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Minimal submanifolds in general (α, β)-spaces

by Songting Yin (Shanghai and Tongling), Qun He (Shanghai) and
Dinghe Xie (Shanghai)

Abstract. The volume forms of general (α, β)-metrics are studied. Some equations
for minimal submanifolds in general (α, β)-spaces are established by using the normal
frame field, and some minimal surfaces in general (α, β)-spaces with special curvature
properties are constructed.

1. Introduction. In recent decades, Finsler geometry has been rapidly
developed. The study of the geometry of submanifolds has also made some
progress. As is well known, there are two commonly used volume forms,
Buseman–Hausdorff volume form and Holmes–Thompson volume form, in
Finsler geometry. By using the given volume form, some differential equa-
tions on minimal submanifolds were established and some examples of min-
imal (hyper)surfaces were also obtained ([CS2], [HY], [ST]). However, these
results only focused on the minimal submanifolds in (α, β)-spaces and all
previous examples of minimal surfaces were constructed in the Minkowski
spaces. So it is meaningful to study minimal submanifolds in a more general
context.

In the present paper, we will study the minimal submanifolds in general
(α, β)-spaces. As defined in [YZ], general (α, β)-metrics can be expressed in
the form F = αφ(x, β/α) for some C∞ function φ(x, s), some Riemannian
metric α and some 1-form β. Recall that the navigation expression of a
Randers metric is

F =

√
λα2 + β2

λ
− β

λ
,

where α is a Riemannian metric and β is a 1-form, λ = 1−‖β‖2α. Obviously
it can be viewed as a general (α, β)-metric. In addition, the classification
on this type of Finsler metrics with constant flag curvature has been solved
completely. Apart from Finsler metrics with constant flag curvature, projec-
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tively flat Finsler metrics are also important in Finsler geometry. Therefore,
it is significant to study the minimal submanifolds in general (α, β)-spaces
with constant flag curvature or locally projectively flat general (α, β)-spaces.
In this paper, we not only give some differential equations for minimal sub-
manifolds but also construct some minimal surfaces in a 3-dimensional non-
Minkowski space which is flat or locally projectively flat.

The content of the present paper is organized as follows. After introduc-
ing some definitions and basic concepts in Section 2, we give the relationship
between the volume forms of general (α, β)-metrics and those of Rieman-
nian metrics in Section 3. Based on this, we conclude that under certain
conditions the minimal submanifolds in a general (α, β)-space (M,F ) are
just minimal submanifolds in the Riemannian manifold (M,α) (Theorem
3.2). In Section 4, with the help of the normal frame field with respect to F
and α, we obtain a necessary and sufficient condition characterizing the min-
imal submanifolds in general (α, β)-spaces (Theorem 4.2). Finally, we give
some differential equations and corresponding examples of minimal surfaces
(Theorems 4.3–4.6, 4.8–4.9).

2. Preliminaries. Let M be an n-dimensional smooth manifold. A
Finsler metric on M is a function F : TM → [0,∞) with the following
properties:

(i) F is smooth on TM\0;
(ii) F (x, λy) = λF (x, y) for all λ > 0;

(iii) the induced quadratic form g is positive-definite, where

(2.1) g := gijdx
i ⊗ dxj , gij =

1

2
[F 2]yiyj .

Here and from now on, [F ]yi , [F 2]yiyj mean ∂F
∂yi

, ∂2F
∂yi∂yj

, etc., and we will use

the following convention for index ranges unless otherwise stated:

1 ≤ i, j ≤ · · · ≤ n, 1 ≤ α, β ≤ · · · ≤ n+ p.

The projection π : TM → M gives rise to the pull-back bundle π∗TM
and its dual π∗T ∗M over TM\0. In π∗T ∗M there is a global section ω =

[F ]yidx
i, called the Hilbert form, whose dual is l = li ∂

∂xi
, li = yi

F , called the
distinguished field.

The volume element dVSM of the projective sphere bundle SM with
respect to the Riemannian metric ĝ, the pull-back of the Sasaki metric from
TM\0, can be expressed as

(2.2) dVSM = Ωdτ ∧ dx,
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where

Ω := det

(
gij
F

)
, dx = dx1 ∧ · · · ∧ dxn,(2.3)

dτ :=

n∑
i=1

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn.(2.4)

The volume form of a Finsler n-manifold (M,F ) is defined by

(2.5) dVM := σ(x)dx, σ(x) :=
1

cn−1

�

SxM

Ω dτ,

where cn−1 denotes the volume of the unit Euclidean (n − 1)-sphere Sn−1,
and SxM = {[y] | y ∈ TxM}.

