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k-convexity in several complex variables

by HIDETAKA HAamADA (Kitakyushu) and
GABRIELA KOHR (Cluj-Napoca)

Abstract. We define and investigate the notion of k-convexity in the sense of Mejia—
Minda for domains in C" and also that of k-convex mappings on the Euclidean unit ball.

1. Introduction. Mejia [17] investigated the hyperbolic geometry of
k-convex regions in C. Mejia—Minda [18] studied the hyperbolic geometry of
k-convex regions in C and investigated k-convex functions on the unit disk
U in C. Ma—Mejia—Minda [16] obtained growth and distortion theorems for
k-convex functions on U.

In this paper, we define and investigate the notion of k-convexity in the
sense of Mejia-Minda for domains in C™ and also that of k-convex mappings
on the Euclidean unit ball in C™.

2. Preliminaries. Let C" denote the space of n complex variables z =
(21,...,2,)" with the Euclidean inner product (z,w) = > "_, 2;w; and the
Euclidean norm ||z|| = (z, z)'/2. The symbol ’ means the transpose of vectors
and matrices. For a domain {2 in C", let dp(a) = inf{||z — a|| : z € 92}
denote the Euclidean distance from a to 92. For open sets G; C C", Gy C
C™, let H(G1,G3) denote the set of holomorphic mappings from Gy into Gs.
Let B(zp,r) ={z € C": ||z—20|| < r}. B(0,r) is denoted by B, and B(0, 1)
is denoted by B. If f € H(B,,C"), we say that f is normalized if f(0) =0
and Df(0) = 1.

For a C%-curve C': z = 2(t) in C, let

RN A
H=(0),C) = \zmw{ ) }

denote the Euclidean curvature of C' at z(t).
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For a bounded domain D in C", the Carathéodory infinitesimal pseudo-
metric is defined by

p(z; X) = sup{|Df(2)X|: f € H(D,U), f(z) =0},
where U is the unit disc in C.

Now we recall the notion of strong starlikeness due to Chuaqui [1] (cf.
[6]). Let B C C™. A normalized locally biholomorphic mapping f € H (B, C")
is called starlike if f is biholomorphic on B and f(B) is a starlike domain,
that is,

e °f(B)C f(B), s=>0.

Suffridge [20] showed that if f is a normalized locally biholomorphic

mapping on B, then f is starlike if and only if

(2.1) R(DF()] 7 f(2),2) >0, zeB)\{0}.
Let w(z) = [Df(2)]"'f(2). For 2 € 0B and ¢ € U, let

6.0 = (52,2
for ¢ # 0 and ¢,(0) = 1. Since w(0) = 0 and Dw(0) = I, ¢.(-) is a holomor-
phic function on U and R¢,(¢) > 0 for ¢ € U from (2.1).

If we put
¢z(<) —1

Uz(o = W’

then o.(-) is a holomorphic function on U such that ¢,(0)=0 and |o,(¢)| <1
for (e U.

DEFINITION 2.1. f is said to be strongly starlike if ¢.(U) is contained
in a compact subset of the right half-plane independent of z € 0B. Or,
equivalently, there exists a constant ¢ with 0 < ¢ < 1 such that |0,({)] < ¢
uniformly for z € OB and ¢ € U.

Let £2, (2 be domains in R™. A homeomorphism f : 2 — (2’ is said to
be quasiconformal if it is differentiable a.e., ACL (absolutely continuous on

lines) and
|D(f;2)|™ < K|det D(f;z)| a.e. in £,

where D(f;z) denotes the (real) Jacobian matrix of f, K is a constant and
[1D(f; )| = sup{[| D(f; 2)(a)]| : [la] = 1}.

Let G be a domain in C™. A holomorphic mapping f : G — C" is said
to be quasiregular if

[Df(2)|" < K|det Df(2)], z€G,
where K is a constant and

IDf(2)ll = sup{[IDf(2)(a)] : [lall = 1}.
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3. k-convex domains in C". Suppose that &£ > 0, a,b € C", a # b and
lla —b|] < 2/k. Let L be the complex line through a and b. Then there are
two distinct closed disks U; and Us of radius 1 /k in L such that a,b € 8Uj
(j = 1,2). Let Ela,b] = Uy N Us. We also let Egla,b] = [a,b], and for
lla — b|| = 2/k, Exla,b] is the closed disk in L with center (a + b)/2 and
radius 1/k.

DEFINITION 3.1. Suppose that 0 < k < oco. A domain 2 C C” is

called k-conver provided |la — b|| < 2/k for any pair of points a,b € {2
and FEy[a,b] C 2.

