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Exponential limit shadowing

by S. A. Ahmadi and M. R. Molaei (Kerman)

Abstract. We introduce the notion of exponential limit shadowing and show that
it is a persistent property near a hyperbolic set of a dynamical system. We show that
Ω-stability implies the exponential limit shadowing property.

1. Introduction. The theory of shadowing in dynamical systems has
been extended by many researchers [LS, P1, JTT, Y]. Let us explain this
theory by considering a set M and a map φ :M →M . In numerical compu-
tation of the orbit of φ with initial value x0 ∈M we can approximate φ(x0)
by x1. To continue the process we can compute the value x2 close to φ(x1)
and so on. Sometimes this sequence can play the role of a shadow for the
orbit O(x, φ) = {φn(x)}n∈Z for some x ∈ M . A natural question is: when,
for a given shadow, can we find a real orbit close to it? This leads us to
consider shadowing properties.

Furthermore, we may consider shadowing as a weak form of stability of
dynamical systems with respect to C0 perturbations. More precisely, let M
be a compact smooth manifold with a metric r and let φ :M →M be a C1

diffeomorphism. Then the dynamical system φ has the pseudo orbit tracing
property (POTP) on M if for each ε > 0 there is d > 0 such that for any
given sequence ξ = {xk}k∈Z with

r(φ(xk), xk+1) < d for k ∈ Z

(called a d-pseudo orbit) there exists a point p ∈M such that

r(φk(p), xk) < ε for k ∈ Z

(see [B]). The dynamical system φ has the Lipschitz shadowing property
(LpSP) on M if there exist constants L > 0 and d0 > 0 such that for any
sequence ξ = {xk}k∈Z with

r(φ(xk), xk+1) < d < d0 for k ∈ Z
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there is a point p ∈M such that

r(φk(p), xk) < Ld for k ∈ Z.
Another type of shadowing is the limit shadowing [ENP]. The dynamical

system φ has the limit shadowing property (LmSP) onM if for any sequence
ξ = {xk}k≥0 with

r(φ(xk), xk+1)→ 0 as k →∞
there exists a point p ∈M so that

r(φk(p), xk)→ 0 as k →∞
From the numerical point of view, this property means that if we apply a
numerical method that approximates φ with “improving accuracy”, so that
one-step errors tend to zero as time goes to infinity, then the numerically
obtained trajectories tend to real ones.

We now introduce a kind of shadowing where one-step errors tend to zero
with exponential rate, and each one-step error is determined in terms of two
constants and the step number.

Definition 1.1. We say that a dynamical system φ has the exponential
limit shadowing property (ELmSP) on M if there exist constants L > 0 and
λ ∈ (0, 1) such that for any sequence ξ = {xk}k≥0 with

(1.1) r(φ(xk), xk+1) < λk for all k greater than a k1 ∈ N
there exists a point p ∈M and k2 ∈ N so that

(1.2) r(φk(p), xk) < Lλk/2 for k ≥ k2.
In this paper, Ω(φ) denotes the set of non-wandering points of φ.

The system φ is called Ω-stable if given ε > 0 there is δ > 0 such that
for any diffeomorphism ψ such that ρ1(φ, ψ) = supx∈M{‖φ(x) − ψ(x)‖,
‖Dφ(x)−Dψ(x)‖} < δ there is a homeomorphism h : Ω(φ)→ Ω(ψ) with

• h ◦ φ = ψ ◦ h;
• r(x, h(x)) < ε for each x ∈ Ω(φ).

We recall that a compact, φ-invariant subset Λ ⊂ M is called a hyperbolic
set for φ if there are constants λ ∈ (0, 1), C > 0 and a family of subspaces
Es(x) ⊂ TxM and Eu(x) ⊂ TxM , x ∈ Λ, so that for every x ∈ Λ:

(1) TxM = Es(x)⊕ Eu(x);
(2) ‖(Dxφ

n)v‖ ≤ Cλn‖v‖ for each v ∈ Es(x) and n ≥ 0;
(3) ‖(Dxφ

−n)v‖ ≤ Cλn‖v‖ for every v ∈ Eu(x) and n ≥ 0;
(4) (Dxφ)E

s(x) = Es(x) and (Dxφ)E
u(x) = Eu(x).

The subspace Es(x) (respectively Eu(x)) is called the stable (resp. unstable)
subspace at x, and the family {Es(x)}x∈Λ (res. {Eu(x)}x∈Λ) is called the
stable (resp. unstable) distribution of φ|Λ.
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A system φ satisfies Axiom A if

• Ω(φ) is a hyperbolic set;
• the set Per(φ) of periodic points of φ is dense in Ω(φ).