Let (M,F ) and (M̃, F̃ ) be Finsler manifolds and f : (M,F ) → (M̃, F̃ )

be an immersion. Then f is called isometric if F (x, y) = F̃ (f(x), df(y)) for
any (x, y) ∈ TM \ 0. It is clear that

(2.6) gij(x, y) = g̃αβ(x̃, ỹ)fαi f
β
j

for an isometric immersion f , where

(2.7) x̃α = fα, ỹα = fαi y
i, fαi =

∂fα

∂xi

Let (π∗TM)⊥ be the orthogonal complement of π∗TM in π∗(f−1TM̃) with
respect to g̃ and denote

ν∗ = {ξ ∈ Γ (f−1T ∗M̃) | ξ(df(X)) = 0, ∀X ∈ Γ (TM)},

which is called the normal bundle of f ([S1]). Set

(2.8) hα = fαijy
iyj − fαk Gk + G̃α, hα = g̃αβh

β, h =
hα

F 2

∂

∂x̃α
,

where fαij = ∂2fα

∂xi∂xj
, and Gk and G̃α are the geodesic coefficients of F and F̃

respectively. We know from [HS1], [S1] that h ∈ (π∗TM)⊥, which is called
the normal curvature. The mean curvature form of f is defined by

(2.9) µ =
1

cn−1σ

( �

SxM

hα
F 2

Ω dτ

)
dx̃α,

and µ ∈ ν∗. An isometric immersion f : (M,F )→ (M̃, F̃ ) is called minimal
if any compact domain of M is the critical point of its volume functional
with respect to any variation.

Lemma 2.1 ([HS1]). Let f : (M,F ) → (M̃, F̃ ) be an isometric immer-
sion. Then f is minimal if and only if µ = 0.
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3. Volume element of a general (α, β)-metric. A general (α, β)-
metric is defined by a Riemannian metric α =

√
aijyiyj and a 1-form β =

biy
i. It can be expressed as

F = αφ(x, s), s = β/α,

where φ(x, s) is a positive C∞ function, x ∈ M , and |s| ≤ b < b0 for some
0 < b0 < ∞. It is shown that F is positive-definite for any α and β with
b := ‖β‖α < b0 if and only if φ satisfies ([YZ])

φ− sφ2 + (b2 − s2)φ22 > 0.

Furthermore,

gij = ρaij + ρ0bibj + ρ1(biαyj + bjαyi)− sρ1αyiαyj ,(3.1)

det(gij) = φnH(x, s) det(aij),(3.2)

gij = ρ−1{aij + ηbibj + η0α
−1(biyj + bjyi) + η1α

−2yiyj},(3.3)

where

(3.4)

H(x, s) = φ(φ− sφ2)n−2(φ− sφ2 + (b2 − s2)φ22),
ρ = φ(φ− sφ2), ρ0 = φφ22 + φ2φ2,

ρ1 = (φ− sφ2)φ2 − sφφ22,
(gij) = (gij)

−1, (aij) = (aij)
−1, bi = aijbj ,

η = − φ22
φ− sφ2 + (b2 − s2)φ22

,

η0 = − (φ− sφ2)φ2 − sφφ22
φ(φ− sφ2 + (b2 − s2)φ22)

,

η1 = −(sφ+ (b2 − s2)φ2)((φ− sφ2)φ2 − sφφ22)
φ2(φ− sφ2 + (b2 − s2)φ22)

.

Let bi|j denote the coefficients of the covariant derivative of β with respect
to α and write

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i), r00 = rijy

iyj , si0 = aijsjky
k,

ri = bjrji, si = bjsji, r0 = riy
i, s0 = siy

i,

ri = aijrj , si = aijsj , r = biri.

It is easy to see that β] = bi ∂
∂xi

is a Killing vector if and only if rij = 0.
For an (α, β)-metric F = αφ(β/α), the Holmes–Thompson volume form

was calculated in [CS1] and [CS2] respectively. Since the whole calculation
does not involve the first variable in H(x, s) defined by (3.4)1 (see [CS1],
[CS2] for details), we can obtain the following result analogously.

Proposition 3.1. Let (M,F ) be a general (α, β)-space, where F =
αφ(x, β/α). Then the Holmes–Thompson volume form dVF and the Rie-



Minimal submanifolds in general (α, β)-spaces 47

mannian volume form dVα satisfy

dVF =
Γ (n/2)√

πΓ ((n− 1)/2)

{π�
0

H(x, b cos t) sinn−2(t) dt
}
dVα,

where Γ (t) =
	∞
0 xt−1e−x dx is the Gamma function.

