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On classes of uniformly starlike functions

by Agnieszka Wísniowska-Wajnryb (Rzeszów)

Abstract. We geometrically define subclasses of starlike functions related to the class
of uniformly starlike functions introduced by A. W. Goodman in 1991. We give an analytic
characterization of these classes, some radius properties, and examples of functions in these
classes. Our classes generalize the class of uniformly starlike functions, and many results
of Goodman are special cases of our results.

1. Introduction. For r > 0 let Ur = {z ∈ C : |z| < r} and let Ūr
be the closure of Ur. Let S denote the class of all functions f that are
analytic and univalent in the open unit disk U = U1 and normalized by
f(0) = f ′(0)− 1 = 0.

An open set D ⊂ C is said to be starlike with respect to w0, an interior
point of D, if the intersection of each half-line beginning at w0 with the in-
terior of D is connected. We denote by ST the class of all starlike functions,
i.e. the subclass of S consisting of functions that map U onto domains star-
like with respect to w0 = 0 (briefly starlike domains). Recall that a function
f ∈ S is starlike if and only if

Re
zf ′(z)

f(z)
> 0 for all z ∈ U.

A starlike function takes every disk Ur ⊂ U onto a starlike domain. Not
every function f ∈ ST maps each disk {z : |z − ζ| < ρ} ⊂ U onto a region
starlike with respect to f(ζ).

Let CV denote the class of all functions f ∈ S that are convex in U , i.e.
such that f(U) is a convex domain. A function in CV maps every disk con-
tained in U onto a convex region (this is a result of Study [S] and Robertson
[Rb]).

Let γ : z = z(t), t ∈ [a, b], be a smooth, directed arc and suppose that a
function f is analytic on γ. Then the arc f(γ) is said to be
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• starlike with respect to w0 /∈ f(γ) if arg(f(z(t))−w0) is a nondecreasing
function of t,
• convex if the argument of the tangent to f(γ) is a nondecreasing func-

tion of t.

In 1991 Goodman [G1] introduced geometrically defined classes UCV
and UST of uniformly convex and uniformly starlike functions, respectively.
A function f ∈ S is in the class UCV (resp. UST ) if for every circular arc
γ ⊂ U with center at ζ ∈ U , the arc f(γ) is convex (resp. starlike with
respect to f(ζ)). Goodman obtained the following analytic conditions for
UCV and UST expressed by using two complex variables:

f ∈ UCV ⇔ Re

(
1 +

(z − ζ)f ′′(z)

f ′(z)

)
≥ 0 for all z, ζ ∈ U

and

f ∈ UST ⇔ Re
f(z)− f(ζ)

(z − ζ)f ′(z)
≥ 0 for all z, ζ ∈ U.

In [KW] the authors generalized the concept of uniform convexity due
to Goodman in the following way. Let k ≥ 0. A function f ∈ S is said to
be k-uniformly convex in U if the image of every circular arc contained in
U with center at ζ, where |ζ| ≤ k, is convex. Note that 1-UCV = UCV and
0-UCV = CV . It was proven in [KW] that f ∈ S belongs to k-UCV if and
only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ for all z ∈ U.

For k = 0 we get the well known condition for convexity, and for k = 1
we get a more applicable characterization of the class UCV obtained by Ma
and Minda [MM] and independently by Rønning [R2].

In this paper we introduce the notion of k-uniform starlikeness which is
intermediate between being starlike and uniformly starlike. The class k-UST
of k-uniformly starlike functions coincides with the class ST for k = 0 and
with the class UST for k = 1. We show some properties of k-uniformly
starlike functions. Many results of Goodman on UST are special cases of
our results. Moreover a result indicated by Goodman in [G2] without proof
is a special case of our Theorem 5.

2. The classes of k-uniformly starlike functions. Let 0 ≤ k ≤ 1.
A function f ∈ S is said to be k-uniformly starlike in U if the image of every
circular arc γ contained in U with center at ζ, where |ζ| ≤ k, is starlike with
respect to f(ζ). We denote by k-UST the class of all such functions. Note
that 1-UST = UST , 0-UST = ST and clearly UST ⊂ k-UST ⊂ ST for
every k ∈ [0, 1].
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If f(z) = z +
∑∞

n=2 anz
n and g(z) = z +

∑∞
n=2 bnz

n then their convolu-
tion (or Hadamard product) is defined as (f ∗ g)(z) = z +

∑∞
n=2 anbnz

n.
We can easily obtain the following analytic characterization of k-uni-

formly starlike functions.

Theorem 1. Let f ∈ S and 0 ≤ k ≤ 1. Then f ∈ k-UST if and only if

Re
f(z)− f(ζ)

(z − ζ)f ′(z)
≥ 0 for all z ∈ Uand ζ ∈ Ūk,

or equivalently

Re
f(z) ∗ z

(1−αz)(1−kz)

f(z) ∗ z
(1−αz)2

≥ 0 for all z ∈ U and α ∈ Ū .