2. Theorems. In this paper we prove the following main theorems:

Theorem 2.1. Let Λ be a hyperbolic set for a diffeomorphism φ of M .
Then there exists a neighborhood W of Λ such that φ has the ELmSP on W .

Theorem 2.2. If a diffeomorphism φ is Ω-stable, then it has the ELmSP.

Let (X, d) be a compact metric space and let f : X → X be a homeo-
morphism. Then f is called expansive if there is a constant e > 0 such that
if d(f i(x), f i(y)) ≤ e for all i ∈ Z, then x = y.

For ∆ > 0 and x ∈ X, let W s
∆(x) = {y ∈ X : d(fn(x), fn(y)) ≤ ∆ for

all n ≥ 0} and W u
∆ = {y ∈ X : d(fn(x), fn(y)) ≤ ∆ for all n ≤ 0}. The

mapping f is called L-hyperbolic [Sa] if

• f is a Lipschitz homeomorphism;
• there is ε0 > 0 such that for every 0 < ε < ε0, there exists δ > 0 so

that for any x, y ∈ X with d(x, y) < δ, the set W s
ε (x)∩W u

ε (y) consists
of a single point α(x, y);
• there is a constant K > 0 such that

d(α(x, y), x) ≤ Kd(x, y), d(α(x, y), y) ≤ Kd(x, y);
• there are 0 < ∆, ν < 1 such that for all x ∈ X,

y ∈W s
∆(x) ⇒ d(fn(x), fn(y)) ≤ νnd(x, y), n ≥ 0,

y ∈W u
∆(x) ⇒ d(f−n(x), f−n(y)) ≤ νnd(x, y), n ≥ 0.

We will also prove the following theorem.

Theorem 2.3. Let f : X → X be an L-hyperbolic homeomorphism on a
compact metric space (X, d). Then f has the ELmSP.

3. Proofs of theorems. Let us recall the following theorem which is a
stronger version of the shadowing lemma:

Theorem 3.1 ([P1]). If Λ is a hyperbolic set for a diffeomorphism φ
then there exists a neighborhood W of Λ on which φ has the LpSP.

To prove Theorem 2.1 we will use the following lemma.

Lemma 3.2 ([ENP]). If Λ is a hyperbolic set for a diffeomorphism φ then
there exist a neighborhood U of Λ and constants δ > 0 and ν ∈ (0, 1) such
that if two points x and y in M have the properties φk(x), φk(y) ∈ U and
r(φk(x), φk(y)) ≤ δ for all k ≥ 0 then

r(φk(x), φk(y)) ≤ 2νkr(x, y) for all k ≥ 0.
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Proof of Theorem 2.1. By Theorem 3.1 there exists a neighborhood U0 of
Λ on which φ has the LpSP with constants L0 and d0. Take a neighborhood
U1 of Λ and numbers ν ∈ (0, 1) and δ > 0 as given by Lemma 3.2. If

U = U0 ∩ U1

then we can find a neighborhood W of Λ such that N(W, δ) ⊂ U (by de-
creasing δ), where N(W, δ) is the δ-neighborhood of W . We claim that for
λ = ν ∈ (0, 1), φ has the ELmSP on W . To prove this let ξ = {xk}k≥0 be a
sequence on W so that

r(xk+1, φ(xk)) ≤ λk for k ≥ k1.
We choose k2 ≥ k1 large enough so that λk < min{d0, δ/2L0} for k ≥ k2.
Since φ has the LpSP on W ⊂ U0, for each k ≥ k2 there exists yk ∈M such
that

r(φi(yk), xi) ≤ L0λ
k < δ/2 for i ≥ k ≥ k2.

If p = yk2 , then

r(φi(yk), φ
i(p)) ≤ r(φi(yk), xi) + r(xi, φ

i(p)) < δ/2 + δ/2 = δ

for i ≥ k ≥ k2. Fix k ≥ k2; then for i ≥ 0 we deduce

r(φi+k(yk), φ
i+k(p)) < δ and φi+k(yk), φ

i+k(p) ∈ U ⊂ U1.

Hence Lemma 3.2 implies

r(φi+k(yk), φ
i+k(p)) ≤ 2r(φk(yk), φ

k(p))λi < 2δλi for i ≥ 0.

So

d(φ2k(p), x2k)≤d(φ2k(p), φ2k(yk))+d(φ2k(yk), x2k)<(L0+2δ)λk for k≥k2.
Thus

d(φk(p), xk) < (L0 + 2δ)λk/2 for k ≥ 2k2.