If ϕ(x, s) = H(x, s)− 1 is odd in s, then

(3.5)

π�

0

ϕ(x, b cos t) sinn−2(t) dt = 0.

From (3.5) and Proposition 3.1 one can deduce that dVF = dVα.

Theorem 3.2. Let (M,F ) be a general (α, β)-space, where F =
αφ(x, β/α). If H(x, s) − 1 is odd in s, then the minimal submanifolds in
(M,F ) are just the minimal submanifolds in (M,α), and vice versa.

Remark. Noting that H(x; s)− 1 = s for a Randers metric F = α+ β,
we reobtain the corresponding result in [HS2] from Theorem 3.2.

When F =
√
λα2 + β2/λ − β/λ, we have φ(x, s) =

√
λ+ s2/λ − s/λ,

where λ = 1− b2. By direct computation, we get

H(x, s) =

√
λ+ s2 − s

λ(λ+ s2)(n+1)/2
.

Therefore,
π�

0

H(x, b cos t) sinn−2(t) dt =

π�

0

√
λ+ b2 cos2 t− b cos t

λ(λ+ b2 cos2 t)(n+1)/2
sinn−2(t) dt

=
2

λ

π/2�

0

sinn−2(t)

(1− b2 sin2 t)n/2
dt.

So we obtain the following

Corollary 3.3. Let (M,F ) be a general (α, β)-space, where F =√
λα2 + β2/λ − β/λ. Then the Holmes–Thompson volume form dVF and

the Riemannian volume form dVα satisfy

dVF =
2Γ (n/2)

λ
√
π Γ ((n− 1)/2)

{ π/2�

0

sinn−2(t)

(1− b2 sin2 t)n/2
dt

}
dVα,

where λ = 1− b2. In particular, when n = 2,

dVF =

√
π Γ (1)

λ
√
λΓ (1/2)

dVα.
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Remark. When b 6= const, the minimal submanifolds of (M,F ) are not
necessarily the minimal submanifolds of (M,α). So it is reasonable to look
for examples of minimal submanifolds in (M,F ).

4. Minimal submanifolds of general (α, β)-spaces. Let f : (M,F )

→ (M̃, F̃ ) be an isometric immersion. F̃ = α̃φ(x̃, β̃/α̃), where

α̃ =
√
ãαβ ỹαỹβ, β̃ = b̃αỹ

α.

Since f is isometric, we get

F = f∗F̃ = αφ(f(x), β/α),

where

α =
√
aijyiyj , aij = ãαβf

α
i f

β
j , β = biy

i, bi = b̃αf
α
i .

Proposition 4.1. Let f : (Mn, F ) → (M̃n+p, F̃ ) be an isometric im-

mersion where F̃ = α̃φ(x̃, β̃/α̃). Denote by {na}n+pa=n+1 a local orthonormal

frame of the normal bundle TM⊥ with respect to the Riemannian metric α̃
such that nn+p is parallel to β̃⊥, and set

(4.1) ña =

√
1

ρ̃(1 + η̃β̃(na)2)
[na + η̃β̃(na)β̃

] + F η̃0α̃
−1β̃(na)l̃ ].

Then {ña}n+pa=n+1 is a local orthonormal frame of the normal bundle (π∗TM)⊥

with respect to F̃ . Here β̃⊥ is the projection of β̃] into the normal bundle
TM⊥, β̃] = b̃α ∂

∂x̃α , and ρ̃, η̃, η̃0 are defined as in (3.4).

Proof. Let na = nαa
∂
∂x̃α . Then

(4.2) ã(na,nb) = ãαβn
α
an

β
b = δab, ã

(
na,

∂

∂xi

)
= ãαβn

α
af

β
i = 0.

Take ña = ñαa
∂
∂x̃α (a = n+ 1, . . . , n+ p) satisfying

(4.3) g̃αβñ
α
a = ξaãαβn

α
a ,

where

(4.4) ξa =

√
ρ̃

1 + η̃β̃(na)2
.