Proof. Since for γ : z = z(t) = ζ + Reit, t ∈ I ⊂ [0, 2π], the arc f(γ) is
starlike with respect to f(ζ) if

d

dt
arg
(
f(z(t))− f(ζ)

)
≥ 0, t ∈ I,

the first part of the theorem follows after easy calculations.
The second part is a consequence of the first and of the relations

f(αz)− f(kz)

α− k
= f(z) ∗ z

(1− αz)(1− kz)
, zf ′(αz) = f(z) ∗ z

(1− αz)2
,

which hold for all z ∈ U and α ∈ Ū .

In the next theorems we exhibit some members of the classes k-UST .

Lemma 2. Define fA(z, ζ) = (1−Az)/(1−Aζ), where z, ζ ∈ Ū and A is a
complex number satisfying 0 < |A| < 1. Let 0 < k ≤ 1. Then Re fA(z, ζ) > 0
for all z ∈ Ū and ζ ∈ Ūk if and only if |A| ≤ 1/

√
1 + k2.

Proof. Fix k. We shall call z, ζ admissible if z ∈ Ū and ζ ∈ Ūk. If
Re fA(z, ζ) > 0 for some A and for all admissible z, ζ then the same is true
for every A1 with |A| = |A1| (because fA(z, ζ) = fA1(z′, ζ ′) after the rotation
z′ = uz, ζ ′ = uζ ′, u = exp(it) for a suitable real t). So we may assume that
A is real and positive. For a fixed admissible pair z, ζ and 0 < A < 1 let
P (z) = 1−Az and let Q(ζ) = 1−Aζ. Consider the functions

Ū 3 z 7→ Arg(1−Az) = ArgP (z),

Ūk 3 ζ 7→ Arg(1−Aζ) = ArgQ(ζ)

and denote

φ1(A) = max
z∈Ū

ArgP (z), φ2(A) = min
ζ∈Ūk

ArgQ(ζ).

By the maximum principle for harmonic functions we get

φ1(A) = max
|z|=1

ArgP (z), φ2(A) = min
|ζ|=k

ArgQ(ζ).



14 A. Wísniowska-Wajnryb

Therefore Re fA(z, ζ) > 0 if and only if φ1(A)− φ2(A) < π/2. Clearly

φ1(A) = arcsinA = ArgP (z0), φ2(A) = − arcsin(Ak) = ArgQ(ζ0),

where P (z0) = P, Q(ζ0) = Q and the segments 0P , 0Q are tangent to the
circles {w : |w − 1| = A}, {w : |w − 1| = Ak}, respectively. The angle
φA = φ1(A) − φ2(A) increases when A increases. There is a unique A for
which

φA = arcsinA+ arcsin(Ak) = π/2.

Then we have a rectangle 0P1Q with diagonal of length 1 and sides equal
to A and Ak. It follows that in this extremal case A = 1/

√
1 + k2. We get

the same result solving the equation arcsinA+ arcsin(Ak) = π/2.

Theorem 3. Let 0 < k ≤ 1. The function f(z) = z/(1−Az), z ∈ U,
belongs to the class k-UST if and only if |A| ≤ 1/

√
1 + k2.

Proof. If f(z) = z/(1−Az), z ∈ U, then

f(z)− f(ζ)

(z − ζ)f ′(z)
=

1−Az
1−Aζ

= fA(z, ζ),

so the result follows from Theorem 1 and Lemma 2.

Goodman [G2] has mentioned that the function of the form f(z) =
z + Az2, z ∈ U, is in UST iff |A| ≤

√
3/4. He omitted the proof which in

his words requires a longer analysis. We shall prove this result and we shall
generalize it to the class k-UST using the following lemma.

Lemma 4. Define gA(z, ζ) = (1 + Az + Aζ)/(1 + 2Az), where z, ζ
∈ Ū and A is a complex number with 0 < |A| < 1/2. Let 0 < k ≤ 1. Then
Re gA(z, ζ) > 0 for all z ∈ Ū and ζ ∈ Ūk if and only if |A| ≤

√
3/
√

4(k2 + 3).

