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Asymptotic stability and sweeping of
substochastic semigroups

by Katarzyna Pichór (Katowice)

Abstract. A new theorem on asymptotic stability and sweeping of substochastic
semigroups is proved, and applied semigroups generated by birth-death processes.

1. Introduction. The purpose of this paper is to provide new suffi-
cient conditions for asymptotic stability and sweeping of substochastic semi-
groups of operators with nontrivial integral parts. Such operators and semi-
groups are intensively studied because they play a special role in appli-
cations [BLPR, LR, PR, R2, RP1, RP2, RTW]. The book of Lasota and
Mackey [LM] and the paper [RPT] are excellent surveys of many results
on this subject. This problem has been investigated for Markov operators
[KT, R1, PR]. In particular in [R1] it was shown that if such an operator
has a positive invariant density f∗ and has no other periodic points in the
set of densities, then the operator is asymptotically stable. In [PR] it was
proved that if a partially integral Markov semigroup has only one invariant
density f∗ and f∗ > 0 a.e., then the semigroup is asymptotically stable.
Some sufficient conditions for sweeping of integral Markov operators were
given in [KT]. Namely, if such an operator P has no invariant density and
possesses a subinvariant locally integrable and positive function, then P is
sweeping.

Our criteria for asymptotic stability and sweeping generalize the results
of [PR, R1]. In particular, earlier results concerning asymptotic stability of
integral stochastic semigroups which spread or overlap supports given in
[BL, BB, M] follow from our main theorem. The proof of this theorem is
based on the results concerning properties of Harris operators [F, JO]. Many
abstract results concerning Harris operators can be found in [Ne, Nu].

The plan of the paper is as follows. In Section 2 we give some auxiliary
definition and results. In the next section we formulate the main result.
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Its proof is given in Section 4. In Section 5 we apply the main theorem to
semigroups generated by birth-death processes.

2. Preliminaries. Let (X,Σ, µ) be a σ-finite measure space and let
L1(X) = L1(X,Σ, µ). A linear operator P : L1(X) → L1(X) satisfying
‖P‖ ≤ 1 and Pf ≥ 0 for f ≥ 0 is called a substochastic operator. De-
note by D = D(X,Σ, µ) the subset of L1(X) which consists of all densities,
i.e.

D = {f ∈ L1(X) : f ≥ 0, ‖f‖ = 1}.

A linear mapping P : L1(X) → L1(X) is called a stochastic (or Markov)
operator if P (D) ⊂ D.

Let f be a density with f > 0 a.e. Define

(2.1) C =
{
x ∈ X :

∞∑
n=0

Pnf(x) =∞
}
.

This definition is independent of the choice of f . A substochastic operator
P : L1(X)→ L1(X) is called conservative if C = X and dissipative if C = ∅.

An operator Q : L1(X)→ L1(X) is called an integral or kernel operator
if there exists a measurable function k : X ×X → [0,∞) such that

(2.2) Qf(x) =
�

X

k(x, y)f(y)µ(dy)

for every density f . Any substochastic operator P can be written in the
form P = Q + R, where R is a nonnegative contraction on L1(X), Q is a
kernel operator and there is no kernel K with K ≤ R and K 6≡ 0. Fix a
substochastic operator P and let Pn = Qn+Rn be the decomposition of Pn
into kernel and singular parts.

The operator P is called a pre-Harris operator if

(2.3)
�

X

∞∑
n=1

kn(x, y)µ(dy) > 0 x-a.e.,

where kn is the kernel corresponding to Qn. If P is a conservative pre-Harris
operator and µ(X) = 1, then P is called a Harris operator. If instead of (2.3)
the operator P satisfies the condition

(2.4)
�

X

�

X

∞∑
n=1

kn(x, y)µ(dy)µ(dx) > 0,

then P is called partially integral. Let

(2.5) Σi = {A ∈ Σ : P ∗1A = 1A},

where P ∗ is the adjoint operator of P .
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According to [F, Ch. V, Th. F] if P is conservative, partially integral, and
Σi is trivial, then P is a pre-Harris operator. Now let P be a substochastic
operator and let g be a positive density. Define a new measure space (X,Σ, µ̄)
with dµ̄ = gdµ and consider the operator

(2.6) P̄ f = (1/g)P (f · g).

