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On isotropic Berwald metrics

by Akbar Tayebi (Qom) and Behzad Najafi (Tehran)

Abstract. We prove that every isotropic Berwald metric of scalar flag curvature is a
Randers metric. We study the relation between an isotropic Berwald metric and a Ran-
ders metric which are pointwise projectively related. We show that on constant isotropic
Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then
we prove that every complete generalized Landsberg manifold with isotropic Berwald cur-
vature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic
Berwald metrics.

1. Introduction. For a Finsler metric F = F (x, y) on a smooth man-
ifold M , geodesic curves are characterized by the system of second order
differential equations

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0,

where the local functions Gi = Gi(x, y) are called the spray coefficients,
and given by Gi = 1

4g
il{[F 2]xkylyk − [F 2]xl}. In standard local coordinates

(xi, yi) in TM , the vector field G = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi is called the spray
of F [Sh1].

A Finsler metric F is called a Berwald metric if Gi are quadratic in y ∈
TxM for any x ∈M or equivalently the Berwald curvature Bi

jkl vanishes. It
is proved that on a Berwald manifold (M,F ), the parallel translation along
any geodesic preserves the Minkowski functionals. Thus, Berwald spaces can
be viewed as Finsler spaces modeled on a single Minkowski space.

A Finsler metric F satisfying Fxk = FFyk is called a Funk metric. The
standard Funk metric on the Euclidean unit ball Bn(1) is denoted by Θ and
defined by

Θ(x, y) :=

√
|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1− |x|2
, y ∈ TxBn(1) ' Rn,
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where 〈 , 〉 and | · | denote the Euclidean inner product and norm on Rn,
respectively. Chen–Shen introduce the notion of isotropic Berwald metrics
[CS]. A Finsler metric F is said to be an isotropic Berwald metric if its
Berwald curvature is of the form

(1.1) Bi
jkl = c{Fyjykδil + Fykylδij + Fylyjδik + Fyjykylyi}

for some scalar function c = c(x) on M . Berwald metrics are trivially
isotropic Berwald metrics with c = 0. Funk metrics are also non-trivial
isotropic Berwald metrics.

The Riemann curvature Ry = Rikdx
k ⊗ ∂

∂xi

∣∣
x

: TxM → TxM is a family
of linear maps on tangent spaces, defined by

(1.2) Rik = 2
∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

A Finsler metric F is said to be of scalar flag curvature if for some scalar
function K on TM0 the Riemann curvature has the form

(1.3) Rik = KF 2{δik − F−1Fykyi}.
If K = const, then F is said to be of constant flag curvature. We prove the
following rigidity theorem on isotropic Berwald manifolds.

Theorem 1.1. Let (M,F ) be an isotropic Berwald manifold with di-
mension greater than two. Suppose that F is of scalar flag curvature. Then
F is a Randers metric.

Two regular metrics on a manifold are said to be pointwise projectively
related if they have the same geodesics as point sets. It is well known that two
Finsler metrics F and F̄ are projectively equivalent if and only if Gi = Ḡi+
Pyi, where Gi and Ḡi are the the spray coefficients of F and F̄ , respectively,
and P = P (x, y) is positively y-homogeneous of degree one.

Theorem 1.2. Let F be an isotropic Berwald metric which is pointwise
projectively related to a Randers metric F̄ = ᾱ + β̄. Then F̄ has isotropic
S-curvature if and only if it has isotropic Berwald curvature.

The class of constant isotropic Berwald metrics, which includes Funk
metrics, is a rich class of Finsler metrics. Hence, it is of interest to study
constant isotropic Berwald metrics.

Theorem 1.3. Let (M,F ) be a constant isotropic Berwald manifold.
Then F is an R-quadratic metric if and only if F is a stretch metric.

We will prove that on a complete non-Riemannian generalized Landsberg
manifold there is no isotropic Berwald metric but the trivial one.

