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On isotropic Berwald metrics

by AKBAR TAYEBI (Qom) and BEHZAD NAJAFI (Tehran)

Abstract. We prove that every isotropic Berwald metric of scalar flag curvature is a
Randers metric. We study the relation between an isotropic Berwald metric and a Ran-
ders metric which are pointwise projectively related. We show that on constant isotropic
Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then
we prove that every complete generalized Landsberg manifold with isotropic Berwald cur-
vature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic
Berwald metrics.

1. Introduction. For a Finsler metric F' = F(z,y) on a smooth man-
ifold M, geodesic curves are characterized by the system of second order

differential equations
d?at , dx
— +2G° — =0
ar " <x dt) ’

where the local functions G* = G¥(x,y) are called the spray coefficients,
and given by G' = 1¢9"{[F?] 1,19 — [F?],1}. In standard local coordinates
(x%,9") in TM, the vector field G = ¢ 8?& —2G(x, y)a%i is called the spray
of F [Shi].

A Finsler metric F is called a Berwald metric if G* are quadratic in y €
T, M for any x € M or equivalently the Berwald curvature B’ kil vanishes. It
is proved that on a Berwald manifold (M, F'), the parallel translation along
any geodesic preserves the Minkowski functionals. Thus, Berwald spaces can
be viewed as Finsler spaces modeled on a single Minkowski space.

A Finsler metric F' satisfying F,x = F'F i is called a Funk metric. The
standard Funk metric on the Euclidean unit ball B"(1) is denoted by © and
defined by

Oz, y) = VI = (‘$|2‘f|i|_x,<f’y>2) +lr)

y € T,B"(1) ~ R,
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where (,) and | - | denote the Euclidean inner product and norm on R",
respectively. Chen—Shen introduce the notion of isotropic Berwald metrics
[CS]. A Finsler metric F' is said to be an isotropic Berwald metric if its
Berwald curvature is of the form

(1.1) Bijkl = C{ijykéil + Fykyl(sij + Fylyj(sik + ijykylyi}

for some scalar function ¢ = c¢(x) on M. Berwald metrics are trivially
isotropic Berwald metrics with ¢ = 0. Funk metrics are also non-trivial
isotropic Berwald metrics.

The Riemann curvature R, = R* kdxk ® azi
of linear maps on tangent spaces, defined by
oG" j 0?G! e 0?G! oG 0G7
oxr ¥ ozioyk oyidyt Oy oYk
A Finsler metric F' is said to be of scalar flag curvature if for some scalar
function K on T'Mj the Riemann curvature has the form
(1.3) R') = KF*{6;, — F'Fy'}.

If K = const, then F' is said to be of constant flag curvature. We prove the
following rigidity theorem on isotropic Berwald manifolds.

T M — T, M is a family

T

(1.2) R, =2

THEOREM 1.1. Let (M, F) be an isotropic Berwald manifold with di-
mension greater than two. Suppose that F' is of scalar flag curvature. Then
F is a Randers metric.

Two regular metrics on a manifold are said to be pointwise projectively
related if they have the same geodesics as point sets. It is well known that two
Finsler metrics F' and F' are projectively equivalent if and only if G* = G* +
Py, where G* and G' are the the spray coefficients of ' and F', respectively,
and P = P(z,y) is positively y-homogeneous of degree one.

THEOREM 1.2. Let F' be an isotropic Berwald metric which is pointwise
projectively related to a Randers metric F = a + 3. Then F has isotropic
S-curvature if and only if it has isotropic Berwald curvature.

The class of constant isotropic Berwald metrics, which includes Funk
metrics, is a rich class of Finsler metrics. Hence, it is of interest to study
constant isotropic Berwald metrics.

THEOREM 1.3. Let (M, F) be a constant isotropic Berwald manifold.
Then F' is an R-quadratic metric if and only if F' is a stretch metric.

We will prove that on a complete non-Riemannian generalized Landsberg
manifold there is no isotropic Berwald metric but the trivial one.

THEOREM 1.4. Let (M, F) be a complete generalized Landsberg mani-
fold. Suppose that F has isotropic Berwald curvature. Then F reduces to a
Berwald metric.
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Finally, we study C-conformal transformations of isotropic Berwald met-
rics and prove the following.