If L = L0 + 2δ then r(φk(p), xk) ≤ Lλk/2 for k ≥ 2k2.

Let S1 be the unit circle with coordinate x ∈ [0, 1). Then we have the
following proposition:

Proposition 3.3. Let φ : S1 → S1 be an orientation preserving dif-
feomorphism. Moreover suppose that the set Fix(φ) of fixed points of φ is a
nonempty hyperbolic, nowhere dense set. Then φ has the ELmSP.

Proof. Since Fix(φ) is a hyperbolic set, by Theorem 2.1 there is a neigh-
borhood W of Fix(φ) such that φ has the ELmSP on W with constants
λ ∈ (0, 1) and L > 0. Suppose that the sequence ξ = {xk}k≥k1 for some
k1 ∈ N satisfies

|φ(xk)− xk+1| < λk for k ≥ k1.
Then Theorem 3.1.2 of [P1] implies that there is a fixed point x such that
xk → x and so {xk}k≥k2 ⊂ W for some k2 ≥ k1. Hence there exists p ∈ S1



Exponential limit shadowing 5

such that
|φk(p)− xk| < λk/2 for k ≥ k3

for some k3 ∈ N, i.e. φ has the ELmSP.

Let us recall Smale’s spectral decomposition theorem [Sm]. If φ satisfies
Axiom A, then there is a unique representation

Ω(φ) = Ω1 ∪ · · · ∪Ωk
of Ω(φ) as a disjoint union of closed φ-invariant sets (called basic sets) such
that

• each Ωi is a locally maximal hyperbolic set of φ;
• φ is topologically transitive on each Ωi;
• each Ωi is a disjoint union of closed sets Ωj

i , 1 ≤ j ≤ mi, cyclically
permuted by φ, and φmi is topologically mixing on each Ωj

i .

For the proof of the following lemma, see the proof of Lemma 1 of [P2].

Lemma 3.4 ([P2]). If a diffeomorphism φ is Ω-stable and the sequence
{xk} satisfies limk→∞ d(φ(xk), xk+1) = 0 then there exists a basic set Ωi
such that

r(xk, Ωi)→ 0 as k →∞.
Proof of Theorem 2.2. Let

Ω(φ) = Ω1 ∪ · · · ∪Ωn
be the spectral decomposition of φ. Since φ is Ω-stable, it satisfies Axiom A,
so Ω(φ) is a hyperbolic set. Therefore by Theorem 2.1 there exists a neigh-
borhood W of Ω(φ) on which φ has the ELmSP with constants λ ∈ (0, 1)
and L. Now if a sequence {xk} satisfies (1.1), then by Lemma 3.4 there exists
a basic set Ωi such that

r(xk, Ωi)→ 0 as k →∞.
So there exists k0 ≥ k1 such that {xk}k≥k0 ⊂ W . Hence there exist p ∈ M
and k2 ∈ N such that

r(φ2k(p), x2k) ≤ Lλk for k ≥ k2.
Thus d(φk(p), xk) < Lλk/2 for k ≥ 2k2.

Theorem 3.5 ([Sa]). Let f be a homeomorphism on a compact metric
space X. Then the following conditions are equivalent:

• f is expansive and has the POTP.
• There is a compatible metric D for X such that f is L-hyperbolic.
• (X, f) is a Smale space.

Theorem 3.6 ([Sa]). Let f : X → X be an L-hyperbolic homeomorphism
on a compact metric space (X, d). Then f has the LpSP.
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Proof of Theorem 2.3. Suppose that the sequence ξ = {xk} satisfies
d(f(xk), xk+1) ≤ λk for k ≥ k1,

for some k1 ∈ N, where λ = ν ∈ (0, 1) is the constant in the definition of
L-hyperbolicity. By Theorem 3.6 there exist constants L0, δ > 0 such that f
has the LpSP with these constants. Choose k2 ≥ k1 so that k > k2 implies
that λk < min{δ,∆/2L0}. Hence for any k > k2 there exists yk ∈ X such
that

d(f i(yk), xi) ≤ L0λ
k < ∆/2 for i ≥ k ≥ k2.

If y = yk2 then

d(f i(yk), f
i(y)) ≤ d(f i(yk), xi) + d(xi, f

i(y)) < ∆/2 +∆/2 = ∆

for i ≥ k ≥ k2. If k ≥ k2 is a fixed integer then

d(f i(yk), f
i(y)) < ∆ for i ≥ k.

