I− (1−
√

1−αk)‖f(z0)‖E11]UDf(z0)

(α+ (1−
√

1− αk)‖f(z0)‖)2

∥∥∥∥

≥ 1
(1 + ‖z0‖)2 ,

where E11 = (1, 0, . . . , 0)(1, 0, . . . , 0)′. From (4.5), we have the lower estimate
of (4.3). From the lower estimate in (4.3) and (4.6), we have (4.4). If we take
u = (1, 0, . . . , 0)′, then we obtain

‖f(z0)‖
α− (1−

√
1− αk)‖f(z0)‖

≤ ‖z0‖
1− ‖z0‖

as above. This inequality implies the upper estimate in (4.3).

Since a k-convex mapping is convex, it is a starlike mapping. Chuaqui [1]
obtained a quasiconformal extension of a quasiconformal strongly starlike
mapping with ‖[Df(z)]−1f(z)‖ uniformly bounded on the Euclidean unit
ball B in Cn. The first author [6] extended this result to a bounded bal-
anced domain Ω with C1 plurisubharmonic defining functions in Cn, and
the authors [10] generalized this to the unit ball with respect to an arbi-
trary norm on Cn. The authors also gave a quasiconformal extension of a
quasiconformal strongly spirallike mapping of type α with ‖[Df(z)]−1f(z)‖
uniformly bounded on a bounded balanced domain Ω with C1 plurisubhar-
monic defining functions in Cn [7] and on the unit ball with respect to an
arbitrary norm on Cn [11]. As a corollary of the above theorem, we obtain
the following theorem.
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Theorem 4.5. Let f ∈ K(k, α), where k > 0. Assume that f is a
quasiregular strongly starlike mapping. Then f extends to a quasiconformal
homeomorphism of R2n onto itself.

Proof. It suffices to show that [Df(z)]−1f(z) is uniformly bounded in B.
By Theorem 4.4, there exists a constant c > 0 such that

‖Df(z)‖ ≥ c, ‖f(z)‖ ≤ c, z ∈ B.(4.7)

Also, since f is quasiregular, there exists a constant K > 0 such that

‖Df(z)‖n ≤ K|detDf(z)|, z ∈ B.(4.8)

Fix z ∈ B and let A = Df(z). Since A∗A is a Hermitian matrix with
〈A∗Ax, x〉 ≥ 0 for all x ∈ Cn, where A∗ = A′, the eigenvalues of A∗A
are real and non-negative. Let λ2

1, . . . , λ
2
n be the eigenvalues of A∗A, where

λ1, . . . , λn ≥ 0. We may assume that λ1 ≤ . . . ≤ λn. Since λ2
1 . . . λ

2
n =

det(A∗A) = |det(A)|2 > 0, it follows that λ1 > 0. Also, from (4.7) and (4.8),
we have

λn ≥ c, λnn ≤ Kλ1 . . . λn.

The latter inequality implies that λn ≤ Kλ1.
Fix y ∈ Cn with ‖y‖ = 1. Let x = A−1y. Then ‖Ax‖2 = 〈A∗Ax, x〉 ≥

λ2
1‖x‖2. Therefore,

‖A−1y‖ = ‖x‖ ≤ ‖Ax‖
λ1

=
1
λ1
.

This implies that

‖A−1‖ ≤ 1
λ1
≤ K

λn
≤ K

c
.

Thus, we have

‖[Df(z)]−1f(z)‖ ≤ ‖[Df(z)]−1‖ · ‖f(z)‖ ≤ K.
This completes the proof.
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1 M. Kogălniceanu Str.

3400 Cluj-Napoca, Romania
E-mail: gkohr@math.ubbcluj.ro
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