THEOREM 1.5. Let F and F be two isotropic Berwald metrics. Suppose
that there is a C-conformal transformation between them. Then F and F
reduce to a Berwald metric.

2. Preliminaries. Let M be an n-dimensional C*° manifold. Denote by
T, M the tangent space at x € M, by TM = |J,5; T M the tangent bundle
of M, and by T My = TM\{0} the slit tangent bundle of M. A Finsler metric
on M is a function F' : TM — [0,00) which has the following properties:
(i) F is C* on T'My; (ii) F is positively 1-homogeneous on the fibers of the
tangent bundle of M, and (iii) for each y € T, M, the quadratic form g, on
T, M is positive definite, where

L1 F? T.M
wlt) = 5 g P s L wve T
Let a = y/a;j(z)y'y’ be a Riemannian metric, and 8 = b;(x)y’ be a 1-form
on M with ||8]| = y/a¥b;b; < 1. The Finsler metric F' = a +  is called
a Randers metric; it has important applications both in mathematics and
physics [Ra].

Let x € M and F, := F|r,m. We define Cy, : T,M @ T,M @ T,M — R

by

Cy(u,v,w) := 1 i[gyﬂw(u,v)] ,  u,v,w € T, M.
2 dt o

The family C := {Cy},ernm, is called the Cartan torsion. It is well known
that C = 0 if and only if F' is Riemannian [Shl]. For y € T, My, define
the mean Cartan torsion I, by I,(u) := L;i(y)u’, where I; := ¢g/*C;j;. By
Deicke’s theorem, F' is Riemannian if and only if I, = 0 [Shi].

Let (M, F') be a Finsler manifold. For y € T, My, define the Matsumoto
torsion My : T,M @ T, M @ T, M — R by My(u,v,w) := Mijk(y)uivjwk,
where

1
My, := Ciji, — m{lihjk + Lihg, + Iphis ),

and h;; = gij — %gipypgquq is the angular metric. A Finsler metric F
is said to be C-reducible if M, = 0 [M]. Matsumoto proved that every
Randers metric satisfies M, = 0. Later on, Matsumoto-Hojo also proved
the converse.

LEMMA 2.1 ([MH]). A Finsler metric F' on a manifold of dimension
greater than two is a Randers metric if and only if its Matsumoto torsion
vanishes.
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The horizontal covariant derivatives of C along geodesics give rise to the
Landsberg curvature Ly, : TyM @ Ty M @ T, M — R defined by Ly (u, v, w) :=
Lijk(y)uiviw® where L = Cijksy°- A Finsler metric is called a Lands-
berg metric if L = 0. Using the notion of Landsberg curvature, Berwald
defined the stretch curvature ¥, : T,M @ T, M @ T,M ® T,M — R by
Xy (u,v,w, 2) = ijkluivjwkzl, where ik := 2(Lyjpp — Lijyx)- A Finsler
metric satisfying 3 = 0 is called a stretch metric [Be].

For y € T, My, define B, : T, M @ T, M @ T,M — T, M and E, : T,M ®

T, M — R by By(u,v,w) := Bijklujvkwlagi , and E,(u,v) = jkujvk,
where 3 i
, 0°G" 1
By = ayiogr oyl Ejk =5 ik

B and E are called the Berwald curvature and mean Berwald curvature,
respectively. Then F is called a Berwald or weakly Berwald metric if B =0
or E =0 [Shi], [TP] .

Define Dy : T, M @ T, M @ T, M — T, M by

A
D = D't wh —
y(u,v,w) ]klu vw It .
where
4 . 92 . . . .
Dy =B — m{Ejkfﬁ + Ejd) + Epd; + Ejgay'}-
We call D := {Dy}yerm, the Douglas curvature. A Finsler metric with

D = 0 is called a Douglas metric. The notion of Douglas metric was first
proposed by Bécsé—Matsumoto as a generalization of Berwald metric [BM1],

[BM2].
Let
T(z,y) :=In \W -Vol{(yi) eR" F(yiaii x) < 1”

Then 7 = 7(x,y) is a scalar function on 7'My, called the distortion [Shi|. For
a vector y € T, M, let ¢(t), —e < t < ¢, denote the geodesic with ¢(0) = x
and ¢(0) = y. Define

S(y) = [ (e(t)) R

We call S the S-curvature. This quantity was first introduced by Shen for a
volume comparison theorem [Shi], [Sh2].

