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Minimal submanifolds in general («, §)-spaces

by SONGTING YIN (Shanghai and Tongling), QUN HE (Shanghai) and
DINGHE XIE (Shanghai)

Abstract. The volume forms of general («, 8)-metrics are studied. Some equations
for minimal submanifolds in general (a,3)-spaces are established by using the normal
frame field, and some minimal surfaces in general («,3)-spaces with special curvature
properties are constructed.

1. Introduction. In recent decades, Finsler geometry has been rapidly
developed. The study of the geometry of submanifolds has also made some
progress. As is well known, there are two commonly used volume forms,
Buseman—Hausdorff volume form and Holmes-Thompson volume form, in
Finsler geometry. By using the given volume form, some differential equa-
tions on minimal submanifolds were established and some examples of min-
imal (hyper)surfaces were also obtained ([CS2], [HY], [ST]). However, these
results only focused on the minimal submanifolds in («, 3)-spaces and all
previous examples of minimal surfaces were constructed in the Minkowski
spaces. So it is meaningful to study minimal submanifolds in a more general
context.

In the present paper, we will study the minimal submanifolds in general
(a, B)-spaces. As defined in [Y7Z], general (o, B)-metrics can be expressed in
the form F' = a¢(z, B/a) for some C* function ¢(z,s), some Riemannian
metric a and some 1-form S. Recall that the navigation expression of a

Randers metric is
P AFEFE 5
A A
where « is a Riemannian metric and 3 is a 1-form, A = 1 —|3||%2. Obviously
it can be viewed as a general («, 3)-metric. In addition, the classification
on this type of Finsler metrics with constant flag curvature has been solved
completely. Apart from Finsler metrics with constant flag curvature, projec-

2010 Mathematics Subject Classification: Primary 53C60; Secondary 53C40.
Key words and phrases: Finsler manifold, minimal submanifold, general («, 8)-metric.

DOI: 10.4064/ap108-1-4 [43] © Instytut Matematyczny PAN, 2013



44 S. T. Yin et al.

tively flat Finsler metrics are also important in Finsler geometry. Therefore,
it is significant to study the minimal submanifolds in general («, 3)-spaces
with constant flag curvature or locally projectively flat general («, 5)-spaces.
In this paper, we not only give some differential equations for minimal sub-
manifolds but also construct some minimal surfaces in a 3-dimensional non-
Minkowski space which is flat or locally projectively flat.

The content of the present paper is organized as follows. After introduc-
ing some definitions and basic concepts in Section 2, we give the relationship
between the volume forms of general («, 5)-metrics and those of Rieman-
nian metrics in Section 3. Based on this, we conclude that under certain
conditions the minimal submanifolds in a general («, §)-space (M, F') are
just minimal submanifolds in the Riemannian manifold (M, «) (Theorem
3.2). In Section 4, with the help of the normal frame field with respect to F'
and «, we obtain a necessary and sufficient condition characterizing the min-
imal submanifolds in general («, 5)-spaces (Theorem 4.2). Finally, we give
some differential equations and corresponding examples of minimal surfaces
(Theorems 4.3-4.6, 4.8-4.9).

2. Preliminaries. Let M be an n-dimensional smooth manifold. A
Finsler metric on M is a function F' : TM — [0,00) with the following
properties:

(i) F is smooth on T'M\0;
(ii) F(z,Ay) = A\F(x,y) for all A > 0;
(iii) the induced quadratic form g is positive-definite, where

, A 1
(2.1) g = gijde’ @ d?, gy = §[F2]yfyf-
Here and from now on, [Fli, [F?],i,; mean g;;, %, etc., and we will use

the following convention for index ranges unless otherwise stated:

The projection 7w : TM — M gives rise to the pull-back bundle 7*T'M
and its dual 7*T*M over TM\0. In #*T*M there is a global section w =
[Fyi dz', called the Hilbert form, whose dual is | = [ 62“ I = ¥ called the
distinguished field.