Hence
d(f i+k(yk), f

i+k(y)) < ∆ for i ≥ 0.

Therefore fk(yk) ∈ W s
∆(f

k(y)). The property (4) in the definition of L-
hyperbolicity implies

d(f i+k(yk), f
i+k(y)) < νi∆ for i ≥ 0.

Thus

d(f2k(y), x2k)≤d(f2k(y), f2k(yk))+d(f2k(yk), x2k)<(L0+∆)λk for k≥k2.
So

d(fk(y), xk) < (L0 +∆)λk/2 for k ≥ 2k2.

If L = L0 +∆ then d(fk(y), xk) ≤ Lλk/2 for k ≥ 2k2.

Theorems 2.3 and 3.5 imply the following corollaries:

Corollary 3.7. Let f : X → X be an expansive homeomorphism on a
compact metric space having the POTP. Then there is a compatible metric
D on X such that f has the ELmSP with respect to D.

Corollary 3.8. Let (X, f) be a Smale space. Then there is a compatible
metric D on X such that f has the ELmSP with respect to D.

4. Examples. We begin by an example of a diffeomorphism which has
the LmSP but does not have the ELmSP.

Example 4.1. Consider the unit circle with coordinate x ∈ [0, 1). Let φ
be a dynamical system on S1 generated by the mapping f : [0.1) → [0, 1)
defined by f(x) = x − x2(x − 1/2)(x − 1)2. Then φ has two fixed points
{0, 1/2}, and 0 is not a hyperbolic point because f ′(0) = 1. Theorem 3.1.2
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in [P1] ensures that φ has the LmSP on S1. We now show that it does not
have the ELmSP.

Suppose φ has the ELmSP with constants L > 0 and λ ∈ (0, 1). Take a
natural number n0 such that

∑∞
i=n0

λi < 1/4. We define a sequence {xk} by

xn0 = 1/4, xk+1 = φ(xk) + λk for k ≥ n0.
Then it is easy to see that ξ = {xk}k≥n0 is a subset of (0, 1/2),

(4.1) |φ(xk)− xk+1| ≤ λk for k ≥ n0
and xk → 0 as k →∞. Hence there exist a point p ∈ S1 and n1 ∈ N so that

(4.2) |φk(p)− xk| < Lλk/2 for k ≥ n1.
Thus

|φ2k+1(p)− x2k+1| < Lλk for k ≥ n1.
The following three cases can happen:

Case 1. If p = 1/2, then p does not satisfy (4.2).

Case 2. If p ∈ [0, 1/2), then we show that there exists an index k1 such
that φk1(p) < xk1 . If p = 0 then there is nothing to prove.

If p ∈ (0, 1/2) then there is a natural number i0 such that

φn0+i0(p) < xn0 .

If Card{i : xi ≤ xi+1} > i0, then obviously

φn0+i0+k(p) < xn0+i0+k for some k ∈ N,
and this proves our claim with k1 = n0 + i0 + k.

Now suppose Card{i : xi ≤ xi+1} ≤ i0. Then for all large enough k ∈ N
we have xk+1 < xk. Assume that 0 < · · · < a2 < a1 = 1/4 is a decreasing
sequence of real numbers such that diam([an−1, an]) → 0 and consider the
sequence {In = (an+1, an] : n ≥ 1} of intervals. For j ≥ 1 we put

ij = Card{{xn0+i}∞i=0 ∩ Ij}, i′j = Card{O(φ, p) ∩ Ij}.

Obviously for any n, there is at most one k such that xn+1 ≤ φk(p) ≤ xn.
So we can choose an’s so that in > i′n.

We show that
∑m

j=1(ij − i′j) > i0 for some m. If
∑m

j=1(ij − i′j) ≤ i0 for
each m ∈ N then

∑∞
j=1(ij − i′j) ≤ i0. The inequality ij ≥ i′j implies ij = i′j

for j ≥ j0, for some j0. Let l be the smallest index such that xl ∈ Ij0 and m
be the smallest natural number such that φm(p) ∈ Ij0 . If φm(p) ≤ xl then
ε = xl+1 − φm+1(p) > 0 and

xl+ij0+···+ij − φ
m+ij0+···+ij (p) > ε for j > j0.