Then P̄ is also a substochastic operator on L1(X,Σ, µ̄). If P is pre-Harris or
conservative operator then P̄ is also pre-Harris or conservative, respectively.
In particular, if P is a pre-Harris conservative operator then P̄ is a Harris
operator.

A family {P (t)}t≥0 of substochastic operators such that:

(a) P (0) = Id,
(b) P (t+ s) = P (t)P (s) for s, t ≥ 0,
(c) for each f ∈ L1(X) the function t 7→ P (t)f is continuous with respect

to the L1(X) norm,

is called a substochastic semigroup. If {P (t)}t≥0 is a family of stochastic
operators which satisfies conditions (a)–(c) then it is called a stochastic or
Markov semigroup. A semigroup {P (t)}t≥0 is called integral if for each t > 0,
the operator P (t) is an integral operator. That is, there exists a measurable
function k : (0,∞)×X ×X → [0,∞), called a kernel, such that

(2.7) P (t)f(x) =
�

X

k(t, x, y)f(y)µ(dy)

for every density f . A semigroup {P (t)}t≥0 is called partially integral
if for some t0 > 0, the operator P (t0) is partially integral. Let P (t0) =
Q(t0) +R(t0) be the decomposition of P (t0) into kernel and singular parts,
and let k(t0) be the kernel corresponding to Q(t0). According to [F, Ch. V,
Lemma B] if P is a substochastic operator and Q is an integral operator
then the operators PQ and QP are integral operators. This implies that
Q(t)P (τ) ≤ Q(t + τ). From this it follows immediately that if {P (t)}t≥0

is a substochastic semigroup and if for some t0 > 0, the operator P (t0) is
partially integral then for each t ≥ t0, the operator P (t) is partially integral.

We also need two definitions concerning the asymptotic behaviour of a
semigroup. A density f∗ is called invariant if P (t)f∗ = f∗ for each t > 0. The
semigroup {P (t)}t≥0 is called asymptotically stable if there is an invariant
density f∗ such that

lim
t→∞
‖P (t)f − f∗‖ = 0 for f ∈ D.

An operator P is called sweeping with respect to the set A ∈ Σ if

lim
n→∞

�

A

Pnf dµ = 0 for f ∈ D.
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The semigroup {P (t)}t≥0 is sweeping with respect to A if

lim
t→∞

�

A

P (t)f dµ = 0 for f ∈ D.

Let a family A ⊂ Σ be given. We say that the operator P (or the semigroup
{P (t)}t≥0 of operators) is sweeping with respect to A if P (resp. {P (t)}t≥0 )
is sweeping with respect to each set A ∈ A. It is easy to check that the
substochastic semigroup {P (t)}t≥0 is asymptotically stable (resp. sweep-
ing) if there exists a t0 > 0 such that the operator P (t0) is asymptotically
stable (resp. sweeping). A nonnegative function f∗ is called subinvariant if
Pf∗ ≤ f∗. For any f ∈ L1(X) the support of f is defined up to a set of
measure zero by the formula

supp f = {x ∈ X : f(x) 6= 0}.

We need some results concerning asymptotic stability and sweeping.

Theorem 2.1 ([PR]). Let {P (t)}t≥0 be a partially integral stochastic
semigroup. Assume that the semigroup {P (t)}t≥0 has a unique invariant
density f∗. If f∗ > 0 a.e., then the semigroup {P (t)}t≥0 is asymptotically
stable.

Corollary 2.2 ([R1]). Let P : L1(X,Σ, µ) → L1(X,Σ, µ) be a pre-
Harris stochastic operator. Assume that P has a subinvariant function
f∗ > 0 which is integrable on each member of A. If P has no invariant
density then the operator P is sweeping with respect to A.