The volume element dVgsys of the projective sphere bundle SM with

respect to the Riemannian metric g, the pull-back of the Sasaki metric from
TM\0, can be expressed as

yi
Fo

(2.2) dVsy = 2dt N dx,
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where

(2.3) Q= det <9F3> de = dz' A A da”,

(2.4) dr = (=1 yldy' Ao A dyi A~ A dy".

i=1

The volume form of a Finsler n-manifold (M, F') is defined by
1

(2.5) Vi = o()dz, o) = - | Qadr,
n—1

Sz M

where ¢, 1 denotes the volume of the unit Euclidean (n — 1)-sphere "1,
and S;M = {[y] | v GIxM} N
Let (M, F) and (M, F) be Finsler manifolds and f : (M, F) — (M, F)

be an immersion. Then f is called isometric if F(z,y) = F(f(z),df(y)) for
any (z,y) € TM \ 0. It is clear that

(2.6) 9ii(2,y) = Gap(E, 9 27
for an isometric immersion f, where

- - ; of
(2.7) =1 g =f M, ff= o

Let (7*TM)* be the orthogonal complement of 7*T'M in w*(f_lT]\Aj) with
respect to g and denote

v ={¢ € D(f7'T"M) | £(df (X)) =0, VX € I(TM)},
which is called the normal bundle of f ([S1]). Set

o ~ h* 0
_ k _ B _
(2.8) he = foy'y) — fRGY + G, ha = Japgh”, h= 72 gaa
where 7 = %, and GF and G are the geodesic coefficients of F' and F

respectively. We know from [HSI], [S1] that h € (7*T M)+, which is called
the normal curvature. The mean curvature form of f is defined by

1 ha o
(2.9) = ( S ﬁﬁ dT) dz®,
Sz M

Cpn—10

and p € v*. An isometric immersion f : (M, F) — (M ,F) is called minimal
if any compact domain of M is the critical point of its volume functional
with respect to any variation.

LeMMA 2.1 ([HST)). Let f: (M,F) — (M, F) be an isometric immer-
sion. Then f is minimal if and only if p = 0.
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3. Volume element of a general («,f)-metric. A general (o, (5)-
metric is defined by a Riemannian metric @ = Vaijy'yd and a 1-form 8 =
b;y*. It can be expressed as

F =a¢(z,s), s=p/a,
where ¢(z,s) is a positive C*° function, € M, and |s| < b < by for some
0 < by < oo. It is shown that F' is positive-definite for any a and § with
b:=||f]la < bo if and only if ¢ satisfies ([YZ])

¢ — s¢g + (b? — 5%)han > 0.

Furthermore,

(3.1) gij = paij + pobibj + p1(biay; + bjayi) — sprayiay;,

(3.2) det(gij) = ¢"H(x, s) det(as;),

(3.3) g9 = p~Ha" + bt 4+ noa L (bly + byt + ma 2y,
where

H(w,s) = ¢(¢ — 5¢2)" (6 — 52+ (0° — 5%)pm2),
p=¢(¢—sp2), po=Pp22+ P22,
p1 = (¢ — 5¢2)d2 — sPpaz,
(97) = (g9:7)""s  (@7) = (ay)™", b =a"by,
P22
&4 T T s+ (02— %)’
(¢ — 592) 2 — P22
O(d — 592 + (0% — 5%)¢22)’
(3¢ + (0% — 5?)2)((¢ — sh2)d2 — sPPa2)
$*(¢ — sp2 + (b* — 52)¢a2)
Let b;); denote the coefficients of the covariant derivative of 3 with respect
to o and write

no = —

1 1 o A .
rij = 5 iy +bja)s sij = 505 = bj)s roo = rigy'y’s so = asjry",
Ty = bj?"ji, S = biju To = Tz‘yi, S0 = Sz‘yi7
rt = aijrj, st = aijsj, r=bir.
It is easy to see that B! = bi% is a Killing vector if and only if r;; = 0.
For an («, 8)-metric F' = a¢(f/a), the Holmes—Thompson volume form
was calculated in [CS1] and [CS2] respectively. Since the whole calculation

does not involve the first variable in H(x,s) defined by (3.4); (see [CS1],
[CS2] for details), we can obtain the following result analogously.

PROPOSITION 3.1. Let (M,F) be a general (o, 3)-space, where F =
ad(x,B/a). Then the Holmes—Thompson volume form dVp and the Rie-
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mannian volume form dV, satisfy

_ F(n/2) T s on—2
dVp = ﬁp((n_1)/2){8H(aj,bcost)sm (t) dt} dVy,
where I'(t) = §;° a'~te™* dx is the Gamma function.