LEMMA 2.2 (Rapcsék [Rap]). Let F(x,y) be a Finsler metric on an open
subsetUU C R™. Then F is projectively flat on U if and only iszkylyk =F,.
In this case, the projective factor P(x,y) is given by
kayk

(2.1) P=—t
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Much earlier, in [Hal, G. Hamel proved that a Finsler metric F on Y4 C R"
is projectively flat if and only if Fyx = Fym,xy™. Let F' be a projectively
flat Finsler metric on & C R™ and P(x,y) be its projective factor. Put

(2.2) 5:= P2 - Py’

x

Plugging G* = Py’ into (1.2) yields Rik? :6}C —i—'Tky", where 7, = 3(Px —
PPy) + Zyk. It is well known that g;; R'), = g R';. Then lj holds with

E  P2— P,k

There are many connections in Finsler geometry [BT1], [BT2], [TAE],
[TN]. In this paper, we use the Berwald connection, and the h- and v-
covariant derivatives of a Finsler tensor field are denoted by “|” and “,”
respectively.

3. Proof of Theorem First, we recall the following.

LeMMA 3.1 ([NBT]). For the Berwald connection, the following Bianchi
identities hold:
(3-1) R jppn + B jinpe + B jut = B jiu R + B j1u Ry + B R
(3.2) Bljml|k - szkm|l = lekl,mv
(3.3) B =B

i
Jkl,m Jkm,D>

where Rijkl is the Riemannian curvature of the Berwald connection and
i . pipi
R, :=VR Kl

Here, we deal with isotropic Berwald manifolds of scalar flag curvature
and prove the following.

LEMMA 3.2. Let (M, F) be an isotropic Berwald manifold with scalar
flag curvature K. Then

(3.4) KCjim = ajhim + athmj + amhj + agFFyj 1, m,
where a; = —%KJ + %C()F_2Fj, K ;= OK /0y’ , cy = c|iyi and ag = a;1".
Proof. We have
2 pi 2 pi
o mael{E )
By assumption, F' is of scalar curvature K = K(x,y), which is equivalent to

(3.6) R}, = KF?h.
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Plugging (3.6) into (3.5]) gives
(3.7) Ry = gFYK juhj — K jphi} + K {FF,hy — FFhj}
+ 3K {2FF,;6; — gjiy’ — FF,85} + K{g;i}, — g;x0} }
+ 3K {2FF ;6] — gixy’ — FF0%}.
Differentiating 1’ with respect to y™ gives a formula for R’ klm expressed
in terms of K and its derivatives. Contracting (3.2)) with y*, we obtain
(3.8) By uw¥” = 2KCiimy" — K j{FF6,, + FFymd} — 2guny'}
— 3K {FFy0}, + FFEmd} — 2g;my'}
— 3K o {FF,;0; + FF,0% — 299"}
= 3 FH{E jmhi + K iy, + K ymh5}.
Since F' has isotropic Berwald curvature, we have
(3:9) B uny” = co{ Fyiym0'y + Fynyd'; + Fyyi6'y + Fyiymyiy'}
By (3.8) and (3.9)), it follows that
(3.10) 2KFCjym = —2F{FumKj+ K Fyym + KmFyu,}

Y
+ C(){ijymFyl + Fymylej + Fylyj Fym + Fijylym}-

This implies that

(3.11) KCjim = ajhym + athmj + amhj + %COijyly'nL,

where a; = —%KJ + %CoF_szj. By contracting 1) with 37 ¢"™, we con-
clude that ¢y = 2Fag. This completes the proof. m
Proof of Theorem[I.1, Every isotropic Berwald metric is a Douglas met-

ric [CS]. By assumption, F' is of scalar flag curvature. Therefore, F' is a

projectively flat Finsler metric. Let P be the projective factor of F. Con-
tracting 7 and [ in (1.1]), we get

(3.12) Ej, = 5(n+1)cFy .