But diam(In) → 0 so there exists N ∈ N such that diam(IN ) < ε and for
some j we have xl+ij0+···+ij ∈ IN . So φ

m+ij0+···+ij (p) 6∈ IN , which contradicts
our hypothesis.
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Fig. 1. The sequence {xk} of Example 1

If φm(p) > xl then φm+1(p) ≤ xl and

xl+ij0+···+ij − φ
m+1+ij0+···+ij (p) > 2ε

for some ε > 0 and j ≥ j0. Since φm+ij0+···+ij (p)−φm+1+ij0+···+ij (p)→ 0 as
j →∞, there is j1 ≥ j0 such that

xl+ij0+···+ij − φ
m+1+ij0+···+ij (p) < ε for j ≥ j1

and we find a contradiction.
So
∑m

j=1(ij − i′j) > i0 for some m. Thus

φi0+(
∑m

j=1 i
′
j)+1(p) ∈ Im+1 and xn0+

∑m
j=1 ij

∈ Im.

So
φi0+(

∑m
j=1 i

′
j)+1(p) < xn0+

∑m
j=1 ij

.

Therefore

φn0+
∑m

j=1 ij (p) ≤ φn0+(
∑m

j=1 i
′
j)+i0(p) ≤ φ(

∑m
j=1 i

′
j)+i0+1(p) < xn0+

∑m
j=1 ij

,

and this proves our claim with k1 = n0 +
∑m

j=1 ij .

Now since limx→0 φ
′(x) = 1, there exists a positive real ε such that

φ′(x) > λ1/2 for any x ∈ [0, ε). Hence, the mean value theorem implies
that φ(x+ h) > φ(x) + λ1/2h for any h > 0 with x+ h ∈ [0, ε).

Since xk → 0, there is k2 such that xk ∈ (0, ε) for k ≥ k2. If k0 =
max{k1 + 1, k2}, then φ2k+1(p) < φ2k−k0+1(xk0) for k ≥ k0. So
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x2k+1 − φ2k+1(p) = φ(x2k) + λ2k − φ2k+1(p)

= φ(x2k−1 + λ2k−1) + λ2k − φ2k+1(p)

> φ2(x2k−1) + λ2k−1+1/2 + λ2k − φ2k+1(p) > · · ·
> φi+1(x2k−i) + λ2k−i+1/2 + λ2k−(i−1)+1/2 + · · ·+ λ2k−1+1/2

+ λ2k − φ2k+1(p)

and with the new variable i = 2k − k0 we deduce

x2k+1 − φ2k+1(p) > φ2k−k0(xk0) + λk+1/2
(2k−k0∑

j=0

λk−j
)
− φ2k+1(p)

= φ2k−k0(xk0) + λk+1/2
( k∑
j=0

λj +

k−k0∑
j=0

λ−j
)
− φ2k+1(p)

> λk+1/2
( k∑
j=0

λj +

k−k0∑
j=0

λ−j
)
.

Therefore

L > λ1/2
( k∑
j=0

λj +

k−k0∑
j=0

λ−j
)

for k > max{k0, n1},

which is a contradiction.

Case 3. If p ∈ (1/2, 1) then

r(φk(p), xk) > r(φk(1− p), xk).

Since 1− p ∈ (0, 1/2), p does not satisfy (4.2) by Case 2. So no point p ∈ S1

satisfies (4.2), i.e. φ does not have the ELmSP.

Remark 4.2. If φ : S1 → S1 is a diffeomorphism generated by a function
f : [0, 1)→ [0, 1) with the properties:

• f is differentiable and increasing;
• f has a non-hyperbolic attracting fixed point p so that (p, p + ε) ∩

Fix(f) = ∅ or (p− ε, p) ∩ Fix(f) = ∅ for some ε > 0,

then as in Example 4.1 we can find a sequence ξ = {xk} which satisfies (1.1),
but there is no p such that (1.2) holds, i.e. φ does not have the ELmSP.

5. Conclusion. We know from [ENP] that near a hyperbolic set we have
the limit shadowing property. In this paper we show that near a hyperbolic
set we have a new kind of shadowing which is not equivalent to the limit
shadowing property. Moreover, we show that an Ω-stable dynamical system
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has this property and in a compact metric space any L-hyperbolic map has
the ELmSP.

We say that the dynamical system φ has the strong exponential limit
shadowing property (SELmSP) on M if there exist constants L > 0 and
λ ∈ (0, 1) such that for any sequence ξ = {xk} with (1.1) there exist a point
p ∈M and k2 ∈ N such that
(5.1) r(φk(p), xk) < Lλk for k ≥ k2.
Obviously the SELmSP implies the ELmSP. Example 4.1 shows that the
SELmSP is a different concept from the LmSP. The consideration of the
SELmSP is a topic for further research.
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