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Non-trivial solutions for a two-point boundary value problem

by G. A. Arrouzl (Babolsar), A. HADJIAN (Babolsar)
and S. HEIDARKHANI (Kermanshah and Tehran)

Abstract. We prove the existence of at least one non-trivial solution for Dirichlet
quasilinear elliptic problems. The approach is based on variational methods.

1. Introduction. We investigate the existence of at least one non-trivial
weak solution to the quasilinear elliptic problem

(1 1) { —u = [)\f(ZC,U) + g(u)} h(a:,u’) in (07 1))
' u(0) = u(1) =0,
where ) is a positive parameter, f : [0,1] x R — R is an L!-Carathéodory
function, g : R — R is a Lipschitz continuous function with Lipschitz con-
stant L > 0, i.e.,
lg(t) — g(ta)| < Llty —

for all ¢1,ty € R, with g(0) =0, and h : [0,1] x R — [0, 400) is a bounded
and continuous function with m :=inf, ;cp0,1)xr h(2,t) > 0.

Motivated by the fact that such problems are used to describe a large
class of physical phenomena, many authors looked for existence of solutions
for second order ordinary differential non-linear equations.

In this paper, we generalize the results obtained in [4] with g = 0 and
h =1 (see Remark . Our analysis is mainly based on a recent critical
point theorem of Bonanno [I], contained in Theorem below. This theo-
rem has been used in several works in order to obtain existence results for
different kinds of problems (see, for instance, [2] 3, 4, [6l, [7, &, [11]).

As an example, we state here the following special case of our results.

THEOREM 1.1. Let f : R — R be a non-negative continuous function

such that 5 1
16Sf(3:) dx < 25Sf(x) dzx.
0 0
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Then, for each
10 15

Sé f(x) da’ Sg f(z)dx 7

rel

the problem
{ —u" +u=MAf(u) n(0,1),
u(0) =u(1)=0
admits at least one positive classical solution @ such that |u(x)| < 5 for all
z € [0,1].

2. Preliminaries. Our main tool is the Ricceri variational principle [13]
Theorem 2.5] as given in [I, Theorem 5.1] which is recalled below (see also
[T, Proposition 2.1]).

For a given non-empty set X, and two functionals &,¥ : X — R, we
define

SUPyed—1(jry,rof) Y (1) — ¥ (v)

5(7“1,’!”2) = inf

ved—1(jr1,ra[) rg — ®(v) ’
s = sup ¥ (v) = SUPyeg—1(—co,m ) ¥ (W)
’ ved—1(jr1,ra[) D(v) — 1

for all 71,79 € R with 1 < 9.

THEOREM 2.1 ([I, Theorem 5.1]). Let X be a reflexive real Banach space;
@ : X — R be a sequentially weakly lower semicontinuous, coercive and con-
tinuously Gateaux differentiable function whose Gateaux derivative admits
a continuous inverse on X*; and ¥ : X — R be a continuously Gateaux
differentiable function whose Gateaux derivative is compact. Assume that
there are r1,79 € R, with r1 < 19, such that

B(ri,r2) < p(ri,r2).
Then, setting I := & — XV, for each A € |1/p(r1,72),1/B(r1,72)[ there is
ugx € (|1, r2[) such that In(ugy) < In(u) for all w € @ 1(Jr1,r2]) and
I;\(UO)\) =0.
Let f:[0,1] x R — R be an L!-Carathéodory function, g : R — R be a
Lipschitz continuous function with Lipschitz constant L > 0, i.e.,

lg(t1) — g(t2)] < L[t — tof

for all ¢t1,t3 € R, and ¢g(0) = 0, and h : [0,1] x R — [0,4+00) be a bounded
and continuous function with m := inf(, ;yc(0,1)xr h(z,t) > 0.
We recall that f :[0,1] x R — R is an L!-Carathéodory function if

(a) x+— f(x,§) is measurable for every & € R;
(b) & f(x,€) is continuous for almost every z € [0, 1];
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(c) for every p > 0 there is a function [, € L'([0,1]) such that
sup | f(z,&)| < lp(x)
l€1<p
for almost every z € [0, 1].