Then by (4.2), (4.3), (3.3), we have

g̃

(
ña,

∂

∂xi

)
= g̃αβñ

α
af

β
i = ξaãαβn

α
af

β
i = 0,
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and

g̃(ña, ñb) = g̃αβñ
α
a ñ

β
b = ξaãαβn

α
a ξbg̃

βγ ãγδn
δ
a

= ξaãαβn
α
a

ξb
ρ̃
{nβb + η̃β̃(nb)b̃

β + η̃0α̃
−1β̃(nb)ỹ

β}

=

√
1

1 + η̃β̃(na)2

√
1

1 + η̃β̃(nb)2
{δab + η̃β̃(na)β̃(nb)} = δab.

The last equality holds since β̃⊥ is parallel to nn+p. Therefore {ña}n+pa=n+1

is a local orthonormal frame of the normal bundle (π∗TM)⊥ with respect

to F̃ . Using (4.2), (4.3), (3.3) again, we obtain

ña =

√
1

ρ̃(1 + η̃β̃(na)2)
[na + η̃β̃(na)β̃

] + F η̃0α̃
−1β̃(na)l̃ ].

Remark. When F̃ =

√
λ̃α̃2+β̃2/λ̃−β̃/λ̃, the relation between {na}n+pa=n+1

and {ña}n+pa=n+1 can be expressed as

ña =

√
γ̃

F̃ (1− β̃(na)2)
[na + β̃(na)(l̃ − β̃])],

where λ̃ = 1− b̃2, γ̃ =

√
λ̃α̃2 + β̃2.

From Lemma 2.1, we know that f : (Mn, F )→ (M̃n+p, F̃ ) is minimal if
and only if

(4.6) nαb

�

SxM

hα
F 2

Ω dτ = 0, ∀b.

Using (2.8), (4.2), (4.3) and (4.5), we get

hα = g̃αγh
γ =

∑
a

g̃αγ g̃

(
hβ

∂

∂x̃β
, ña

)
ñγa(4.7)

=
∑
a

g̃αγ [(fβijy
iyj − fβkG

k + G̃β)g̃βδñ
δ
a]ñ

γ
a

=
∑
a

ξ2a[(fβijy
iyj + G̃β)ãβδn

δ
a]ãαγn

γ
a

=
∑
a

ρ̃[(fβijy
iyj + G̃β)ãβδn

δ
a]ãαγn

γ
a

1 + η̃β̃(na)2
.

Plugging (2.3), (3.2) and (4.7) into (4.6) implies
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nαb

�

SxM

hα
F 2

Ω dτ =
�

SxM

ρ̃[(fβijy
iyj + G̃β)ãβδn

δ
b ] det(gij)

(1 + η̃β̃(nb)2)Fn+2
dτ

= det(aij)ãβδn
δ
b

�

SxM

(fβijy
iyj + G̃β)(φ− sφ2)H(x, s)

αn+2(1 + η̃β̃(nb)2)φ
dτ,

where

H(x, s) = φ(φ− sφ2)n−2[(φ− sφ2) + (b2 − s2)φ22],

η̃ = − φ22

φ− s̃φ2 + (b̃2 − s̃2)φ22
.

Theorem 4.2. Let (Mn, F ) be a submanifold in (M̃n+p, F̃ ) where F̃ =

α̃φ(x̃, β̃/α̃). Then f : (Mn, F )→ (M̃n+p, F̃ ) is minimal if and only if

(4.8) ãβδn
δ
a

�

α=1

(fβijy
iyj + G̃β)(φ− sφ2)H
(1 + η̃β̃(na)2)φ

dτ = 0, ∀a.

In what follows, we consider hypersurfaces in a general (α, β)-space

(M̃n+1, F̃ ) with F̃ =

√
λ̃α̃2 + β̃2/λ̃− β̃/λ̃. By direct computation, one gets

(4.9) H(x, s) = (λ̃+ b2)
F

α

(
α

γ

)n+1

, η̃ = −1,
φ− sφ2

φ
=

α2

Fγ
,

where F = b

√
λ̃α2 + β2/λ̃ − β/λ̃, γ =

√
λ̃α2 + β2. Thus from (4.8), (4.9),

we have

(4.10) ãβδn
δ

�

SxM

(fβijy
iyj + G̃β)(φ− sφ2)H
αn+2(1 + η̃β̃(n)2)φ

dτ

=
ãβδn

δ(λ̃+ b2)

1− β̃(n)2

�

SxM

fβijy
iyj + G̃β(√

λ̃α2 + β2
)n+2

dτ = 0.