3. Main result. The main result of the paper is the following

Main Theorem 3.1. Let X be a metric space and Σ be the σ-algebra of
Borel sets. Let {P (t)}t≥0 be a substochastic semigroup on L1(X) which has
a unique invariant density f∗ and S = supp f∗. Assume that {P (t)}t≥0 is a
partially integral semigroup with the kernel k(t, x, y) such that

(3.1)
�

S

�

S

k(t0, x, y)µ(dx)µ(dy) > 0

for some t0 > 0. Moreover, assume that for some t1 > 0 there does not
exist a nonempty measurable set A ( Z1 such that P ∗(t1)1A ≥ 1A, where
Z1 = C \ S and C is a conservative part of P (t1) and for every i = 1, 2 and
every y0 ∈ Zi there exist ε > 0 and a measurable function ηi ≥ 0 such that	
Zi
ηi dµ > 0 and

(3.2) k(t1, x, y) ≥ ηi(x)

for x ∈ X \ S and y ∈ B(y0, ε), where Z2 = X \ C and B(y0, ε) is the open
ball with center y0 and radius ε. Then for every f ∈ D there exists a constant
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c(f) such that
lim
t→∞

1SP (t)f = c(f)f∗

and for every compact set F ∈ Σ and f ∈ D we have

(3.3) lim
t→∞

�

F∩X\S

P (t)f(x)µ(dx) = 0.

Remark 3.2. Theorem 3.1 remains true if the semigroup {P (t)}t≥0 has
no invariant density. In this case we set S = ∅, we omit condition (3.1) and
we have c(f) = 0.

Remark 3.3. In practical applications of Theorem 3.1 there is no need to
determine the conservative part of the operator P (t1). It is enough to check
the stronger condition that there does not exist a nonempty measurable set
A ( X \ S such that P ∗(t1)1A ≥ 1A. Then Z1 = X \ S or Z2 = X \ S.

Remark 3.4. If a substochastic semigroup {P (t)}t≥0 on L1(X) has the
only one invariant density f∗ and supp f∗ = X then {P (t)}t≥0 is a stochastic
semigroup and if it is partially integral then from Theorem 3.1 it follows that

lim
t→∞

P (t)f = f∗

for each density f .

Remark 3.5. If A is a measurable set such that P ∗(t̄)1A ≥ 1A for some
t̄ > 0 then �

A

P (t̄)f dµ ≥
�

A

f dµ

for all f ∈ L1(X) with f ≥ 0. In particular, if supp f ⊂ A then we have
suppP (t̄)f ⊂ A. This means that we can study the asymptotic properties of
the sequence {Pn(t̄)}n≥0 separately on the set A. Further, we check that for
every f ∈ L1(X) such that supp f ⊂ S we have suppP (t)f ⊂ S for t > 0.
This means that the semigroup {P (t)}t≥0 can be restricted to the set L1(S).

4. Proof. We split the proof of Theorem 3.1 into a sequence of lemmas.

Lemma 4.1. Assume that f∗ is an invariant density with respect to a
substochastic semigroup {P (t)}t≥0 and S = supp f∗. Then for every f ∈
L1(X) such that supp f ⊂ S we have suppP (t)f ⊂ S for t > 0.

Proof. It is sufficient to check the assertion for nonnegative functions.
Fix an f ∈ L1(X) such that f ≥ 0 and supp f ⊂ S. Then for each positive
integer n there exist a sufficiently large c > 0 and a nonnegative function εn
such that f ≤ cf∗ + εn and ‖εn‖ < 1/n. Then

1X\SP (t)f ≤ c1X\SP (t)f∗ + P (t)εn = c1X\Sf∗ + P (t)εn = P (t)εn.
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Since ‖P (t)εn‖ < 1/n as n → ∞ we get 1X\SP (t)f ≤ 0 and we obtain
suppP (t)f ⊂ S for t > 0.

Lemma 4.2. Let P be a substochastic operator on a probability space
L1(S). If P has an invariant density f∗ such that f∗ > 0 a.e., then P is a
stochastic operator.