If (x,s) = H(z,s) — 1 is odd in s, then
(3.5) S @(x,bcost) sin"(t) dt = 0.
0
From (3.5) and Proposition 3.1 one can deduce that dVp = dV,.
THEOREM 3.2. Let (M,F) be a general (o, f)-space, where F =

ap(x,f/a). If H(xz,s) — 1 is odd in s, then the minimal submanifolds in
(M, F) are just the minimal submanifolds in (M, «), and vice versa.

REMARK. Noting that H(z;s) — 1 = s for a Randers metric F' = a + £3,
we reobtain the corresponding result in [HS2] from Theorem 3.2.

When F = /a2 + B2/\ — B/\, we have ¢(x,s) = VA +s2/\ — s/,

where A = 1 — b%. By direct computation, we get

VA+s2—5
H(z,s)= .
)\()\ + 52)(n+1)/2
Therefore,
T TV +bZcos?t — beost
.. n—2 o s n—2
(S)H(w, bcost)sin" *(t) dt = [S) MO T P o )02 sin" ™ *(t) dt
s sin™~2(t)

dt.

: S

2\ — p2gin2 +)/2
Ay (1=b%sin”t) /
So we obtain the following

COROLLARY 3.3. Let (M,F) be a general («,f3)-space, where F =
Va2 + 82/X — B/X. Then the Holmes—Thompson volume form dVp and

the Riemannian volume form dV,, satisfy
2I'(n/2)

WA T((n—1)/2)

where A = 1 — b2. In particular, when n = 2,

VrI'(1)
MWAT(1/2)

w/2

sin™ 2 (¢t
| ( ( ))n/Q dt} dVa,

dVp =
F 5 1 — b2sin2t

Vi = -
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REMARK. When b # const, the minimal submanifolds of (M, F') are not
necessarily the minimal submanifolds of (M, «). So it is reasonable to look
for examples of minimal submanifolds in (M, F).

4. Minimal submanifolds of general («, 3)-spaces. Let f: (M, F)
(M F) be an isometric immersion. F' = a¢(, 8/d), where

& = \/aapi®9?, B =bai®

Since f is isometric, we get

F = fF = ad(f(x), B/a),

a=\/aijy'y, a;= %szquﬁ, B=by', b =baf.

PROPOSITION 4.1. Let f : (M™, F) — (M"“’ ﬁ) be an isometric im-
mersion where F = a¢(&, 3/a&). Denote by {ng}1+ ~P .1 a local orthonormal

where

frame of the normal bundle T~MJ- with respect to the Riemannian metric &
such that n,, is parallel to BL, and set

1 _ _ L

(4.1) = | == [0 + 78(0,) 5" + Friod™ ' B(na)1].
p(1 +7iB(n4)?)

Then {fi, )1~ n+1 is a local orthonormal frame of the normal bundle (7*T M)+

with respect to F Here 3+ is the projection of B¢ into the normal bundle
TML, Bﬁ (%a, and p, 1,70 are defined as in (3.4).

Proof. Let n, = n% Then

aaxa'

- - . 0 -
(4.2) a(ng, np) = aa,gng‘nf = Oab, a<na7 630’) = aagng‘ff =

Take N, = 1§ 5z (a =n+1,...,n + p) satisfying
(4-3) gaﬁﬁg = fa&aﬂnga

where

B p
“4) = 1+ 78(n,)?’

Then by (4.2), (4.3), (3.3), we have

. 0 - .
g<na78$i> :gaﬂngffzfaaaﬁngfiﬁ:
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and
~is =N~ ~a=f s~ ae =By 5
G(Ng, 0p) = GapNgMy = EalapNg§pg” ' ArsTyg

- @aaﬁn:%{nf + A + od B(np)7)

1 1 B i )
: \/1 +5000)° \/1 By e T ABma)Bm)} = dar

The last equality holds since 3+ is parallel to n,,. Therefore {f,}/ ">
is a local orthonormal frame of the normal bundle (7*T'M )+ with respect
to F. Using (4.2), (4.3), (3.3) again, we obtain

n, = ;n 78 (n,) 5" a1 B(ng)l]. -
a \/ﬁ(1+ﬁ5(na)2)[ a+776( a)ﬂ +F770 6( a)”'

REMARK. When F =1/Aa2+32/A—3/), the relation between {n,}"*? 1

and {f,}'*? P .1 can be expressed as

[ S S VY S

where A = 1 — b2, ¥ = \/Aa2 + (2.