Theorem 1.4. Let (M,F ) be a complete generalized Landsberg mani-
fold. Suppose that F has isotropic Berwald curvature. Then F reduces to a
Berwald metric.
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Finally, we study C-conformal transformations of isotropic Berwald met-
rics and prove the following.

Theorem 1.5. Let F and F̄ be two isotropic Berwald metrics. Suppose
that there is a C-conformal transformation between them. Then F and F̄
reduce to a Berwald metric.

2. Preliminaries. Let M be an n-dimensional C∞ manifold. Denote by
TxM the tangent space at x ∈M , by TM =

⋃
x∈M TxM the tangent bundle

ofM , and by TM0 = TM\{0} the slit tangent bundle ofM . A Finsler metric
on M is a function F : TM → [0,∞) which has the following properties:
(i) F is C∞ on TM0; (ii) F is positively 1-homogeneous on the fibers of the
tangent bundle of M , and (iii) for each y ∈ TxM , the quadratic form gy on
TxM is positive definite, where

gy(u, v) :=
1
2

∂2

∂s∂t
[F 2(y + su+ tv)]

∣∣∣∣
s,t=0

, u, v ∈ TxM.

Let α =
√
aij(x)yiyj be a Riemannian metric, and β = bi(x)yi be a 1-form

on M with ‖β‖ =
√
aijbibj < 1. The Finsler metric F = α + β is called

a Randers metric; it has important applications both in mathematics and
physics [Ra].

Let x ∈ M and Fx := F |TxM . We define Cy : TxM ⊗ TxM ⊗ TxM → R
by

Cy(u, v, w) :=
1
2
d

dt
[gy+tw(u, v)]

∣∣∣∣
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known
that C = 0 if and only if F is Riemannian [Sh1]. For y ∈ TxM0, define
the mean Cartan torsion Iy by Iy(u) := Ii(y)ui, where Ii := gjkCijk. By
Deicke’s theorem, F is Riemannian if and only if Iy = 0 [Sh1].

Let (M,F ) be a Finsler manifold. For y ∈ TxM0, define the Matsumoto
torsion My : TxM ⊗ TxM ⊗ TxM → R by My(u, v, w) := Mijk(y)uivjwk,
where

Mijk := Cijk −
1

n+ 1
{Iihjk + Ijhik + Ikhij},

and hij := gij − 1
F 2 gipy

pgjqy
q is the angular metric. A Finsler metric F

is said to be C-reducible if My = 0 [M]. Matsumoto proved that every
Randers metric satisfies My = 0. Later on, Matsumoto–Hōjō also proved
the converse.

Lemma 2.1 ([MH]). A Finsler metric F on a manifold of dimension
greater than two is a Randers metric if and only if its Matsumoto torsion
vanishes.
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The horizontal covariant derivatives of C along geodesics give rise to the
Landsberg curvature Ly : TxM ⊗TxM ⊗TxM → R defined by Ly(u, v, w) :=
Lijk(y)uivjwk, where Lijk := Cijk|sy

s. A Finsler metric is called a Lands-
berg metric if L = 0. Using the notion of Landsberg curvature, Berwald
defined the stretch curvature Σy : TxM ⊗ TxM ⊗ TxM ⊗ TxM → R by
Σy(u, v, w, z) := Σijklu

ivjwkzl, where Σijkl := 2(Lijk|l − Lijl|k). A Finsler
metric satisfying Σ = 0 is called a stretch metric [Be].

For y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and Ey : TxM ⊗
TxM → R by By(u, v, w) := Bi

jklu
jvkwl ∂

∂xi

∣∣
x

and Ey(u, v) := Ejku
jvk,

where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, Ejk :=

1
2
Bm

jkm.

B and E are called the Berwald curvature and mean Berwald curvature,
respectively. Then F is called a Berwald or weakly Berwald metric if B = 0
or E = 0 [Sh1], [TP] .