Proof. We check that ‖Pf‖ = ‖f‖ for all f ∈ D. As in the proof of
Lemma 4.1 for each positive integer n there exist a constant c > 0 and
nonnegative functions g and εn such that f + g = cf∗ + εn and ‖εn‖ < 1/n.
Then

‖f‖+ ‖g‖ = c‖f∗‖+ ‖εn‖ and ‖Pf‖+ ‖Pg‖ = c‖Pf∗‖+ ‖Pεn‖.
Since ‖Pf∗‖ = ‖f∗‖, ‖εn‖ → 0 and ‖Pεn‖ → 0 as n→∞ we obtain

‖Pf‖+ ‖Pg‖ = ‖f‖+ ‖g‖.
On the other hand ‖Pf‖ ≤ ‖f‖ and ‖Pg‖ ≤ ‖g‖ because P is a substochastic
operator. Thus ‖Pf‖ = ‖f‖.

Lemma 4.3. Let X be a metric space and Σ be the σ-algebra of Borel
sets. Let P : L1(X,Σ, µ)→ L1(X,Σ, µ) be a substochastic operator. Assume
that the operator P can be written in the form Pf(x) =

	
k(x, y)f(y)µ(dy)+

Rf(x), where R is a positive contraction on L1(X) and the kernel k satisfies
the following condition: for every y0 ∈ X there exist ε > 0 and a measurable
function η ≥ 0 such that

	
η dµ > 0 and k(x, y) ≥ η(x) for x ∈ X and

y ∈ B(y0, ε). If there exists a measurable function f∗ such that 0 < f∗ < ∞
and Pf∗ ≤ f∗, then f∗ is integrable on compact sets.

Proof. Suppose, on the contrary, that
	
F f∗(x)µ(dx) =∞ for some com-

pact set F ⊂ X. Then for some y0 ∈ F we have
	
B(y0,δ)

f∗(y)µ(dy) =∞ for
every δ > 0. Then there exist ε > 0 and a measurable function η ≥ 0 such
that

	
η dµ > 0 and k(x, y) ≥ η(x) for x ∈ X and y ∈ B(y0, ε). Thus

Pf∗(x) ≥
�

X

k(x, y)f∗(y)µ(dy) ≥ η(x)
�

B(y0,ε)

f∗(y)µ(dy).

Since Pf∗ ≤ f∗, we have f∗(x) =∞ for x ∈ supp η, which is impossible.

Lemma 4.4. Let X be a metric space and Σ be the σ-algebra of Borel
sets. Let P : L1(X,Σ, µ)→ L1(X,Σ, µ) be a substochastic operator. Assume
that the operator P can be written in the form Pf(x) =

	
k(x, y)f(y)µ(dy)+

Rf(x), where R is a positive contraction on L1(X) and the kernel k satisfies
the following condition: for every i = 1, 2 and every y0 ∈ X there exist ε > 0
and a measurable function ηi ≥ 0 such that

	
Zi
ηi dµ > 0 and k(x, y) ≥

ηi(x) for x ∈ X and y ∈ B(y0, ε), where Z1 = C, Z2 = X \ C and C
is a conservative part of P . Assume that there does not exist a nonempty
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measurable set A ( C such that P ∗1A ≥ 1A. If P has no invariant density
then P is sweeping with respect to the family F of compact sets.

Proof. Let C be the conservative part of P given by (2.1). Then from [F,
Ch. 2, Th. B], P ∗1C ≥ 1C . This implies that if supp f ⊂ C then suppPf ⊂ C
for any f ∈ L1(X). Thus we can restrict the operator P to the space L1(C).
We denote this restriction by PC . The operator PC is stochastic on L1(C).
Thus PC is conservative, partially integral, and Σi = {∅, C}. Hence PC is a
pre-Harris operator. Let g ∈ L1(C) be a positive density, then the operator
P̄ : L1(C) → L1(C) given by (2.6) is a Harris operator. According to [F,
Ch. VI, Th. E] there exists a measurable function h such that 0 < h < ∞
and P̄Ch = h. Set f∗ = hg. Then 0 < f∗ < ∞, f∗ is a measurable function
and PCf∗ = f∗. According to Lemma 4.3 the function f∗ is integrable on
members of F ′ = {F ∩ C : F ∈ F}. Moreover PC has no invariant density.
From Corollary 2.2 the operator PC is sweeping with respect to F ′.