Proof. The proof is similar to the proof of the previous lemma. Fix k.
We shall call z, ζ admissible if z ∈ Ū and ζ ∈ Ūk. We may assume again
that A is real and positive. For a fixed, admissible pair z, ζ let P = 1 + 2Az
and Q = 1 + Az + Aζ. Also let R = 1 + Az. Then Re gA(z, ζ) > 0 if
and only if the angle P0Q is smaller than π/2. We denote this angle by
]P0Q = φ = |Arg(1 + 2Az) − Arg(1 + Az + Aζ)|. For a given A we let
φA be the supremum of φ over all admissible pairs (z, ζ). The set of all
admissible pairs is compact and φ is a continuous function of (z, ζ) so the
maximum φA is attained for each A at some point (z0, ζ0). Moreover the
function Ū 3 z 7→ Arg(1 + 2Az) − Arg(1 + Az + Aζ) for a fixed ζ and the
function Ūk 3 ζ 7→ Arg(1 + 2Az) − Arg(1 + Az + Aζ) for a fixed z are
harmonic, so, by the maximum principle for harmonic functions, |z0| = 1
and |ζ0| = k.

We may assume by symmetry that P lies above the real axis. For P =
1 + 2Az0 fixed, the point Q lies on a circle with center R and radius Ak.
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Clearly the angle φ is largest when the segment 0Q is tangent to the circle
and the radius RQ points down so this happens for ζ = ζ0.

Points 0, P,Q,R, 1 are shown in Figure 1. The segment 0Q is horizontal,
to stress the fact that the angle 0QR is straight, and the segment 01 is not
horizontal. When we increase A to A1 we can choose z shorter than z0 and
keep A1z = Az0 and ζ = ζ0 fixed. Then the radius QR increases to A1k
and φ increases and φA1 > φA. Therefore φA is an increasing function of A.
There is a unique A for which φA = π/2. We shall compute this A.

If for some A there exists a configuration as in Figure 1 with ]P0Q
equal to π/2 then φA ≥ π/2. We look for the minimal A for which such
a configuration exists. Consider Figure 1. The letters A,B,C,D,E, h,Ak
denote lengths of segments. The segment 01 has length 1. The angles P0Q,
0QR and QBR are straight.
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Fig. 1

We have E = A sin γ = A sin(π − γ).
From the sine theorem for the triangleQR1 we getB sinα=Ak sin(π−γ),

therefore E = (B sinα)/k.
Now we compute B from the two pieces of the triangle QR1:

B =
√
A2 −A2 sin2 α+

√
A2k2 −A2 sin2 α.

From the cosine theorem for the triangle 0Q1 we get

1 = E2 +B2 − 2BE cos(π/2 + δ),

cos(π/2 + δ) = − sin δ = −h/Ak = −(A sinα)/Ak = −(sinα)/k.

Therefore

1 = E2 +B2 + 2BE(sinα)/k = B2(1 + 3(sin2 α/k2).

Let sin2 α = x. Then B = A(
√

1− x+
√
k2 − x). Hence

1 = A2(
√
k2 − x+

√
1− x)2(1 + 3x/k2).
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We let

h(x) = k2/A2 = (
√
k2 − x+

√
1− x)2(k2 + 3x), x ∈ [0, k2].

The maximum of h(x) corresponds to the minimal value of A for which the
configuration in Figure 1 exists. Since

h′(x) = (
√
k2 − x+

√
1− x)2

(
3− k2 + 3x√

k2 − x
√

1− x

)
,

h′(x) = 0 if and only if 3
√

(k2 − x)(1− x) = k2 + 3x. This happens when
x = (9k2 − k4)/(15k2 + 9). For this value of x,

1− x = (k2 + 3)2/(15k2 + 9), k2 − x = 16k4/(15k2 + 9),

hence h(x) = 4k2(k2 + 3)/3.

It is indeed the maximal value of h(x), greater than the value at 0
and at k2. Therefore the value of A for which φA = π/2 is equal to A =√

3/
√

4(k2 + 3).

Theorem 5. Let 0 < k ≤ 1. The function f(z) = z + Az2, z ∈ U,
belongs to the class k-UST if and only if |A| ≤

√
3/
√

4(k2 + 3).

Proof. For f(z) = z +Az2, z ∈ U, we get

f(z)− f(ζ)

(z − ζ)f ′(z)
=

1 +A(z + ζ)

1 + 2Aζ
= gA(z, ζ),

so the result follows directly from Theorem 1 and Lemma 4.

Remark 6. When we let k = 0 in Theorems 3 and 5 we get simple results
for starlike functions. For k = 1 we obtain a result proven by Goodman [G2]
and the more difficult result mentioned before Lemma 4, respectively.

Theorem 7. Let 0 < k ≤ 1 and f(z) = z+Azn, z ∈ U, for some integer
n ≥ 2. Then

|A| ≤ 1

n

√
n+ 1

n+ 1 + (n− 1)k2
⇒ f ∈ UST .