Note that the geodesic coefficient G̃β is twice that in [R]. In particular,
when α̃ is a Riemannian metric with constant sectional curvature, i.e. α̃ is
projectively flat, and β̃] = bα ∂

∂x̃α is a Killing vector field, we know from [R]
that

G̃β = G̃β − F̃ 2s̃β − 2F̃ s̃β0 = P ỹβ − F̃ 2s̃β − 2F̃ s̃β0 ,

where G̃β denote the geodesic coefficients of α̃, and P = α̃x̃δ ỹ
δ/α̃. Noting

that ãαβn
αỹβ = 0 and F = (1− β)/λ̃ when

√
λ̃α2 + β2 = 1, we obtain from

(4.10) the following result.
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Theorem 4.3. Let (Mn, F ) be a hypersurface in (M̃n+1, F̃ ) with F̃ =√
λ̃α̃2 + β̃2/λ̃ − β̃/λ̃. If α̃ is a Riemannian metric with constant sectional

curvature and β̃] is a Killing vector, then f : (Mn, F ) → (M̃n+1, F̃ ) is
minimal if and only if

(4.11) ãβδn
δ

�
√
λ̃α2+β2=1

[
fβijy

iyj − s̃β(1− β)2

λ̃2
− 2(1− β)

λ̃
s̃β0

]
dτ = 0.

Now we will look for some minimal surfaces in a general (α, β)-space

(M̃3, F̃ ) with F̃ =

√
λ̃α̃2 + β̃2/λ̃ − β̃/λ̃, where α̃ is a Euclidean metric. If

β̃ is parallel with respect to α̃, then F̃ is a Minkowski metric. Next, we will
consider the case that β̃ is not parallel with respect to α̃ any more. Let

(4.12) α̃ =
√

(ỹ1)2 + (ỹ2)2 + (ỹ3)2, β̃ = k(x̃2ỹ
1 − x̃1ỹ2), k = const.

Then F̃ is a Finsler metric defined on M̃3 := {(x̃1, x̃2, x̃3) ∈ R3 | x̃21 + x̃22 <

1/k2} and β̃] is a Killing vector. In this case, F̃ is not Minkowskian, but
its flag curvature still vanishes (see [BRS] for details). Let f be a rotation
surface defined by f(u, v) = (u cos v, u sin v, h(u)), where h(u) is a function
to be determined. Then

(4.13)

(fαi )2×3 =

(
cos v sin v h′

−u sin v u cos v 0

)
,

(ỹ1 ỹ2 ỹ3) = (y1 y2)(fαi )2×3

= (y1 cos v − uy2 sin v y1 sin v + uy2 cos v y1h′),

λ̃ ◦ f = 1− b̃2 = 1− (kx̃1)
2 − (kx̃2)

2 = 1− k2u2,

α = f∗α̃ =
√

(1 + h′2)(y1)2 + u2(y2)2, β = f∗β̃ = −ku2y2.

Set

y1 =
cos θ√

(1− k2u2)(1 + h′2)
, y2 =

sin θ

u
, θ ∈ [0, 2π].

Then √
λ̃α2 + β2 =

√
(1− k2u2)(1 + h′2)(y1)2 + u2(y2)2 = 1.

In this case, (4.11) is equivalent to

(4.14) nβ
�

√
λ̃α2+β2=1

[
fβii(y

i)2 − s̃β(1 + β2)

λ̃2
+

2β

λ̃
s̃β0

]
dτ = 0.
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Furthermore, a direct computation yields

(4.15)

s̃1 = ã1αs̃βαb̃
β = k2u cos v, s̃2 = k2u sin v, s̃3 = 0,

s̃10 = ã1αs̃αβ ỹ
β = ky1 sin v + kuy2 cos v,

s̃20 = −ky1 cos v + kuy2 sin v, s̃30 = 0,

and

(4.16)

dτ = y1dy2 − y2dy1 =
dθ

u
√

(1− k2u2)(1 + h′2)
,

�
√
λ̃α2+β2=1

dτ =
2π

u
√

(1− k2u2)(1 + h′2)
,

�
√
λ̃α2+β2=1

(y1)2 dτ =
π

u[(1− k2u2)(1 + h′2]3/2
,

�
√
λ̃α2+β2=1

(y2)2 dτ =
π

u3
√

(1− k2u2)(1 + h′2)
.

In (4.14), we set

W β =
�

√
λ̃α2+β2=1

[
fβii(y

i)2 − s̃β(1 + β2)

λ̃2
+

2β

λ̃
s̃β0

]
dτ, β = 1, 2, 3.