ExaMPLE 3.1. The ellipsoid
E={z€C": |n)?/ri4+. . 4|z} /r2 <1}
is k-convex, but is not &’-convex for any k' > k, where
k=1/max{ry,...,m},

since £ N L is a disk for any complex line L and the radius of the largest
disk contained in E is max{ry,...,r,}. Thus, for £ > 0, an open Euclidean
ball of radius 1/k is k-convex, but is not k’-convex for any k' > k.

First, we will give elementary properties of k-convex domains. For n = 1,
these properties were obtained by Mejia—Minda [18]. By definition, 0-convex
is the same as convex. If 0 < k/ < k and 2 is k-convex, then (2 is k’-convex.
In particular, a k-convex domain is always convex and so simply connected.
If £21,...,82, are k-convex, then () §2; is k-convex. If 1 C {2, C ... is an
increasing sequence of k-convex domains, then | J{2; is k-convex.

We can prove the following propositions by an argument similar to
Mejia-Minda [18]. The exact proof is left to the reader.

First, recall that if {2 is convex, then for any a € (2 and ¢ € 312, the
half segment [a,c) C §2. The next result gives a refinement of this fact for
k-convex domains.

PROPOSITION 3.1. Suppose that §2 is a k-convex domain. Then for any
a € 2 and c € 002, Exla, ]\ {c} C £2.

PROPOSITION 3.2. Suppose that {2 is a k-convex domain. If c,d € 912,
then int Ex[c,d] C (2.

PROPOSITION 3.3. Suppose that D is an open Fuclidean ball or half-
space such that ¢ € 0D NIB(zo,1/k) and D and B(zo,1/k) are externally
tangent at c. If ||a—c||<2/k and a & B(z0,1/k), then (Eg[a, ]\ {c})ND (.

PROPOSITION 3.4. Suppose that §2 is a k-conver domain. Assume that
a€ 2, cedand|a—c| =0dn(a). If B is the open Euclidean ball of radius

1/k that is tangent to the sphere ||z — al| = dn(a) at ¢ and that contains a
in its interior, then 2 C B.
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PROPOSITION 3.5. Suppose that (2 is k-convex. Assume that a € C™\ {2,
c€ 0 and ||la —¢| = dp(a). If B is the open Euclidean ball of radius 1/k
that is tangent to the sphere ||z — al| = dp(a) at ¢ and that does not meet
the open segment (a,c), then 2 C B.

In the following, we give a necessary and sufficient condition of k-convex-
ity for a bounded domain in C™ whose boundary is a real hypersurface of
class C? as follows:

(3.1) 0N ={zeV:p(z)=0},

where V is a neighborhood of 942 and ¢ is a real-valued C? function such that
w(z) < 0on VN2 and dp/0z(z) # 0 on V. Mejia—Minda [18, Proposition 1]
showed the following necessary and sufficient condition for k-convexity using
the Euclidean curvature of 0f2, when (2 is a simply connected region in C
bounded by a closed Jordan C? curve.

PROPOSITION 3.6. Let k > 0 and let {2 be a simply connected domain
in C bounded by a closed Jordan C? curve 02. Then §2 is k-convex if and
only if k(c,002) >k for all c € 012.

We will give a necessary and sufficient condition for a bounded domain
in C" with C? boundary to be a k-convex domain.

THEOREM 3.1. Let k > 0 and let 2 be a bounded domain in C™ with C?
boundary. Assume that 012 is as in (3.1). Then 2 is k-convex if and only if

0% 0% dy
1= - v -
(3.2) R [v 522 (c)v} +7 ( <v, 7% (c)>
for all c € 082 and v € T.(012).

0z0z
Proof. By Krantz [14, Propositions 3.1.6 and 3.1.7], {2 is convex if and
only if

cv >k

o]l

0%p 0%p
/ —/ >
%[v 952 (c)v] +7 azaz(c)v >0
for all ¢ € 082 and v € T,.(042). So, we may assume that k > 0 and that 2

is convex. Let L be a complex line such that 2 N L # (). We can write L as
follows:

L={c+Cu:(eC},
where ¢ € 02N L and |ju|| = 1. Then
ONR2NL)={p(c+Cu)=0:c+CueV}.