Corresponding to f, g and h we introduce the functions F': [0,1] x R — R,

G:R—Rand H:[0,1] x R — [0,+00) as follows:
t

fla,&)dg,  G(t):=—{g(6)de,

0
-
(S I ) dr,

for all z € [0,1] and ¢ € R.

Throughout, we let M := sup(;)c(o,1)xr M(,t) and suppose that the
Lipschitz constant L > 0 of g satisfies the condition LM < 4.

Let X be the Sobolev space Wol’Q([O, 1]) equipped with the norm

1

Jull:= (§l @) ar) "

O e Ot/ﬂe»

0
We say that a function u € X is a weak solution of problem ({1.1)) if
1, u(x) 1 1 1
S S dr |v'(z) doe — A S flz,u(x))v(z)de — Sg(u(m))v(:z:) dx =0
0 0 h(z,7) 0 0

for all v € X. By standard regularity results, if f is continuous in [0, 1] x R,
then weak solutions of problem belong to C2([0,1]), thus they are
classical solutions.

For other basic notations and definitions, we refer the reader to [5], 10}
14] [16].

3. Main results. Put
4 — LM 44+ Lm

A= B :=

SM 8m

and suppose that B < 4A.
Given a non-negative constant c¢; and two positive constants ce and d
with ¢? < 8d% < ¢, put
1 3/4
(0. d) So SUDf<c, F(x,t)dr — §1§4 F(z,d)dx
a(c =
> Bc2 — 8Bd? ’
¥4 F(a,d) da — ! F(z,t)d
1/4 €, ) T — S() Sup|t|§c1 (IB, ) T
8Bd? — Ac? ’

b(ci,d) =
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We formulate our main result as follows.

THEOREM 3.1. Assume that there exrist a non-negative constant c1 and
two positive constants co and d with ¢} < 8d* < 3 such that

(A1) F(x,t) >0 for all (z,t) € ([0,1/4] U[3/4,1]) x [0,d];
(AQ) (I(Cg,d) < b(Cl,d).
Then, for each X € ]1/b(c1,d),1/a(ce,d)[, problem admits at least one

non-trivial weak solution u € X such that

A _ B
EC% < HU||2 < ZC%
Proof. Our aim is to apply Theorem to our problem. To this end, for
each u € X, we define @, ¥ : X — R by
1
H(z, v/ (z)) dz + | G(u(x)) da,
0

F(z,u(x)) dx,
and put

Iy(u) :=&(u) — N\ (u), ueX.

It is well known that @ and ¥ are well defined and continuously differen-
tiable functionals whose derivatives at the point © € X are the functionals
@' (u),¥'(u) € X* given by

for every v € X. Also, the functionals ¢ and ¥ satisfy all regularity as-
sumptions imposed in Theorem (for more details, see the proof of
[9, Theorem 2.1]). Note that the weak solutions of are exactly the
critical points of 1.

Since ¢ is Lipschitz continuous and satisfies g(0) = 0, while h is bounded
away from zero, the inequality

1
(3.1) mlél[%ﬁ] lu(z)] < iHUH forall u e X

(see, e.g., [15]) yields for any u € X the estimate
(3.2) Aljull? < &(u) < Bllul
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Now, put

4dx if x € [0,1/4],

rii=Ac, ry:=Bd, wx)={d if x € [1/4,3/4],

4d(1 —z) ifz €]3/4,1].

It is easy to verify that w € X and, in particular,
lwl? = 84°.
So, from , we have
8Ad*> < &(w) < 8Bd>.