Since

(4.17) (fαii )2×3 =

(
0 0 h′′

−u cos v −u sin v 0

)
,

we deduce from (4.13)–(4.17) that

W 1 = − π cos v√
(1− k2u2)(1 + h′2)

(
1

u2
+

2k2 + k4u2

(1− k2u2)2
+

2k2

1− k2u2

)
,

W 2 = − π sin v√
(1− k2u2)(1 + h′2)

(
1

u2
+

2k2 + k4u2

(1− k2u2)2
+

2k2

1− k2u2

)
,

W 3 =
πh′′

u[(1− k2u2)(1 + h′2)]3/2
.

On the other hand, (4.14) is equivalent to

(4.18)

3∑
β=1

W βnβ = 0.

The normal vector to the surface is

n =

(
−h′ cos v√

1 + h′2
−h′ sin v√

1 + h′2
1√

1 + h′2

)
.
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Substituting the above formulas into (4.18), one gets

(4.19) (2k2u2 + 1)h′(1 + h′2) = u(k2u2 − 1)h′′.

Theorem 4.4. Let (M̃3, F̃ ) be a general (α, β)-space, where F̃ =√
λ̃α̃2 + β̃2/λ̃ − β̃/λ̃, and α̃ and β̃ are defined by (4.12). Then a rotation

surface f = (u cos v, u sin v, h(u)) in (M̃3, F̃ ) is minimal if and only if h
satisfies (4.19).

Let w = h′2. Then (4.19) becomes

2k2u2 + 1

u(k2u2 − 1)
=

w′

2w(1 + w)
.

By a direct computation, one obtains

w =
C[1− k2u2]3

u2 − C[1− k2u2]3
,

where C is a non-negative constant. Therefore,

(4.20) h = ±
�√

w du = ±
� √C [1− k2u2]3/2√

u2 − C[1− k2u2]3
du.

Theorem 4.5. Let (M̃3, F̃ ) be a general (α, β)-space, where F̃ , α̃ and
β̃ are as in Theorem 4.4. Then there exists a minimal rotation surface in
(M̃3, F̃ ) which can be expressed as

f =

(
u cos v, u sin v,±

� √C [1− k2u2]3/2√
u2 − C[1− k2u2]3

du

)
.

Remark. Noting that F̃ is Euclidean when k = 0, one gets h(u) =
cosh−1 u from (4.20), which is just the classical result in Euclidean space R3.

Now we study the second case, that is, f = (u cos v, u sin v, h(v)), with
α̃ and β̃ defined as in (4.12). We will show that although the minimal sub-

manifolds of (M̃, F̃ ) are not necessarily minimal submanifolds of (M, α̃) in
the general case, there are still some exceptions. Analogously, we have

(fαi )2×3 =

(
cos v sin v 0

−u sin v u cos v h′

)
,

(ỹ1 ỹ2 ỹ3) = (y1 cos v − uy2 sin v y1 sin v + uy2 cos v y2h′),

α =
√

(y1)2 + (u2 + h′2)(y2)2, β = −ku2y2,
λ̃ ◦ f = 1− k2u2, s̃1 = k2u cos v, s̃2 = k2u sin v,

s̃3 = 0, s̃10 = ky1 sin v + kuy2 cos v,

s̃20 = −ky1 cos v + kuy2 sin v, s̃30 = 0.
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The normal vector to the surface is

n =

(
h′ sin v√
u2 + h′2

−h′ cos v√
u2 + h′2

u√
u2 + h′2

)
,

and

(fαii )2×3 =

(
0 0 0

−u cos v −u sin v h′′

)
.

Set

y1 =
cos θ√

1− k2u2
, y2 =

sin θ√
u2 + (1− k2u2)h′2

, θ ∈ [0, 2π].

Then√
λ̃α2 + β2 =

√
(1− k2u2)(y1)2 + (u2 + (1− k2u2)h′2)(y2)2 = 1,

dτ =
dθ√

(1− k2u2)(u2 + (1− k2u2)h′2)
.

Furthermore, we have
�

√
λ̃α2+β2=1

dτ =
2π√

(1− k2u2)(u2 + (1− k2u2)h′2)
,

�
√
λ̃α2+β2=1

(y1)2 dτ =
π

(1− k2u2)3/2
√

(u2 + (1− k2u2)h′2)
,

�
√
λ̃α2+β2=1

(y2)2 dτ =
π√

(1− k2u2) (u2 + (1− k2u2)h′2)3/2
.

Plugging the formulas above into (4.14) yields

(4.21) h′′ = 0.