Since {2 is convex and 2NL # 0, (u, g—“;(c» # 0. This implies that (2N L)
is a C2 curve near c. Let z(t) be a curve in C such that

(3.3) o(c+ z(t)u) =0,
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2(0) =0 and |Z/(t)| = 1 for t near 0. Differentiating (3.3) two times at ¢t = 0,
we have

(3.4) afe<v, g—g(c)> ~0
?;.i) R [0'227‘5(0)@} + 7 (,f; 2 (o + %<22((8>) v, g—§(0)> 0,

where v = 2/(0)u. Since (v, ‘3—‘;(0» is non-zero and purely imaginary by (3.4),
we may assume that

with y > 0. Therefore,
2"(0) 8_(,0 a) 1 S 2"(0) — k(e
00 RS 50) =~ (7 )y = Koo

From (3.5) and (3.6), we have

2 2
S‘E[v'a SD(C)v] +7 0 (c)v =k(c,0(2NL))|y|.

922 970~
Thus, by Proposition 3.6, {2 is k-convex if and only if (3.2) holds. This
completes the proof.

Let

where v (z; X) denotes the Carathéodory infinitesimal metric on 2. The
following theorem is a generalization of Mejia—Minda [18, Theorem 1].

THEOREM 3.2. Suppose that {2 is a k-convex domain. Then for z € {2,

1
&7 M) 2 DR ke

Proof. First, assume that {2 = B(a, 1/k). Then

Y- X2 (2= a, D)2
Yo(z; X) = \/59(2)(2/k —30(2)) + 00(2)2(2/k — 0n(2))?

Therefore,

(3.8) Aa(?)

1
 0o(2)[2 = kéo(2)]
Next, consider any k-convex domain {2. Fix a € 2. Choose ¢ € 92 with

lla — ¢|]| = dn(a). Let B be the open Euclidean ball of radius 1/k that is
tangent to the sphere ||z — a|| = d(a) at ¢ and contains a in its interior. By
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Proposition 3.4, we have {2 C B. Then
vB(a; X) < yo(a; X).

Therefore,

(3.9) Ap(a) < Ap(a).

Since 0(a) = dp(a), we obtain (3.7) from (3.8) and (3.9). This completes
the proof.

4. k-convex mappings in several complex variables

DEFINITION 4.1. A holomorphic mapping f : B — C" is called k-convex
if f is biholomorphic and f(B) is a k-convex domain. Moreover, for a > 0,
let K(k,a) denote the family of all k-convex mappings such that f(0) =0,
Df(0) =al.

Note that K(0,1) is the same as the family K of normalized convex
mappings on B.

The following theorem is a generalization of Mejia-Minda [18, Corollary
2 to Theorem 1].

THEOREM 4.1. Suppose that f € K(k,a). Then ak < 1 and the Eu-
clidean ball B(0,/(1 4+ /1 — ak)) is contained in f(B).

Proof. Let 2 = f(B). Since holomorphic mappings are contractions of
the infinitesimal Carathéodory pseudometric, we have

a70(0, X) = 72(f(0), Df(0)X) < (0, X) = [ X]].
Then we have
alp(0) < Ag(0) = 1.

Also,
@

62(0)[2 — ko (0)]
by Theorem 3.2. Therefore,

< arp(0)

SO = kea(0)] = &

Thus, ak <1 and
1—+1—ak «

50(0) > _ .
2(0) 2 k 1+v1— ok

This completes the proof.
ExXAMPLE 4.1. Let k > 0. For u € C™ with |lu|| =1, let

fk,u(z) = =

1—V1—ak(zu)
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Then fy, € K(k,a). This can be verified as follows. We may assume that
u=(1,0,...,0)". Clearly, fx.(0) =0, Dfy,.(0) = al and fj,, is biholomor-
phic on a neighborhood of B. Since

fralw) =

w

a++v1—akw’

w
<1
a+v1—akw; }
lwy — k=11 — ak|? N [lw||? - 1}.

we have

fat®) = fuw e

k=2 ak=!
Since Vak—1 = k™" ak < k™Y, fi.(B) is k-convex by Example 3.1.

- {w = (wy,w')’ €C":

Mejia—Minda [18, Corollary 1 to Theorem 8] gave a necessary and suf-
ficient analytic condition for a locally biholomorphic mapping on the unit
disc U in C to be k-convex. We will give a sufficient analytic condition for
a locally biholomorphic mapping on the Euclidean unit ball B in C™ to be
k-convex.

THEOREM 4.2. Let k > 0 and let f : B — C" be a locally biholomorphic
mapping. Suppose that

loll* = R(Df(2)] "D f(2)(v, ), 2) 2 kl(z,0)| [ Df(2)0]

for all z € B and v € C™ with X(z,v) = 0. Then f is k-convex.