Define Dy : TxM ⊗ TxM ⊗ TxM → TxM by

Dy(u, v, w) := Di
jklu

ivjwk
∂

∂xi

∣∣∣∣
x

where

Di
jkl := Bi

jkl −
2

n+ 1
{Ejkδil + Ejlδ

i
k + Eklδ

i
j + Ejk,ly

i}.

We call D := {Dy}y∈TM0 the Douglas curvature. A Finsler metric with
D = 0 is called a Douglas metric. The notion of Douglas metric was first
proposed by Bácsó–Matsumoto as a generalization of Berwald metric [BM1],
[BM2].

Let

τ(x, y) := ln
[√

det gij(x, y)
Vol(Bn(1))

·Vol
{

(yi) ∈ Rn

∣∣∣∣ F(yi ∂∂xi
∣∣∣∣
x

)
< 1
}]
.

Then τ = τ(x, y) is a scalar function on TM0, called the distortion [Sh1]. For
a vector y ∈ TxM , let c(t),−ε < t < ε, denote the geodesic with c(0) = x
and ċ(0) = y. Define

S(y) :=
d

dt
[τ(ċ(t))]

∣∣∣∣
t=0

.

We call S the S-curvature. This quantity was first introduced by Shen for a
volume comparison theorem [Sh1], [Sh2].

Lemma 2.2 (Rapcsák [Rap]). Let F (x, y) be a Finsler metric on an open
subset U ⊂ Rn. Then F is projectively flat on U if and only if Fxkylyk = Fxl.
In this case, the projective factor P (x, y) is given by

(2.1) P =
Fxkyk

2F
.
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Much earlier, in [Ha], G. Hamel proved that a Finsler metric F on U ⊂ Rn

is projectively flat if and only if Fxk = Fxmykym. Let F be a projectively
flat Finsler metric on U ⊂ Rn and P (x, y) be its projective factor. Put

(2.2) Ξ := P 2 − Pxkyk.

Plugging Gi = Pyi into (1.2) yields Rik = Ξδik + τky
i, where τk = 3(Pxk −

PPyk) +Ξyk . It is well known that gjiRik = gkiR
i
j . Then (1.3) holds with

(2.3) K =
Ξ

F 2
=
P 2 − Pxkyk

F 2
.

There are many connections in Finsler geometry [BT1], [BT2], [TAE],
[TN]. In this paper, we use the Berwald connection, and the h- and v-
covariant derivatives of a Finsler tensor field are denoted by “ | ” and “ , ”
respectively.

3. Proof of Theorem 1.1. First, we recall the following.

Lemma 3.1 ([NBT]). For the Berwald connection, the following Bianchi
identities hold:

Rijkl|m +Rijlm|k +Rijmk|l = Bi
jkuR

u
lm +Bi

jluR
u
km +Bi

kluR
u
jm,(3.1)

Bi
jml|k −B

i
jkm|l = Rijkl,m,(3.2)

Bi
jkl,m = Bi

jkm,l,(3.3)

where Rijkl is the Riemannian curvature of the Berwald connection and
Rikl := `jRijkl.

Here, we deal with isotropic Berwald manifolds of scalar flag curvature
and prove the following.

Lemma 3.2. Let (M,F ) be an isotropic Berwald manifold with scalar
flag curvature K. Then

(3.4) KCjlm = ajhlm + alhmj + amhjl + a0FFyjylym ,

where aj = −1
3K,j + 1

2c0F
−2Fj, K,j = ∂K/∂yj, c0 = c|iy

i and a0 = aiy
i.

Proof. We have

(3.5) Rijkl =
1
3

{
∂2Rik
∂yj∂yl

−
∂2Ril
∂yj∂yk

}
.