On the other hand, for a projectively flat Finsler metric F', we have

Bijkl - Pyjy’“ylyi + Pyjy’“(sli + Pyjy”sz + Pyly’“éé’
which implies that
(3.13) Eji = 3(n+1)Py .
Comparing (3.12)) and (3.13)), we have
(3.14) P =cF+q,

where ¢ = ¢;(x)y’ is a 1-form on M. By (2.1) and (3.14)), we get
(3.15) F,iy' = 2FP = 2F{cF + q;y'}.

T
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Plugging (3.14)) into (2.3) and using (3.15]), one can obtain
(cF +q)? = (coF + cFyiy’ + (4:)asy'y’)

(3.16) K = 7
_ —27F? = 2¢0F + (24iq; — (4i)as — (4)2i)y'y’
2F?2 ’
Since F' is an isotropic mean Berwald metric, i.e., the E-curvature of F' is
1
E="""cpp,

applying Theorem 1.1 in [NBT] implies that the flag curvature is
(3.17) K = 3cy/F + o,

where 0 = o(z) is a scalar function on M. Inserting (3.16)) into (3.17)), we
obtain the quadratic equation

(3.18) 2(0 4+ A)F? 4+ 8cF — (2qiq5 — (1) 2i — (47)21)y"y’ = 0.
Let K # —c®+ ¢o/F. By , this assumption is the same as
(3.19) o+ +2c/F #0.
From , and regularity of F', we conclude that

o+ #0.

Solving (3.18]) for F', we get

V200 + ) (2495 — (9) — (45)21)y"y7 + 16 — 4co
2(0 + c?) '
This means that F' is a Randers metric.
Now suppose that K = —c? + ¢o/F. Then by (3.17), we get

(3.21) o+ +2c/F =0.

By (3.21), it follows that ¢ = const and so 0 = —c? is a constant and
K = —c*. By Lemma we have

(3.20) F=

(3.22) Ciim = bjhim + bihmj + bmhyji,
where b; := —3%([(73-. Contracting l) with ¢/ yields
1
2 by = L.
(3.23) m =1t
Substituting (3.23)) into (3.22)) implies that F is C-reducible. By Lemma [2.1]
F is a Randers metric of constant flag curvature K = —c?. If ¢ = 0, then

by (1.1), F' is a Berwald metric with K = 0. It is well known that every
Berwald metric with K = 0 is locally Minkowskian. =
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4. Proof of Theorem [1.2]

PROPOSITION 4.1. Let F and F be two Finsler metrics on a manifold
M such that F is pointwise projectively related to F. Suppose that F' has
isotropic Berwald curvature. Then the following are equivalent:

° fff has isotropic mean Berwald curvature,
e F has isotropic Berwald curvature.

Proof. By assumption F' has isotropic Berwald curvature
(4].) B Gkl = C{ ygyk(sil + Fykyl(sij + Fylyj(s ygy yly }

where ¢ = ¢(x) is a scalar function on M. Hence F' has isotropic mean
Berwald curvature. The same is true for F. Therefore, it suffices to prove
the converse. Suppose that F' has isotropic mean Berwald curvature

_ n+1

(42) E,’j = 9 CF yj,

where ¢ = ¢(z) is a scalar function on M. By assumption we have
(4.3) EFyiyj = CFyiyj + Pyiyj.

By (E3) we get

(4.4) EFyiyjyk = CFyiyjyk + Pyiyjyk.

On the other hand,

(45) szkl == BZ]kl + {Pyjykél + Py yl6j + P 5]16 + Pyjykylyi}.
From (4.1) and (4.5)), it follows that

(4.6) Biy = {Fy w0+ Fyeyp's + Fui6'y + Fieyy'

+{ y]yk(sii y yzéj +P 5k + P, yiykylY }
Putting (4.2)—(4.4) into (4.6) yields
(47) szkl = E{ijyk(sil + Fykyl(;ij + Fylyj(sik + ijykylyi}.
This means that F has isotropic Berwald curvature. m

LEMMA 4.2. Let F = a+ 3 be a Randers metric on an n-dimensional
manifold M. Then the following are equivalent:

o F' has isotropic S-curvature S = (n + 1)cF,
e I has isotropic mean Berwald curvature E = ”THCF_lh,

where ¢ = ¢(x) is a scalar function on M.