Proof. Since

[l = RADF ()]~ D f(2) (v, v), 2) > 0,

f is biholomorphic and f(B) is a convex domain by Kikuchi [12, Theorem
2.1] or Gong—Wang-Yu [4, Theorem 2].

Let 0 <7 < 1 and let p(w) = ||f~!(w)||* — 2. Then

9f(Br) = f(0B;) = {w € f(B) : p(w) = 0}.

Let wg € 0f(By) and let u € T,,,,(0f(B;)). Then

%2 (wy) = DGO T2
where zg = f~!(wg) € 0B,,
_, 6280 71D £( 22\ 1—1 -1, _ ~1 2
' o= (wo)u = W[Df(z0)] D f (20)]'u = [[Df(z0)] "]l

and

18280 — —12 -1 -1
u' 55 (wo)u = —Z5[Df (20)] D" f (20)([Df (20)] ", [Df (20)] ).
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Let vg = [Df(20)]"tu. Since u € Ty, (f(0B;)), we have
R(vo, 20) = R{v/([Df(20)] ')z} = §R<u, g—;(wo)> =0.

Therefore, vy € T, (0B,). Thus,
2

2 0
R [“/a—z;(w‘))“} T 0w
= |lvoll* = R([Df(20)] " D* f(20)(vo, v0), 20)

> k{20, vo) || D f (z0)vo|
Dy
(Gtms)

By Theorem 3.1, f(B,) is a k-convex domain. Therefore, f(B) is k-convex.
This completes the proof.

(wo)u

=k [[ull.

EXAMPLE 4.2. For z = (21, z2)' € C?, let
f(2) = (21 +az3, ),

where a is a constant. Suffridge [21, Example 9] showed that f € K if
la| <1/2. We will show that if |a| < 1/2, then f € K(k, 1), where

1—-2la
k= TQG:
By a direct computation, we have

lll* = R(Df(2)] D f(2)(v,0), 2) = [[o]|* — R(2av371)
and
Df(2z)v = v+ 2az22(v2,0)".
Then we have
[v]]* = R(ADf(2)] ' D f(2)(v,v), 2) = (1 = 2lal)|[v]|?
and
(2. ) IDF(2)v]l < (1 + 2[al)||o]*.

Therefore, the assumption of Theorem 4.2 holds for k = (1—2|a|)/(1+2|al).

For w = (w1, ...,wy,) € C" and u € C™ with |lu]| =1, let

Sul(w) = a—(1—+1—ak)(w,u)

We obtain the following result as in Ma—Mejia-Minda [16, Theorem 1].

THEOREM 4.3. If f € K(k,«), then Sy, o f € K for every u € C" with
[Juf| = 1.
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Proof. 1t suffices to show the case when k > 0. By Theorem 4.1, we have
B(0,a/(14++v1—ak)) C f(B). Also, by Proposition 3.4, f(B) is contained
in an open Euclidean ball of radius 1/k. Thus, for z € B, we have

175G <

(6% (0%
1+ VI—ak 1-VI—ak

Hence, g = Sy 0f is a biholomorphic mapping on B with g(0) = 0, Dg(0) = I.

Now, we will show that g(B) is convex. Let L be an arbitrary complex
line such that g(B) N L # (). It suffices to show that A = g(B) N L is convex.
For any point a € A, there exists a point ¢ € A such that |ja —¢|| = da(a),
where da(a) denotes the Euclidean distance from a to 0A. Let I' be the
circle {¢ € L : ||( —al| = da(a)}, | be the tangent line to I' in L at ¢, H
be the half-plane bounded by [ in L and containing a and d = (S,)!(c).
Since L' = (S,)" (L) is a complex line, (S,)~!(I") is a circle or a straight
line in L’ passing through d. Because the open disk in L bounded by I'
is contained in A, its image under (S,)~! lies in (S,)~*(4) C f(B). Since
f(B) is bounded by Proposition 3.4, (S,)~!(I') must be a circle. Let I’ be
the circle of radius 1/k in L’ that is tangent to (S,) !(I") at d such that
its interior meets the interior of (S,)~!(I") and H' be the open disk in L/
bounded by I’. Then (S,)"(A) C H' by Mejia-Minda [18, Proposition 3].
On the other hand, S,(I") is a circle or a straight line in L which is tangent
to I' at c. If S, (I) is a straight line, then S, (!') = [ and S,(H') = H. If
Sy (') is a circle, then S, (H’) is a disk in L contained in H. In both cases,
we have A C S,(H') C H. Let Aa (resp. Ag) denote the density of the
hyperbolic metric on A (resp. H). From the monotonicity of the hyperbolic
metric, we have

1 1
Aala) 2 An0) = 550 = S5a@)

Since a € A is arbitrary, it follows that Aa(z) > 1/(20a(2)) for all z € A.
By Mejia-Minda [18, Theorem 2|, A is convex. This completes the proof.