From the condition ¢? < 8d% < 3, we obtain r; < @(w) < r9. Since B < 44,

for all u € X such that @&(u) < ro, taking (3.1) into account, one has
|u(x)| < cg for all z € [0, 1], which implies

1
sup U(u) = sup SF(:C,U(:U)) dx < S sup F(x,t)dx.
u€P~1(]—o0o,r2[) u€P~1(]—o0o,r2[) 0 0

Arguing as before, we obtain

1

sup U(u) < S sup F(x,t)dz.
ueP—1(]—o0o,r1]) 0
]

—_

1/4
S F(z,w(x))dx + S F(z,w(z))dx >0,
0

3/4
and so
3/4
U(w) > | Fz,d)ds.
1/4
Therefore,
SUPyedp—1(]—o0,r2[) !p(u) - Ep(w)
<
B(ri,r2) < v — O(w)
! F(z,t)de — (*/ F(x,d)d
So SUP|t|<cy (:C, ) €z 81/4 (xv ) €L
= B2 — 8Bd? = alez,d).
On the other hand,
W<w) — SUPyued—1(]—o0,r1]) W(U’)
> K
pri,r2) = b(w) —
Si’ﬁ F(z,d)dr — Sé SUpy<c, F(2,t) dx
> — = b(Cl, d)

- 8Bd? — AC%
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Hence, from assumption (Az), one has 5(r1,72) < p(r1,r2). Therefore, from
Theorem for each X\ € ]1/b(c1,d),1/a(ca,d)[, the functional I admits
at least one critical point « such that

r1 < P(u) < re,
that is,

B,

A _
Zd <l < =,

B

and the conclusion is achieved. =
Now, we point out an immediate consequence of Theorem

THEOREM 3.2. Assume that there exist two positive constants ¢ and d
with 2v/2d < ¢ such that assumption (A1) in Theorem holds. Further-
more, suppose that

3/4
(agy S0Pz P e 1 Jiy Pl e
3 2 3 7 .
Then, for each
83d2 BCQ
S?ﬁ F(a,d)dz |, supyy|<. F'(x,1) dz 7

problem (1.1} admits at least one non-trivial weak solution u € X such that
|a(x)| < ¢ for all z € [0, 1].

Proof. The conclusion follows from Theorem [3.I] by taking ¢; = 0 and
co = c. Indeed, owing to assumption (As), one has

8(1] SUD|y| <. F(z,t)dx — Si’ﬁ F(z,d)dz
ale,d) = B — 8Bd2
_ (1 —8d?%/c?) 8(1) SUPy| <, F(x,t)dx 1 !

B(c? - 8d?) - Be? <.

On the other hand,
3/4
F(x,d)dx
b(0,d) = Yy Pl d) d
8 Bd?

Hence, taking assumption (A3z) and (3.1) into account, Theorem yields

the conclusion. =

Let f : R — R be a continuous function. Put F(¢t) := Sg f(&) d¢ for all
t € R. We have the following result as a direct consequence of Theorem
in the autonomous case.

COROLLARY 3.3. Assume that there exist a non-negative constant ¢y and
two positive constants ca and d with ¢2 < 8d* < c& such that
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(Ag) f(t) >0 for allt € [—co, max{ce,d}|;
Ple) - LF() _ Fle) - SF(d)

(As) 2 2 S A2

Bcej — 8Bd Aci — 8Bd?

Then, for each

Ac? —8Bd*>  Bc3 — 8Bd?
A€ i , T )
F(c1) = 3F(d) F(c2) — 5F(d)
the problem
{—U" = [Mf(u) + g(u)]h(z,u') in (0,1),
u(0)=u(1)=0
admits at least one non-trivial classical solution u such that
Aepap<a
B A2
Proof. From the condition ¢? < 8d? < ¢3, we obtain ¢; < cz. Therefore,
assumption (A4) means f(t) > 0 for each t € [—cy, ¢1] and f(t) > 0 for each
t € [—co, ¢2], which implies

max F(t) = F(c1), max F(t) = F(c2).

te[—c1,c1] te[—ca,c2]
So, the conclusion follows from Theorem .