From Lemma 2.1, we know that f : (M", F) — (M™"?, F) is minimal if
and only if

« hOé
(4.6) g | Fafldr =0, V.
SaM
Using (2.8), (4.2), (4.3) and (4.5), we get
(4.7) ha = Gayh? = Z gcwg< 5z B,ﬁa>ﬁg

= del(fiy'y — F1GE + GP)gasni)i]
= Z 52[(f£y’yj +GP)agsngaang
_ Z Yy + GP)agsnh ]aawng

1+ 7iB(n,)?

Plugging (2.3), (3.2) and (4.7) into (4.6) implies
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(fEyiy? + GP)agend) det(gi;
ng | e = [ AUy + O] detla)
SeM SoM (1+76(ny)2)Fmt
:det(ai')ag(sng S (fgyzy]+é'8)(¢~—8¢2)H(x7s) :
J Y an+2(1+,ﬁ6(nb)2)¢ )

where
H(z,5) = 66 — 562)"*[(6 — 562) + (b — 5")na],
P22

¢ — 32 + (b* — 52) 22

THEOREM 4.2. Let (M™, F) be a submanifold in (M”“‘p, F) where F =
dgb(i,ﬁ/d). Then f: (M™ F) — (M™P F) is minimal if and only if
S (foy'y? + GP) (¢ — spo)H "
) (1+78(na)?)¢

In what follows, we consider hypersurfaces in a general («, f3)-space
(M™1, F) with F = \/Aa2 + 82/A — B/A. By direct computation, one gets

v e F e ¢ —spy o
(49) H(.’IJ,S) - ()‘+ b >a(’y) ) n= _17 ¢ - Fi"}/’

where F' = by\/Xa2 + B2/X — B/X, v = \/Aa2 + 2. Thus from (4.8), (4.9),

we have

= -

(48)  agnd

[e%

=0, Va.

(110) s’ | (foy'y? + GP)(¢ — spa)H
| Py a1 ifm)?)e

agsn® (A + %) foyiy? +GP g0

1— B(n)Q S ( /;\oﬂ + 62)114-2

Note that the geodesic coefficient GP is twice that in [R]. In particular,
when & is a Riemannian metric with constant sectional curvature, i.e. & is

projectively flat, and 8¢ = b* aga is a Killing vector field, we know from [R]
that

GP =GB — F25% — 2F3 = Py — F25# — 2F3),
where @ denote the geodesic coefficients of &, and P = diag‘s /&. Noting

that dasn®y® = 0 and F = (1 — 3)/A when y/Aa2 + 82 = 1, we obtain from
(4.10) the following result.
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THEOREM 4.3. Let (M",F) be a hypersurface in (M”‘H,ﬁ) with F =

\/ a2 + 32/5\ — ,@/5\ If & is a Riemannian metric with constant sectional
curvature and B is a Killing vector, then f : (M™ F) — (]\7"+1,ﬁ) is
minimal if and only if

(411)  agen® | [fﬁ L Gl Gt ) Y

. A2 A
Va24+52=1
Now we will look for some minimal surfaces in a general (o, 3)-space
(M3,F) with F = \/Aa2 + 32/X — 3/), where & is a Euclidean metric. If

B is parallel with respect to &, then F is a Minkowski metric. Next, we will
consider the case that § is not parallel with respect to & any more. Let

(412) a=+(F)2+ @)+ )2 B =k(@f" —#1§°), k= const.