Theorem 4.6. Let (M̃3, F̃ ) be a general (α, β)-space, where F̃ , α̃ and

β̃ are as in Theorem 4.4. Then the minimal conoid in (M̃3, F̃ ) must be a
helicoid or a plane.

Remark. In Theorem 4.6, we have obtained minimal surfaces for both
(M̃3, F̃ ) and (M̃3, α̃). This shows that the minimal conoids in such a non-
Minkowski space are also minimal in Euclidean space.

Finally, we will consider another general (α, β)-metric F = αφ(b2, β/α),
where b2 := ‖β‖2α. We also assume that F is projectively flat. It is well known
that a Riemannian metric is projectively flat if and only if it has constant
sectional curvature. In [S2], the author proved that a Randers metric F =
α+ β is projectively flat if and only if α is projectively flat and β is closed.
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Lemma 4.7 ([YZ]). Let F = αφ(b2, β/α) be a general (α, β)-metric on a
manifold M of dimension n (≥ 2). Then F is locally projectively flat if the
following conditions hold:

(1) The function φ(b2, s) satisfies the partial differential equation

(4.22) φ22 = 2(φ1 − sφ12);

(2) α is locally projectively flat, and β is closed and conformal with re-
spect to α.

Let F̃ = α̃φ(b̃2, β̃/α̃) be a locally projectively flat metric and f :
(Mn, F ) → (M̃n+1, F̃ ) be an isometric immersion. Then by (4.2), (4.7) we
have

hα = ξ2[(fβijy
iyj + G̃β)ãβδn

δ]ãαγn
γ(4.23)

= ξ2[(fβijy
iyj + P̃ ỹβ)ãβδn

δ]ãαγn
γ = ξ2fβijy

iyj ãβδn
δãαγn

γ ,

where ξ is defined by (4.4). On the other hand, a direct computation similar
to that in [HS2] yields

(4.24) det(gij) =
det(aij)

ξ2 det(ãαβ)
det(g̃αβ) =

φ(b̃2, s̃)H̃ det(aij)

ξ2
.

Plugging (4.23) and (4.24) into (4.6), one gets

nα
�

SxM

hα
F 2

Ω dτ = nα
�

SxM

ξ2fβijy
iyj ãβδn

δãαγn
γ det(gij)

Fn+2
dτ

= det(aij)f
β
ij ãβδn

δ
�

SxM

yiyjφ(b̃2, s̃)H̃

F̃n+2
dτ

= det(aij)f
β
ij ãβδn

δ
�

SxM

yiyj(φ− s̃φ2)n−1
φ− s̃φ2 + (b̃2 − s̃2)φ22

α̃n+2
dτ

= det(aij)f
β
ij ãβδn

δ
�

α=1

yiyj(φ− β̃φ2)n−1[φ− β̃φ2 + (b̃2 − β̃2)φ22] dτ.

Hence, by Lemma 2.1 we obtain

Theorem 4.8. Let (Mn, F ) be a hypersurface in (M̃n+1, F̃ ), where F̃ =

α̃φ(b̃2, β̃/α̃) is locally projectively flat. Then f : (Mn, F ) → (M̃n+1, F̃ ) is
minimal if and only if

(4.25) fβij ãβδn
δ

�

α=1

yiyj(φ− β̃φ2)n−1[φ− β̃φ2 + (b̃2 − β̃2)φ22] dτ = 0.
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In what follows, we consider the minimal surface f=(u cos v, u sin v, h(v))

in a general (α, β)-space (M̃3, F̃ ), with F̃ = α̃φ(b̃2, β̃/α̃) and

(4.26)
α̃ =

√
(ỹ1)2 + (ỹ2)2 + (ỹ3)2, β̃ = x̃αdx̃α,

φ(b̃2, s̃) = 1 + b̃2 + s̃2 + g(b̃2)s̃,

where g is a smooth function. Obviously, α̃ is projectively flat. It is easily
checked that β̃ is closed and conformal with respect to α̃ since dβ̃ = 0 and
b̃α|β = ãαβ. In addition, φ(b̃2, s̃) satisfies (4.22) ([YZ]). Therefore F̃ is locally
projectively flat by Lemma 4.7.

Denote

(4.27) W ij =
�

α=1

yiyj(φ− β̃φ2)[φ− β̃φ2 + (b̃2 − β̃2)φ22] dτ.

By a simple computation, we have

φ2 = 2s̃+ g(b̃2), φ22 = 2, β̃ = uy1 + hh′y2.