Now, we point out a special situation of our main result when the non-
linear term has separated variables. To be precise, let o € L'([0,1]) be such
that a(z) > 0 a.e. z € [0,1], @ # 0, and let v : R — R be a non-negative
continuous function. Consider the following Dirichlet boundary value prob-
lem,

(3.3) { —u" = [Ma(x)y(u) + g(u)] Az, ') in (0,1),
| u(0) = u(1) = 0.
Put I(1) = {y7(€) d€ for all € B, and set o]y = [} () do-

COROLLARY 3.4. Assume that there exist a non-negative constant ¢1 and
two positive constants co and d with ¢? < 8d* < c3 such that

[(ex)als — I(d) 25 a(z)de () §75 alz) dr — D(er)l|olh

A 1/4 1/4
(Be) Bc2 — 8Bd? 8Bd? — Ac?
Then, for each
8Bd? — Ac? Bc3 — 8Bd?
r(d) Y5 al@)de — M(en)al De)llal — I'(d) 3 () d

problem (3.3|) admits at least one positive weak solution u € X such that

A B B
EC% < ||U”2 < ch'
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Proof. Put f(z,§) := a(x)y(§) for all (z,&) € [0, 1]xR. Clearly, F(z,t) =
a(x)I'(t) for all (z,t) € [0,1] x R. Therefore, taking into account that I" is
a non-decreasing function, Theorem and the strong maximum principle
(see, e.g., [12 Theorem 11.1]) yield the conclusion. m

An immediate consequence of Corollary is the following.

COROLLARY 3.5. Assume that there exist positive constants ¢ and d with
2v/2d < ¢ such that

r(e)fal _ 1 I'(d) Sfﬁa(w) dw'

A
(A7) c? 8 d?
Then, for each
8Bd? Bé?
3 4 ) )
r(d) 3y a(z)de” T(E)llel

problem (3.3)) admits at least one positive weak solution u € X such that
|u(z)| < ¢ for all x € [0, 1].

Proof. This follows directly from Theorem .

REMARK 3.6. Theorem [[.1] in the introduction is an immediate conse-
quence of Corollary on choosing g(u) = —u, h=1,c=>5and d = 1.

Here, we point out another relevant consequence of Corollary

THEOREM 3.7. Assume that

()
(Ag) lim == = oo

Then, for each

?

B
TN Sup FEVRN B
el e0 I'(c)
problem (3.3|) admits at least one positive weak solution.

Proof. For fixed A\ as in the conclusion, there is ¢ > 0 such that A <
Bc?/||a||1T(c). Moreover, assumption (Ag) implies that lim,_o+ I'(t)/t?
= +o00. Therefore, there is d < %c such that

3/4
r(d) Y, a(z) de
8 Bd?
Hence, Corollary [3.5] implies the conclusion. =

REMARK 3.8. Taking (Ag) into account, fix v > 0 such that v(¢) > 0 for
all t € ]0,v[. Then, put

Ae |0

.
3

2

c
sup

Ay 1= i
lellt cgpo.op I'(€)
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Now, fix A € ]0, A, and argue as in the proof of Theorem[3.7to find ¢ € |0, v|
and d < %c such that

8Bd? < Be?
I'(d) ﬁﬁ a(z)dz el I'(c)

Hence, Corollary ensures that, for each A € |0, \, [, problem (3.3|) admits
at least one positive weak solution u € X such that |u(x)| < v for all
x € [0,1].

REMARK 3.9. We would like to stress that our results generalize those
of [4]. In fact, we can consider problem as a generalization of prob-
lem (D)) of [4]. Specifically, Theorem improves Theorem 3.1 of [4].
Corollaries [3.4] and [3.5] provide extensions of Corollary 3.2 and Theorem 3.3
in [], respectively. Theorem and Remark also extend Remark 3.9
and Theorem 3.8 in [4], respectively.

Finally, we present the following example to illustrate the result.

ExAMPLE 3.10. Consider the problem
(3.4)
—u" = A" (1+e " ut(2—ut)) +ut](2+ 2 +cosu/)"t in (0,1),
u(0) =u(1) =0,

where ut := max{u,0}. Let a(z) = %, y(t) = 1+ et tT(2—t1), g(t) = ¢+
and h(z,t) = (2 + 2 + cost)™! for all # € [0,1] and t € R, where t* :=
max{t,0}. It is clear that lim; ,o+ v(¢)/t = 4+o00. Pick v = 1. Hence, taking
Remark into account, by applying Theorem since B = 17/8, for
every \ € ]0, ﬁ e% [, problem has at least one positive classical
solution w € X such that |||~ < 1.
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