Then F is a Finsler metric defined on M3 := {(@1,22,23) € R3 | 73 + 73 <
1/k2} and S* is a Killing vector. In this case, F' is not Minkowskian, but
its flag curvature still vanishes (see [BRS| for details). Let f be a rotation
surface defined by f(u,v) = (ucosv,usinv, h(u)), where h(u) is a function
to be determined. Then

cosv sinv A >

—usinv wucosv 0

(f)arcs = (

(4.13) @ 7 7= (yi yz)(fia)22><3‘ . 2 1
= (y' cosv —uysinv y'sinv+uy®cosv y'h),
Ao f=1-02=1—(ki1)?— (ki) =1 — k%2,
a=fa=V0+M)Y)2+u2(?)? B =FB=—ku'y
Set
v = = 1;(:2)9(1 T h?) vt = 8129’ b€ 0, 2n].
Then

VAa2 482 = /(1T — R2)(1+ W)y 2+ u2(y2)° = 1.

In this case, (4.11) is equivalent to

(4.14) nf [fg(yi)Q - M + 2555 dr =0.

)\2
VAa2+82=1
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Furthermore, a direct computation yields

1 1a§5ab6 = k*ucosv, § =k’usinv, § =0,

s =a
(4.15) 50 = a'“8050° = ky' sinv + kuy?® cosv,
0 B8Y Y Y
58 = —ky' cosv + kuy?sinw, fs% =0,
and
de
dr = y'dy® —ydy" = :
R ur/(1 — k2u2)(1 + h'2)
2
) = u/(1 - k:?;)(l T h2)
VAa2+p2=1
(4.16) o .
T =
: ! ul(1 = Bu?)(1+ 2P
VvV a24+p2=1
T
(y*)?dr = — :
S\ajhfﬂ:l wdy/(1 — k2u2)(1 + h'2)
In (4.14), we set
oy P+ BYH 26
W8 = S {ff(y )2_7( 5\2ﬁ )—1—5\55] dr, p=123.
VAa24+52=1
Since
0 0 h
(4.17) Fwa = ( !
—ucosv —usinv 0
we deduce from (4.13)—(4.17) that
S T COS VU 1 n 2k% + ktu? n 2k?
VO =R+ R\ (1= k) = k)
w2 msinwv 1 2k% + ku? 2k?
VORI + )\ (1—ku?)? 1=k )

3 7_‘_h//

B u[(1 — k2u2)(1 4 h'2))3/2°
On the other hand, (4.14) is equivalent to

3
(4.18) > whnf =o.
B=1

The normal vector to the surface is
B <h’cosv —h/sinv 1 >
VI+r2 VI+h2 V1+h2)
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Substituting the above formulas into (4.18), one gets
(4.19) (2k%u? + )R/ (1 + h?) = u(k*u® — 1)1".

THEOREM 4.4. Let (]\73,};) be a general («,f3)-space, where F =
\/AG2 + B2/X — B/X, and & and B are defined by (4.12). Then a rotation
surface f = (ucosv,usinv,h(u)) in (Mg,ﬁ) 1s minimal if and only if h
satisfies (4.19).

Let w = h2. Then (4.19) becomes

2k*u® +1 w’

wk?u? —1) 2w(l+w)
By a direct computation, one obtains
Ol — kAP
u? — C[1 — k2u?]3’
where C' is a non-negative constant. Therefore,
VO — k2232

Vu2 — C[1 — k2?23
THEOREM 4.5. Let (Mg,ﬁ) be a general (o, B)-space, where ﬁ, a and

B _are_as in Theorem 4.4. Then there exists a minimal rotation surface in
(M3, F) which can be expressed as

(4.20) h=+|Vwdu=+]|

VO FuPrP >
Vu? — Ol — k223 Y

REMARK. Noting that F' is Euclidean when k = 0, one gets h(u) =
cosh™ u from (4.20), which is just the classical result in Euclidean space R3,

f= <ucosv,usinv,:|:§

Now we study the second case, that is, f = (ucosv,usinv, h(v)), with
& and f defined as in (4.12). We will show that although the minimal sub-

manifolds of (M, F') are not necessarily minimal submanifolds of (M, &) in
the general case, there are still some exceptions. Analogously, we have

COS U sinv 0
= (5 ).
—usinv wucosv h
@ 7 7)) = (y'cosv —uy?sinv  ylsinv+uy’cosv y*h),
a=V )2+ (W +h2) (22 B=—ku’y,