Proof of Theorem[1.3 Apply Proposition [£.1] and Lemma [1.2] =
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5. Proof of Theorem In [Sh3], Shen introduces the notion of
R-quadratic Finsler metrics as a new family of Finsler metrics including Ber-
wald metrics and R-flat metrics. A Finsler space is said to be R-quadratic if
its Riemann curvature R, is quadratic in y € T, M [NBT]. Indeed, a Finsler
metric is R-quadratic if and only if the h-curvature of the Berwald connec-
tion depends on position only in the sense of Bédcs6—Matsumoto [BM3]. In
[Sh3], Shen proves that every compact R-quadratic manifold is a Landsberg
manifold.

LEMMA 5.1. Every R-quadratic Finsler metric is a stretch metric.
Proof. The following Bianchi identity holds:

(5.1) R jjm = B ik = B jmis
Contracting (5.1]) with y; yields
(5.2) YiR jkm = YiB ik = YiB i = WiB )ik — (WiB i)

= 2Lk + 2Ljgmi = Xjkmi-
Therefore, every R-quadratic Finsler metric is a stretch metric. m

It is interesting to find conditions under which the notions of R-quadratic
curvature and stretch curvature coincide. In [Shi], Shen finds a new non-
Riemannian quantity for Finsler metrics, called E-curvature, which is closely
related to E-curvature. For any tangent vector y € T, My, define Ey T M®
T:M ® T,M — R by E,(u,v,w) := 7jkl(y)uivjwk, where Ejjj 1= Eijii- Tt
is easy to see that if E = 0, then E-curvature is covariantly constant along
all horizontal directions on 7'M [Shl].

_ ProposiTION 5.2. Let (M,F) be a Douglas manifold. Suppose that
E =0. Then F is an R-quadratic metric if and only if F' is a stretch metric.

Proof. By Lemma [5.1], it is sufficient to prove the converse implication.
Let F' be a Douglas metric, i.e.,

(5.3) Bl = nil{Ey‘MSil + End'; + Eijd'y + Ejriy'}.
By contracting with A" and using yiBijkl = —2Lj, we get

(G4) Bl = — gt Lo+ B} + B + Eiyhy )
Taking a horizontal derivative of yields

(5.5)  Bn = —%yijk”h + nil{E]’khhn? + Ernh”; + Eyjinh'}-

Similarly, we have

2 2
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Subtracting ((5.6)) from (5.5 implies that

1 2
(5.7) Bhn — Bjknp = —ﬁymzjklh + m{Ejklhhnll — Ejrih"}

2
+ m{(Eth = Epn)h"; + (Egjin — Engp) b -

Since Ejjj;, = 0 and Y55 = 0, by (5.7) we conclude that
(5.8) Bn — Bl = 0-
This means that F' is R-quadratic. =

Proof of Theorem In [CS], it is proved that every isotropic Berwald
metric is a Douglas metric. By assumption F' has constant isotropic Berwald
curvature
(5.9) Bijkl = C{ijykéil + Fykyl(sij + Fyzyj(sik + ijykylyi}
for some real constant ¢ € R. It follows that Ej;, = 0. Hence, Proposition
completes the proof. m

6. Proof of Theorem [1.4l One can see that a Finsler metric is a
Landsberg metric if and only if the Berwald connection coincides with the
Chern connection. With this characterization of the Landsberg manifolds
in mind, we may introduce a new class of Finsler manifolds, as follows. We
have
(6.1) R =H' 5y + [L gy — L gy + L' L5 — L' g L],
where R and H denote the Riemannian curvatures of Berwald and Chern
connections, respectively. We say that a Finsler metric F' is a generalized
Landsberg metric if R = H. By definition, we then have
(62) Llj”k - szk” + LZSkszl - Lllesjk = 0
It is easy to see that every Landsberg manifold is a generalized Landsberg
manifold.