Plugging the above formulas into (4.27), one gets

W ij =
�

α=1

yiyj [Π0 +Π1y
1y2 +Π2(y

1)2 +Π3(y
2)2 +Π4(y

1)3y2

+Π5(y
2)3y1 +Π6(y

1)2(y2)2 +Π7(y
1)4 +Π8(y

2)4] dτ,

where

Π0 = 3b̃4 + 4b̃2 + 1, Π1 = −uhh′(6b̃2 + 4), Π2 = −u2(6b̃2 + 4),

Π3 = −(hh′)2(6b̃2 + 4), Π4 = 12u3hh′, Π5 = 12u(hh′)3,

Π6 = 81u2(hh′)2, Π7 = 3u4, Π8 = 3(hh′)4.

A direct calculation yields

W 12 =
�

α=1

[Π1(y
1y2)2 +Π4(y

1)4(y2)2 +Π5(y
2)4(y1)2] dτ

=

2π�

0

[
Π1

(sin θ cos θ)2

u2 + h′2
+Π4

(sin θ)2(cos θ)4

u2 + h′2

+Π5
(sin θ)4(cos θ)2

u2 + h′2

]
1√

u2 + h′2
dθ

=
π√

u2 + h′2

[
Π1

4(u2 + h′2)
+

Π4

8(u2 + h′2)
+

Π5

8(u2 + h′2)2

]
= W 21,
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W 22 =
�

α=1

[Π0(y
2)2 +Π2(y

1)2(y2)2

+Π3(y
2)4 +Π6(y

1)2(y2)4 +Π7(y
1)4(y2)2 +Π8(y

2)6] dτ

=

2π�

0

[
Π0

(cos θ)2

u2 + h′2
+Π2

(sin θ cos θ)2

u2 + h′2
+Π3

(cos θ)4

(u2 + h′2)2

+Π6
(sin θ)2(cos θ)4

(u2 + h′2)2
+Π7

(sin θ)4(cos θ)2

u2 + h′2
+Π8

(cos θ)6

(u2 + h′2)2

]
dθ√

u2 + h′2

=
π√

u2 + h′2

[
Π0

u2 + h′2
+

Π2

4(u2 + h′2)
+

3Π3

8(u2 + h′2)2

+
Π6

(u2 + h′2)2
+

Π7

8(u2 + h′2)
+

5Π8

16(u2 + h′2)3

]
.

On the other hand, it is easy to see that the normal vector is

n =

(
h′ sin v√
u2 + h′2

−h′ cos v√
u2 + h′2

u√
u2 + h′2

)
,

and

(f1ij) =

(
0 − sin v

− sin v −u cos v

)
, (f2ij) =

(
0 cos v

cos v −u sin v

)
,

(f3ij) =

(
0 0

0 h′′

)
.

Substituting the above formulas into (4.25), one gets

(4.28) D1u+D2u
2+D3u

3+D4u
4+D5u

5+D6u
6+D7u

7+D8u
8 = 0 for all u,

where

D1 = 48h3h′8 − 16hh′(3b̃2 + 2)− 15h4h′
4
h′′

− (3b̃4 + 4b̃2 + 1)h′4h′′ + 12(3b̃2 + 2)h2h′4h′′,

D2 = 16hh′5(3b̃2 + 2)− 48h3h′5,

D3 = 48hh′6 − 36h2h′4h′′ + 48h3h′4 + 8(3b̃2 + 2)h′4h′′ − 32(3b̃2 + 2)hh′4

+ 12h2h′2h′′(3b̃2 + 2)− 2(3b̃4 + 4b̃2 + 1)h′2h′′,

D4 = − 48h3h′5 − 48hh′5 − 36h2h′4h′′ + 32(3b̃2 + 2)hh′
3
,
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D5 = − 96hh′3 − 36h2h′2h′′ + 16(3b̃2 + 2)hh′3,

D6 = − 96hh′3 + 16(3b̃2 + 2)hh′,

D7 = 8(3b̃2 + 2)h′′ − 6h′′ + 48hh′2,

D8 = − 48h3h′3.

Clearly, Di is a function of v for each i. Thus (4.28) holds if and only if
Di = 0 for all i, which means that h is constant. As a consequence, we have

Theorem 4.9. Let (M̃3, F̃ ) be a general (α, β)-space where F̃ is defined

by (4.26). Then the minimal conoid in (M̃3, F̃ ) must be a plane.

Remark. Theorem 4.9 shows that there exists no non-trivial minimal
conoid in (M̃3, F̃ ), which is quite different from the Riemannian case.
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