By assumption, F is of scalar curvature K = K(x, y), which is equivalent to

Rik = KF 2hik.(3.6)
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Plugging (3.6) into (3.5) gives

Rijkl = 1
3F

2{K,j,lh
i
k −K,j,kh

i
l}+K,j{FFylhik − FFykhil}(3.7)

+ 1
3K,k{2FFyjδil − gjlyi − FFylδij}+K{gjlδik − gjkδil}

+ 1
3K,l{2FFyjδik − gjkyi − FFykδij}.

Differentiating (3.7) with respect to ym gives a formula for Rijkl,m expressed
in terms of K and its derivatives. Contracting (3.2) with yk, we obtain

Bi
jml|ky

k = 2KCjlmyi − 1
3K,j{FFylδim + FFymδil − 2glmyi}(3.8)

− 1
3K,l{FFyjδim + FFymδij − 2gjmyi}

− 1
3K,m{FFyjδil + FFylδij − 2gjlyi}

− 1
3F

2{K,j,mh
i
l +K,j,lh

i
m +K,l,mh

i
j}.

Since F has isotropic Berwald curvature, we have

(3.9) Bi
jml|ky

k = c0{Fyjymδil + Fymylδij + Fylyjδim + Fyjymylyi}.

By (3.8) and (3.9), it follows that

2KFCjlm = − 2
3F

2{FylymK,j +K,lFyjym +K,mFylyj}(3.10)

+ c0{FyjymFyl + FymylFyj + FylyjFym + FFyjylym}.
This implies that

(3.11) KCjlm = ajhlm + alhmj + amhjl + 1
2c0Fyjylym ,

where aj = −1
3K,j + 1

2c0F
−2Fyj . By contracting (3.11) with yjglm, we con-

clude that c0 = 2Fa0. This completes the proof.

Proof of Theorem 1.1. Every isotropic Berwald metric is a Douglas met-
ric [CS]. By assumption, F is of scalar flag curvature. Therefore, F is a
projectively flat Finsler metric. Let P be the projective factor of F . Con-
tracting i and l in (1.1), we get

(3.12) Ejk = 1
2(n+ 1)cFyjyk .

On the other hand, for a projectively flat Finsler metric F , we have

Bi
jkl = Pyjykylyi + Pyjykδil + Pyjylδik + Pylykδij ,

which implies that

(3.13) Ejk = 1
2(n+ 1)Pyjyk .

Comparing (3.12) and (3.13), we have

(3.14) P = cF + q,

where q = qi(x)yi is a 1-form on M . By (2.1) and (3.14), we get

(3.15) Fxiyi = 2FP = 2F{cF + qiy
i}.
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Plugging (3.14) into (2.3) and using (3.15), one can obtain

K =
(cF + q)2 − (c0F + cFxiyi + (qi)xjyiyj)

F 2
(3.16)

=
−2c2F 2 − 2c0F + (2qiqj − (qi)xj − (qj)xi)yiyj

2F 2
.

Since F is an isotropic mean Berwald metric, i.e., the E-curvature of F is

E =
n+ 1

2
cF−1h,

applying Theorem 1.1 in [NBT] implies that the flag curvature is

(3.17) K = 3c0/F + σ,

where σ = σ(x) is a scalar function on M . Inserting (3.16) into (3.17), we
obtain the quadratic equation

(3.18) 2(σ + c2)F 2 + 8c0F − (2qiqj − (qi)xj − (qj)xi)yiyj = 0.

Let K 6= −c2 + c0/F . By (3.17), this assumption is the same as

(3.19) σ + c2 + 2c0/F 6= 0.

From (3.18), (3.19) and regularity of F , we conclude that

σ + c2 6= 0.

Solving (3.18) for F , we get

(3.20) F =

√
2(σ + c2)(2qiqj − (qi)xj − (qj)xi)yiyj + 16c20 − 4c0

2(σ + c2)
.

This means that F is a Randers metric.
Now suppose that K = −c2 + c0/F . Then by (3.17), we get

(3.21) σ + c2 + 2c0/F ≡ 0.