Proof. We may assume A > 0. If f(z) = z +Azn, z ∈ U , then

f(z)− f(ζ)

(z − ζ)f ′(z)
=

1 +A(zn−1 + ζzn−2 + · · ·+ ζn−1)

1 + nAzn−1

=
1 +A(1 + kα+ k2α2 + · · ·+ kn−1αn−1)w

1 + nAw
=

1 +A(1 + γ)w

1 + nAw
,

where

w = zn−1, ζ = kαz, γ = kα+ (kα)2 + · · ·+ (kα)n−1, |α| ≤ 1.
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The function G(w) = 1+A(1+γ)w
1+nAw , w ∈ U, maps |w| = 1 onto the circle with

center

c =
1− nA2(1 + γ)

1− n2A2

and radius

R =

∣∣∣∣1 +A(1 + γ)

1 + nA
− 1− nA2(1 + γ)

1− n2A2

∣∣∣∣= A|(n− 1)− γ|
|1− n2A2|

.

Hence G(U) is in the right half-plane if R ≤ Re c, that is,∣∣∣∣(n− 1)− γ
1− n2A2

∣∣∣∣A ≤ 1− nA2(1 + Re γ)

1− n2A2
.

Since k-UST ⊂ ST it is clear that A < 1/n. Note that |γ| ≤ k(n − 1) and
1 + Re γ < 1 + |γ| < 1 + k(n− 1) < n, which shows that Re c > 0. Moreover

|(n−1)−γ|2 = (n−1)2−2(n−1) Re γ+|γ|2 ≤ (n−1)2(1+k2)−2(n−1) Re γ.

Thus the required inequality holds when

A2[(1 + k2)(n− 1)2 − 2(n− 1)x] ≤ (1− nA2)2 − 2nA2(1− nA2)x+ n2A4x2,

where x = Re γ, or equivalently when

n2A4x2 + 2(n2A2 − 1)A2x+ (1− nA2)2 − (1 + k2)(n− 1)2A2 ≥ 0.

For x = (1 − n2A2)/(n2A2) the left side of the last inequality takes its
minimum value. After substitution and simplification we get

n+ 1− 2n2A2 − (1 + k2)(n− 1)n2A2 ≥ 0,

hence

A2 ≤ n+ 1

n2[n+ 1 + (n− 1)k2
.

Remark 8. For k = 0 we get a sufficient condition for f(z) = z +Azn,
z ∈ U, to be in the class ST . For k = 1 we get Theorem 5 from [MS], which
improves the bound |A| ≤ 1/(

√
2n) of Goodman [G2]. Our bound does not

seem to be the best possible except when n = 2 (compare Theorem 5) or
when k = 0.

It is known that every convex function is starlike, so the ST radius in
CV is equal to 1. It was proven in [MS] and [R1] that the number 1/

√
2 is

the radius of uniform starlikeness in CV . To prove a radius result for k-UST
we need the following result of Ruscheweyh and Sheil–Small [RS]:

Lemma 9. If φ is a normalized convex univalent function in U and
g ∈ ST , then

Re
φ ∗ (Fg)

φ ∗ g
≥ 0, z ∈ U,

whenever F is an analytic function with positive real part in U .
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Theorem 10. Let 0 < k ≤ 1. If f ∈ CV , then the function U 3 z 7→
(1/rk) f(rkz), where rk = 1/

√
1 + k2, belongs to the class k-UST . The radius

rk is the best possible.

Proof. Let k be fixed. The function F (z) = (1− αrz)/(1− krz) is an-
alytic in U and from Lemma 1, ReF (z) > 0 for all z ∈ U and α ∈ Ū iff
r ≤ 1/

√
1 + k2. Note that the function g(z) = z/(1− αrz)2 is starlike in U

for every r ∈ (0, 1) and α ∈ Ū . If f ∈ CV , then from Lemma 9 we conclude
that

Re
f(z) ∗

(
1−αrz
1−krz

z
(1−αrz)2

)
f(z) ∗ z

(1−αrz)2
≥ 0 for z ∈ U

and all α ∈ Ū and 0 < r ≤ 1/
√

1 + k2. By the properties of convolution this
condition is equivalent to

Re

1
rf(rz) ∗ z

(1−kz)(1−αz)
1
rf(rz) ∗ z

(1−αz)2
≥ 0 for z ∈ U, α ∈ Ū , 0 < r ≤ 1/

√
1 + k2.

Thus by Theorem 1 we have (1/r)f(rz) ∈ k-UST if 0 < r ≤ 1/
√

1 + k2. The
result is sharp. Choosing f(z) = z/(1 − z) ∈ CV we see that (1/r)f(rz) =
z/(1 − rz) is in k-UST iff r ≤ 1/

√
1 + k2, so the number 1/

√
1 + k2 is the

best possible.

Remark 11. Note that for k = 0 and k = 1 we obtain the above men-
tioned ST radius and UST radius in the class CV , respectively.
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