Let f € K. Then Liu [15], Suffridge [22], FitzGerald-Thomas [2] and the
second author [13] independently obtained the following growth theorem (cf.
Hamada [5], Hamada—Kohr [9]):

1
< [IF ()] =
1+ 2] 12|
Also, Gong—Liu [3] and Pfaltzgraff-Suffridge [19] independently proved the
following distortion theorem (cf. Gong-Wang—Yu [4], Hamada—Kohr [8]):
1

1
WSHDJC(Z)HSW for z € B.

(4.1) for z € B.

(4.2)
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THEOREM 4.4. Let f € K(k,«) with k > 0. Then

ol ol
e Y e P Ay vy L
and

(0%
W AT viarap S IPAEN =B

Proof. Fix zp € B\ {0}. There exists a unitary matrix U such that
Uf(z0) = (|If(20)|l,0,...,0). Let v = (—1,0,...,0)". Then (U f(z0),u)
= —||f(20)|. Let F(2) = Uf(U'2). Then F € K(k,«). By Theorem 4.3,
SyoF € K. By making use of the growth and distortion theorems (4.1) and
(4.2) for the class K at z; = Uzp, we have

17 (0)] s o]
ey BV wrrvs VPP Tl SO T
and
wo) '[<a+<1—m>||f<z«o>u>f—<1— T=ahk) || (:0) | En)U D (z0)
(ot (L—vVIaRlfo)l)?
1
= T+ =)

where F11 = (1,0,...,0)(1,0,...,0)". From (4.5), we have the lower estimate
of (4.3). From the lower estimate in (4.3) and (4.6), we have (4.4). If we take
u=(1,0,...,0)", then we obtain
1/ Cz0) | < _ll=oll
o= (= VI=aR)fGo)l = 1]

as above. This inequality implies the upper estimate in (4.3).

Since a k-convex mapping is convex, it is a starlike mapping. Chuaqui [1]
obtained a quasiconformal extension of a quasiconformal strongly starlike
mapping with ||[Df(2)]7'f(2)|| uniformly bounded on the Euclidean unit
ball B in C". The first author [6] extended this result to a bounded bal-
anced domain {2 with C! plurisubharmonic defining functions in C", and
the authors [10] generalized this to the unit ball with respect to an arbi-
trary norm on C™. The authors also gave a quasiconformal extension of a
quasiconformal strongly spirallike mapping of type o with [|[Df(2)]~1f(2)]|
uniformly bounded on a bounded balanced domain {2 with C'! plurisubhar-
monic defining functions in C™ [7] and on the unit ball with respect to an
arbitrary norm on C™ [11]. As a corollary of the above theorem, we obtain
the following theorem.
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THEOREM 4.5. Let f € K(k,a), where k > 0. Assume that [ is a
quasireqular strongly starlike mapping. Then f extends to a quasiconformal
homeomorphism of R?™ onto itself.

Proof. Tt suffices to show that [Df(z)] ! f(z) is uniformly bounded in B.
By Theorem 4.4, there exists a constant ¢ > 0 such that

(4.7) IDf) z¢, Nf)l<e, z€B.
Also, since f is quasiregular, there exists a constant K > 0 such that
(4.8) IDf(2)|I" < K|det Df(2)], ze€B.

Fix z € B and let A = Df(z). Since A*A is a Hermitian matrix with
(A*Ax,z) > 0 for all x € C", where A* = A, the eigenvalues of A*A
are real and non-negative. Let A\},..., A2 be the eigenvalues of A*A, where
Aoy Ay > 0. We may assume that \; < ... < \,. Since \2...)\2 =
det(A*A) = |det(A)|? > 0, it follows that A\; > 0. Also, from (4.7) and (4.8),
we have
An>c, Ay < KA. .

The latter inequality implies that A, < KA;.

Fix y € C" with ||y|| = 1. Let # = A~'y. Then ||Ax|?> = (A*Az,x) >
A?||z||?. Therefore,

Az 1
A Yy = < H— = —.
47 = o < 255 =
This implies that
1 K K
AT < — < — < —.
)\1 >\n C

Thus, we have

DI <MD 1F ) < K.
This completes the proof.
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