Now, let f ∈ L1(X), f > 0, be a fixed density. Then
∑∞

n=0 P
nf(x) <∞

for x ∈ X \ C. We define an auxiliary operator PX\C on L1(X \ C). For
g ∈ L1(X) we put PX\Cg(x) = 1X\CP g̃(x), where g̃(x) = 0 for x ∈ C
and g̃(x) = g(x) for x ∈ X \ C. Set f∗ =

∑∞
n=0 P

n
X\Cf < ∞. Then f∗

is a measurable function and PX\Cf∗ ≤ f∗, f∗ > 0. By Lemma 4.3, f∗ is
integrable on members of F ′′, where F ′′ = {F ∩ (X \ C) : F ∈ F}. Let
F ∈ F . Then

(4.1)
�

F∩(X\C)

∞∑
n=0

PnX\Cf(x)µ(dx) =
∞∑
n=0

�

F∩(X\C)

PnX\Cf(x)µ(dx) <∞.

Thus

(4.2) lim
n→∞

�

F∩(X\C)

PnX\Cf(x)µ(dx) = 0 for F ∈ F .

Set an =
	
C P

nf dµ. Then the sequence (an) is increasing and convergent to
some a. Indeed, we have

	
C g dµ =

	
C P

n−kg dµ for g ∈ L1(C), n ≥ k. Thus

ak =
�

C

1CP kf dµ =
�

C

Pn−k(1CP kf) dµ ≤
�

C

Pnf dµ = an.

Fix ε > 0. Then |a− ak| < ε for some integer k. Set g = 1CP kf . Then

(4.3)
�

C

|Pnf − Pn−kC g| dµ ≤ ε for n ≥ k.

The operator PC is sweeping with respect to the family F ′. Thus

lim
n→∞

�

F∩C
PnCg dµ = 0 for F ∈ F .
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From this and (4.2), (4.3) it follows that

lim
n→∞

�

F

Pnfdµ = 0 for f ∈ D, F ∈ F .

Proof of Theorem 3.1. According to Lemma 4.1 we can restrict the semi-
group {P (t)}t≥0 to the space L1(S); we denote this restriction by {PS(t)}t≥0.
Lemma 4.2 shows that {PS(t)}t≥0 is a stochastic semigroup. Condition (3.1)
guarantees that this semigroup is partially integral. Moreover it has the
unique invariant density f∗ and f∗ > 0. According to Theorem 2.1, the
semigroup {PS(t)}t≥0 is asymptotically stable, i.e. limt→∞ PS(t)f = f∗ for
f ∈ L1(S) ∩ D. Now let f ∈ L1(X) ∩ D. We introduce an auxiliary func-
tion ϕf (t) =

	
S P (t)f dµ. Let 0 < s < t. Lemma 4.2 yields

	
S g dµ =	

S P (t− s)g dµ for g ∈ L1(S). Thus

ϕf (s) =
�

S

1SP (s)f dµ =
�

S

P (t− s)(1SP (s)f) dµ ≤
�

S

P (t)f dµ = ϕf (t).

This implies that ϕf (t) is a nondecreasing function of t. Set

c(f) = lim
t→∞

ϕf (t) = lim
t→∞

�

S

P (t)f dµ.

We check that limt→∞ 1SP (t)f = c(f)f∗. Let ε > 0 be given. Then there
exists t0 > 0 such that

	
S P (t0)f dµ ≥ c(f) − ε. Let g = 1SP (t0)f. Then

lims→∞ P (s)g = ‖g‖f∗ from the asymptotic stability of {PS(t)}t≥0. Since

P (t)f = P (t− t0)P (t0)f ≥ P (t− t0)g

we have P (t)f ≥ ‖g‖f∗−δ(t), where limt→∞ ‖δ(t)‖ = 0. From the inequality
‖g‖ ≥ c(f)− ε it follows that

P (t)f ≥ f∗(c(f)− ε)− δ(t),

and consequently limt→∞ ‖(1SP (t)f − c(f)f∗)−‖ = 0. But since

lim
t→∞

�

X

1SP (t)f dµ =
�

X

c(f)f∗ dµ

we obtain limt→∞ 1SP (t)f = c(f)f∗.
Now we introduce an auxiliary semigroup {P̃ (t)}t≥0 on L1(X \ S). Let

f ∈ L1(X \S). Set f̃(x) = 0 for x ∈ S and f̃(x) = f(x) for x ∈ X \S. Define
P̃ (t)f(x) = 1X\SP (t)f̃(x). We claim that P̃ (t+ τ)f = P̃ (t)(P̃ (τ)f). Indeed,

P̃ (t+ τ)f = 1X\SP (t+ τ)f̃ = 1X\SP (t)(P (τ)f̃).