By (3.21), it follows that c = const and so σ = −c2 is a constant and
K = −c2. By Lemma 3.2, we have

(3.22) Cjlm = bjhlm + blhmj + bmhjl,

where bj := − 1
3KK,j . Contracting (3.22) with gjl yields

(3.23) bm =
1

n+ 1
Im.

Substituting (3.23) into (3.22) implies that F is C-reducible. By Lemma 2.1,
F is a Randers metric of constant flag curvature K = −c2. If c = 0, then
by (1.1), F is a Berwald metric with K = 0. It is well known that every
Berwald metric with K = 0 is locally Minkowskian.
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4. Proof of Theorem 1.2

Proposition 4.1. Let F and F̄ be two Finsler metrics on a manifold
M such that F is pointwise projectively related to F̄ . Suppose that F has
isotropic Berwald curvature. Then the following are equivalent:

• F̄ has isotropic mean Berwald curvature,
• F̄ has isotropic Berwald curvature.

Proof. By assumption F has isotropic Berwald curvature

(4.1) Bi
jkl = c{Fyjykδil + Fykylδij + Fylyjδik + Fyjykylyi},

where c = c(x) is a scalar function on M . Hence F has isotropic mean
Berwald curvature. The same is true for F̄ . Therefore, it suffices to prove
the converse. Suppose that F̄ has isotropic mean Berwald curvature

(4.2) Ēij =
n+ 1

2
c̄F̄yiyj ,

where c̄ = c̄(x) is a scalar function on M . By assumption we have

(4.3) c̄F̄yiyj = cFyiyj + Pyiyj .

By (4.3) we get

(4.4) c̄F̄yiyjyk = cFyiyjyk + Pyiyjyk .

On the other hand,

(4.5) B̄i
jkl = Bi

jkl + {Pyjykδil + Pykylδij + Pylyjδik + Pyjykylyi}.

From (4.1) and (4.5), it follows that

B̄i
jkl = c{Fyjykδil + Fykylδij + Fylyjδik + Fyjykylyi}(4.6)

+ {Pyjykδil + Pykylδij + Pylyjδik + Pyjykylyi}.

Putting (4.2)–(4.4) into (4.6) yields

(4.7) B̄i
jkl = c̄{F̄yjykδil + F̄ykylδij + F̄ylyjδik + F̄yjykylyi}.

This means that F̄ has isotropic Berwald curvature.

Lemma 4.2. Let F = α + β be a Randers metric on an n-dimensional
manifold M. Then the following are equivalent:

• F has isotropic S-curvature S = (n+ 1)cF ,
• F has isotropic mean Berwald curvature E = n+1

2 cF−1h,

where c = c(x) is a scalar function on M .

Proof of Theorem 1.2. Apply Proposition 4.1 and Lemma 4.2.
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5. Proof of Theorem 1.3. In [Sh3], Shen introduces the notion of
R-quadratic Finsler metrics as a new family of Finsler metrics including Ber-
wald metrics and R-flat metrics. A Finsler space is said to be R-quadratic if
its Riemann curvature Ry is quadratic in y ∈ TxM [NBT]. Indeed, a Finsler
metric is R-quadratic if and only if the h-curvature of the Berwald connec-
tion depends on position only in the sense of Bácsó–Matsumoto [BM3]. In
[Sh3], Shen proves that every compact R-quadratic manifold is a Landsberg
manifold.

Lemma 5.1. Every R-quadratic Finsler metric is a stretch metric.

Proof. The following Bianchi identity holds:

(5.1) Rijkl,m = Bi
jml|k −B

i
jkm|l,

Contracting (5.1) with yi yields

yiR
i
jkl,m = yiB

i
jml|k − yiB

i
jkm|l = (yiBi

jml)|k − (yiBi
jkm)|l(5.2)

= −2Ljml|k + 2Ljkm|l = Σjkml.

Therefore, every R-quadratic Finsler metric is a stretch metric.