Ao f=1-k%? & =Fkucosv, & =kusinv,

$=0, 5= ky' sinv + kuy? cos v,

52 = —ky' cosv + kuy®sinv, & =0.
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The normal vector to the surface is
B ( h'sinw —h/ cosv U )
\/u2 T K2 \/u2 ) \/u2 T h2 ’

and
. 0 0 0
(fii)2xs = <—ucosv —usinov h”>'
Set
1 cos 9 sin 6
S = ,  0¢€]|0,2m|.
SOV ey =2y S N e By gy w275 Y 0.2
Then
Va2 47 = TR+ (21 (1 )P = 1,

do
VI = E2u2) (w2 + (1 - E2u2)h/2)

Furthermore, we have

dr =

S dr = 2,2 227T 2, 2\p2)’
SiE V(1 = k2u?)(u? + (1 — k2u2)h'2)
| w)dr= d

(1 — k2u2)3/2/(u2 + (1 — k2u?)h'2)’
™

2)\2
dr = .
(y ) T (1 _ k2u2) (u2 4 (1 _ k2u2)h’2)3/2

VAa2+82=1
Plugging the formulas above into (4.14) yields
(4.21) h" = 0.

Va2+82=1

THEOREM 4.6. Let (M?’,]?’) be a general («, [3)-space, where ﬁ',d and
B are as in Theorem 4.4. Then the minimal conoid in (M3, F) must be a
helicoid or a plane.

__REMARK. In Theorem 4.6, we have obtained minimal surfaces for both
(M3, F) and (M3, &). This shows that the minimal conoids in such a non-
Minkowski space are also minimal in Euclidean space.

Finally, we will consider another general (o, 3)-metric F' = a¢(b?, 3/a),
where b% := || 3]|2. We also assume that F is projectively flat. It is well known
that a Riemannian metric is projectively flat if and only if it has constant
sectional curvature. In [S2], the author proved that a Randers metric F' =
a + [ is projectively flat if and only if « is projectively flat and 3 is closed.
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LEMMA 4.7 ([YZ]). Let F = a¢(b?, 3/a) be a general (o, B)-metric on a
manifold M of dimension n (> 2). Then F' is locally projectively flat if the
following conditions hold:

(1) The function ¢(b?,s) satisfies the partial differential equation

(4.22) P22 = 2(¢p1 — s012);

(2) « is locally projectively flat, and B is closed and conformal with re-
spect to «.

Let F = quﬁ(l?,ﬁ/d) be a locally projectively flat metric and f :
(M™, F) — (M™*, F) be an isometric immersion. Then by (4.2), (4.7) we
have

(4.23)  ha = E[(foy"Y + GP)agsn®)ae,n’
= 1Sy + Py )assn laayn™ = Efy'y agsn’dan”
ij B ay Z]yy B aylt

where ¢ is defined by (4.4). On the other hand, a direct computation similar
to that in [HS2] yields

o(b?,5)H det(aij)
52

B det(aij)
N £2 det(dag)
Plugging (4.23) and (4.24) into (4.6), one gets

(4.24) det(g:;)

det (ga/ﬁ) -

"o ha oo Ly agsndae,n det(gy)
n S ﬁQdT:n S T2 dr
SpM SeM
i i s YYO0?SH
= det(aq;) f;;a85m S W(ﬁ'
Sp M
_ e e 1 $— 802 + (B — )¢
= det(cuj)J“"Z-[;cwan‘s S Yyl (¢ — o) 2 6/5” )22 dr
Sp M
— det(a: B~ 5 id(a 2 n—1r, 72 527*2 d
et(a;) f;;agsm S Yy (¢ — Bd2)" " [¢ — Boa + (b7 — B7)pa2] dr.
a=1

Hence, by Lemma 2.1 we obtain

THEOREM 4.8. Let (M"™, F') be a hypersurface in (Z\?”H, ﬁ), where F =
ap(b?, B/a&) is locally projectively flat. Then f : (M™ F) — (M"1 F) is
minimal if and only if

(4.25) fédﬁdné V 'y7 (6 — Boo)" " — B + (b° — B%) o] dr = 0.
1

a=
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In what follows, we consider the minimal surface f = (u cos v, usinv, h(v))
in a general («, B)-space (M3, F), with F = a¢(b?, 3/a) and

&= VGV @R A=,
o(0%,5) = 1+ 02 + 52 + g(b?)3,

where g is a smooth function. Obviously, & is projectively flat. It is easily
checked that 3 is closed and conformal with respect to & since dﬁ =0 and
ba‘ﬁ = Gap. In addition, ¢(b?, 5) satisfies (4.22) ([YZ]). Therefore F is locally
projectively flat by Lemma 4.7.