LeMMA 6.1 ([TP)). Let (M, F) be a Finsler manifold. Then F is a gen-
eralized Landsberg metric if and only if
(6.3) LiskL?j — LigL®j, = 0,
(6.4) Lijir — Lijkp = 0.

Let (M,F) be a Landsberg manifold. Suppose that F' has isotropic
Berwald curvature (1.1). Then F' has isotropic Landsberg curvature L +

cFC = 0, which implies that C = 0 or ¢ = 0. In each case, F' reduces to a
Berwald metric. Summarizing we have the following.

COROLLARY 6.2. Let (M, F) be a Landsberg manifold. Suppose that F
has isotropic Berwald curvature. Then F reduces to a Berwald metric.
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It is interesting to find conditions under which a generalized Landsberg
metric reduces to a Berwald metric. In Theorem [1.4] we prove that every
complete generalized Landsberg manifold with isotropic Berwald curvature
is a Berwald manifold.

Proof of Theorem Contracting with y; and using
yiBijkz = —2ij:l
imply that F' is of isotropic Landsberg curvature
Liji + cF'Cyji, = 0,
which yields

(6.5) Lijiy' = (¢°F? = coF)Cyjy.
Contracting (6.4)) with 3’ implies that
(6.6) Lijiuy' = 0.

By (6.5) and , we have
(02F2 — C()F)Cijk =0.

If Cijr = 0, then F' is a Riemannian metric which is a special Berwald
metric. Let F' be a non-Riemannian generalized Landsberg metric. Then

(6.7) ?F —cy=0.

Considering this equation on the indicatrix, we get
1

6.8 )= ——

(6.5) oft) =~

where b is a constant real number. Assume that (M, F') is complete. Then,
letting ¢ — 400, we conclude that ¢ = 0, which implies that F' is a Berwald
metric. m

7. Proof of Theorem [1.5] Besides Randers changes, we have another
class of special transformations, named C-conformal transformations. The
notion of C-conformal transformation and its properties were studied by
Hashiguchi [H]. A C-conformal transformation is a conformal transformation
satisfying a condition on the Cartan tensor and the conformal factor.

Two Finsler metrics F and F on M are called conformal if Gij = ©Yij,
where ¢ is a positive scalar function on 7M. Indeed, by Knebelman’s the-
orem ¢ depends only on position hence it can be considered as a function
on M. Thus we can assume ¢ = €2, where « is a scalar function on M. If
¢ is a constant, F' and F are called homothetic. Put

o . . .
1 . r _ 1
(& .—C'j ar, o= o5y

Y= Hp J
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Then B - -

F=¢"F and g9 =e 29g¥.
Two Finsler metrics F and F on M are called C-conformal if they are not
homothetic and the equations C; = 0 hold [H].

Finally, we study C-conformal transformations of isotropic Berwald cur-
vature metrics and prove Theorem

Proof of Theorem Let F and F be two isotropic Berwald metrics,
(7.1) Bijkl = C{Eij5il + Ekléij + Eﬂéik + Ejk’lyi},
(72) szkl = E{Eij(;zl + Ekl(szj + Ejlélk + Ejk’lyz},
where ¢ = c(z) and ¢ = ¢(z) are scalar functions on M. Since there exists a
C-conformal change between F' and F', we have

(7.3) B = By — Cjua,

where of = g% a;j. Contracting ¢ and j in yields

(7.4) Ey = Ey.

By f we have

(7.5) (c = e){Ei;6" + Ewd’; + Ejd'y, + Ejry'} = Cipe'.
Contracting ¢ and [ in ([7.5)) implies that

(7.6) (n+1)(c—c¢)E;; =0.

If ¢ = ¢, then by 1' we conclude that Cjklai = 0, which implies that
Cjri = 0 and F is Riemannian. If E;; = 0, then by (7.4) we have E;; = 0.
Thus by (7.1) and (7.2)), F' and F reduce to Berwald metrics. m

We know that every Funk metric has isotropic Berwald curvature. Then
by Theorem [1.5 we get the following.

COROLLARY 7.1. There is no C-conformal change between two Funk
metrics.
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