It is interesting to find conditions under which the notions of R-quadratic
curvature and stretch curvature coincide. In [Sh1], Shen finds a new non-
Riemannian quantity for Finsler metrics, called Ē-curvature, which is closely
related to E-curvature. For any tangent vector y ∈ TxM0, define Ēy : TxM⊗
TxM ⊗ TxM → R by Ēy(u, v, w) := Ējkl(y)uivjwk, where Ēijk := Eij|k. It
is easy to see that if Ē = 0, then E-curvature is covariantly constant along
all horizontal directions on TM0 [Sh1].

Proposition 5.2. Let (M,F ) be a Douglas manifold. Suppose that
Ē = 0. Then F is an R-quadratic metric if and only if F is a stretch metric.

Proof. By Lemma 5.1, it is sufficient to prove the converse implication.
Let F be a Douglas metric, i.e.,

(5.3) Bi
jkl =

2
n+ 1

{Ejkδil + Eklδ
i
j + Eljδ

i
k + Ejk,ly

i}.

By contracting (5.3) with hmi and using yiBi
jkl = −2Ljkl, we get

(5.4) Bm
jkl = − 2

F 2
ymLjkl +

2
n+ 1

{Ejkhml + Eklh
m
j + Eljh

m
k}.

Taking a horizontal derivative of (5.4) yields

(5.5) Bm
jkl|h = − 2

F 2
ymLjkl|h +

2
n+ 1

{Ejk|hhml + Ekl|hh
m
j + Elj|hh

m
k}.

Similarly, we have

(5.6) Bm
jkh|l = − 2

F 2
ymLjkh|l +

2
n+ 1

{Ejk|lhmh + Ekh|lh
m
j + Ehj|lh

m
k}.
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Subtracting (5.6) from (5.5) implies that

Bm
jkl|h −B

m
jkh|l = − 1

F 2
ymΣjklh +

2
n+ 1

{Ejk|hhml − Ejk|lhmh}(5.7)

+
2

n+ 1
{(Ekl|h − Ekh|l)hmj + (Elj|h − Ehj|l)hmk}.

Since Eij|k = 0 and Σijkl = 0, by (5.7) we conclude that

(5.8) Bm
jkl|h −B

m
jkh|l = 0.

This means that F is R-quadratic.

Proof of Theorem 1.3. In [CS], it is proved that every isotropic Berwald
metric is a Douglas metric. By assumption F has constant isotropic Berwald
curvature

(5.9) Bi
jkl = c{Fyjykδil + Fykylδij + Fylyjδik + Fyjykylyi}

for some real constant c ∈ R. It follows that Eij|k = 0. Hence, Proposition
5.2 completes the proof.

6. Proof of Theorem 1.4. One can see that a Finsler metric is a
Landsberg metric if and only if the Berwald connection coincides with the
Chern connection. With this characterization of the Landsberg manifolds
in mind, we may introduce a new class of Finsler manifolds, as follows. We
have

(6.1) Rijkl = H i
jkl + [Lijl|k − L

i
jk|l + LiskL

s
jl − LislLsjk],

where R and H denote the Riemannian curvatures of Berwald and Chern
connections, respectively. We say that a Finsler metric F is a generalized
Landsberg metric if R = H. By definition, we then have

(6.2) Lijl|k − L
i
jk|l + LiskL

s
jl − LislLsjk = 0.

It is easy to see that every Landsberg manifold is a generalized Landsberg
manifold.

Lemma 6.1 ([TP]). Let (M,F ) be a Finsler manifold. Then F is a gen-
eralized Landsberg metric if and only if

LiskL
s
jl − LislLsjk = 0,(6.3)

Lijl|k − Lijk|l = 0.(6.4)

Let (M,F ) be a Landsberg manifold. Suppose that F has isotropic
Berwald curvature (1.1). Then F has isotropic Landsberg curvature L +
cFC = 0, which implies that C = 0 or c = 0. In each case, F reduces to a
Berwald metric. Summarizing we have the following.