(4.26)

Denote

(4.27) Wi =\ 'y (¢ — Boa)ld — Ba + (b° — B*)dna] dr

a=1
By a simple computation, we have
62 =25+ g(0), =2 B=uy' +hh'y".
Plugging the above formulas into (4.27), one gets
W9 =\ gy o+ My'y® + Ma(y')? + Ms(y®)* + Ma(y' )y
a=1
+ 5(y%)%y" + Hs(y' ) (v%)? + Hr(y')* + Ts(y?) "] dr,
where
Iy = 3b* + 40 +1, II, = —uhh/ (60> +4), I, = —u?(6b* + 4),
II3 = —(hh)2 (60> +4), Iy =12u3hh,  II5 = 12u(hh’)3,
I = 81u?(hh)?, Iy = 3u*, [Tz = 3(hh)%.
A direct calculation yields

W= | ULy + I ) + %) (")) dr

a=1

B o I (sin 6 cos 0)? I (sin 0)2(cos 0)*
(S) 1 2_|_h/2 4 2+h/2

+ 15

(sin 0)*(cos 6)? 1 40
u? + h'2 VuZ + h2
_ ™ H5

_ 1 n 1, n _ 2
ViZ + R2 4w +h2?) " 8(u2 + h2) | 8(u + h'2)2 ’
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W2 = (o) + Iy ()

a=1

+ I3(yH)* + (v ) (v*)* + (v (v?)? + s (y*)°) dr

o (cos 6)? (sin 6 cos 0)? (cos 0)*
- S 1o u? + h'2 2 u2 + h'2 3 (u2 + h/2)2
0
1 (sin §)2(cos #)* N (sin§)*(cos #)? (cos 0)° de
6 7 8
u
+ ( 2 + h’2)2 u2 + h'2 (uz + h/2)2 m
_ ™ HO + HQ + 3H3
V@@ R2 W2 A+ 1?) 8w + h2)?
L M, I 5
(u2+nw2)2  8(u2+h'?)  16(u?+ h?)3 |

On the other hand, it is easy to see that the normal vector is
B < h sinv —h' cosv u )
VuZ +h2 VuZ+h2?  JuZ + b2 ’

and

0 —sinwv 0 COs v
—sinv —ucoswv cosv —usinv

= p):

Substituting the above formulas into (4.25), one gets
(4.28) Diu+Dou’+Dsu®+ Dyu*+ Dsu®+ Dgub+ D7u"+ Dgu® = 0 for all w,
where
Dy = 48R3 I8 — 16hK (30 + 2) — 150 K "
— (30" + 46 + 1)R*B" 4+ 12(3b 4 2)R*W R,
Dy = 16RR" (3b% + 2) — 48h3R",
D3 = 48hh'S — 36h>H AR + 48h3h™ + 8(3b? + 2)h* " — 32(3b* + 2)hh/
+ 1202020 (3% + 2) — 2(3b* + 4b% + 1)W"2h",
Dy = — 48K — 48hK® — 36K2H/AR" + 32(3b% + 2)hh'*,
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Ds = — 96hh'> — 36h2R"2h" +16(30% + 2)hh'3,
— 96hh'3 4+ 16(30% + 2)hH/,

D7 = 8(3b% 4 2)h" — 61" + 48hh'?,

Dg = — 48h3n"3.

Clearly, D; is a function of v for each i. Thus (4.28) holds if and only if
D; = 0 for all 7, which means that h is constant. As a consequence, we have

THEOREM 4.9. Let (MS, ﬁ) be a general (o, B)-space where F is defined

by (4.26). Then the minimal conoid in (M3, F) must be a plane.

S
I

REMARK. Theorem 4.9 shows that there exists no non-trivial minimal

conoid in (M 3 F), which is quite different from the Riemannian case.
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