Corollary 6.2. Let (M,F ) be a Landsberg manifold. Suppose that F
has isotropic Berwald curvature. Then F reduces to a Berwald metric.
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It is interesting to find conditions under which a generalized Landsberg
metric reduces to a Berwald metric. In Theorem 1.4, we prove that every
complete generalized Landsberg manifold with isotropic Berwald curvature
is a Berwald manifold.

Proof of Theorem 1.4. Contracting (1.1) with yi and using

yiB
i
jkl = −2Ljkl

imply that F is of isotropic Landsberg curvature

Lijk + cFCijk = 0,

which yields

(6.5) Lijk|ly
l = (c2F 2 − c0F )Cijk.

Contracting (6.4) with yl implies that

(6.6) Lijk|ly
l = 0.

By (6.5) and (6.6), we have

(c2F 2 − c0F )Cijk = 0.

If Cijk = 0, then F is a Riemannian metric which is a special Berwald
metric. Let F be a non-Riemannian generalized Landsberg metric. Then

(6.7) c2F − c0 = 0.

Considering this equation on the indicatrix, we get

(6.8) c(t) = − 1
t+ b

,

where b is a constant real number. Assume that (M,F ) is complete. Then,
letting t→ ±∞, we conclude that c = 0, which implies that F is a Berwald
metric.

7. Proof of Theorem 1.5. Besides Randers changes, we have another
class of special transformations, named C-conformal transformations. The
notion of C-conformal transformation and its properties were studied by
Hashiguchi [H]. A C-conformal transformation is a conformal transformation
satisfying a condition on the Cartan tensor and the conformal factor.

Two Finsler metrics F and F̄ on M are called conformal if ḡij = ϕgij ,
where ϕ is a positive scalar function on TM . Indeed, by Knebelman’s the-
orem ϕ depends only on position hence it can be considered as a function
on M . Thus we can assume ϕ = e2α, where α is a scalar function on M . If
ϕ is a constant, F and F̄ are called homothetic. Put

αi =
∂α

∂xi
, Cij := Cirj αr, α0 = αiy

i.
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Then
F̄ = eαF and ḡij = e−2αgij .

Two Finsler metrics F and F̄ on M are called C-conformal if they are not
homothetic and the equations Cij = 0 hold [H].

Finally, we study C-conformal transformations of isotropic Berwald cur-
vature metrics and prove Theorem 1.5.

Proof of Theorem 1.5. Let F and F̄ be two isotropic Berwald metrics,

Bi
jkl = c{Eijδil + Eklδ

i
j + Ejlδ

i
k + Ejk,ly

i},(7.1)

B̄i
jkl = c̄{Ēijδil + Ēklδ

i
j + Ējlδ

i
k + Ējk,ly

i},(7.2)

where c = c(x) and c̄ = c̄(x) are scalar functions on M . Since there exists a
C-conformal change between F and F̄ , we have

(7.3) B̄i
jkl = Bi

jkl − Cjklαi,

where αi = gijαj . Contracting i and j in (7.3) yields

(7.4) Ēkl = Ekl.

By (7.1)–(7.4) we have

(7.5) (c− c̄){Eijδil + Eklδ
i
j + Ejlδ

i
k + Ejk,ly

i} = Cjklα
i.

Contracting i and l in (7.5) implies that

(7.6) (n+ 1)(c− c̄)Eij = 0.

If c = c̄, then by (7.5) we conclude that Cjklαi = 0, which implies that
Cjkl = 0 and F is Riemannian. If Eij = 0, then by (7.4) we have Ēij = 0.
Thus by (7.1) and (7.2), F and F̄ reduce to Berwald metrics.

We know that every Funk metric has isotropic Berwald curvature. Then
by Theorem 1.5, we get the following.

Corollary 7.1. There is no C-conformal change between two Funk
metrics.
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