According to Lemma 4.1, suppP (t)(1SP (τ)f̃) ⊂ S and consequently

1X\SP (t)(1SP (τ)f̃) = 0.
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Since P (τ)f̃ = 1X\SP (τ)f̃ + 1SP (τ)f̃ we have

P̃ (t+ τ)f = 1X\SP (t)(P (τ)f̃) = 1X\SP (t)(1X\SP (τ)f̃)

= 1X\SP (t)(P̃ (τ)f) = P̃ (t)P̃ (τ)f.

The last equality follows from the fact that supp P̃ (τ)f ⊂ X \ S. Thus
{P̃ (t)}t≥0 is a substochastic semigroup on L1(X \ S).

It is easy to show that the semigroup {P (t)}t≥0 is sweeping with respect
to a set A ⊂ X \ S if the semigroup {P̃ (t)}t≥0 is. Indeed, let f ∈ D. Then
f = 1X\Sf + 1Sf . From Lemma 4.1 we have suppP (t)(1Sf) ⊂ S and
consequently

	
A P (t)(1Sf) dµ = 0. This implies

�

A

P (t)f dµ =
�

A

P (t)(1X\Sf) dµ =
�

A

1X\SP (t)f̃ dµ =
�

A

P̃ (t)f dµ.

Thus if limt→∞
	
A P̃ (t)f dµ = 0 then limt→∞

	
A P (t)f dµ = 0.

Let F be the family of compact sets. In order to prove (3.3) we show
that the semigroup {P̃ (t)}t≥0 is sweeping with respect to the family F ′ =
{F∩(X\S) : F ∈ F}. Observe that the semigroup {P̃ (t)}t≥0 has no invariant
density. Indeed, if g were an invariant density for {P̃ (t)}t≥0 then P (t)g ≥ g
for t ≥ 0. But since {P (t)}t≥0 is substochastic we would have P (t)g = g
for t ≥ 0, which contradicts the assumption that {P (t)}t≥0 has the unique
invariant density f∗. Now, define a substochastic operator P on L1(X \ S,
Σ, µ) by P = P̃ (t1). By Lemma 4.4 the operator P is sweeping with respect
to F ′. Thus the semigroup {P̃ (t)}t≥0 is sweeping with respect to F ′ and so
(3.3) holds, which completes the proof.

5. Example. Most substochastic semigroups satisfy the Foguel alter-
native, i.e. they are either asymptotically stable or sweeping from compact
sets [KM, RPT]. For example any semigroup generated by a nondegenerate
diffusion process is asymptotically stable or sweeping. Now we give a simple
example which shows that a semigroup can be “partially” asymptotically
stable and “partially” sweeping, i.e. Theorem 3.1 holds with c(f) depending
on f .

We consider a birth-death process

(5.1) x′i(t) = −aixi(t) + bi−1xi−1(t) + di+1xi+1(t), i ≥ 0,

where ai = bi+di, bi ≥ 0, di ≥ 0, and b−1 = d0 = 0. We assume additionally
that there is a constant C > 0 such that bi ≤ Ci for all i ≥ 0. The last
condition guarantees that the system (5.1) generates a stochastic semigroup
{P (t)}t≥0 on l1, the space of absolutely summable sequences. The semigroup
{P (t)}t≥0 is given by (P (t)x̄)i = xi(t), where x(t) = (xi(t)) is the solution
of (5.1) with the initial condition x(0) = x̄, x̄ ∈ l1. The semigroup {P (t)}t≥0
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can be written in the form

(5.2) (P (t)x)i =
∞∑
j=0

pij(t)xj ,

where pij(t) are continuous nonnegative functions. Observe that any stochas-
tic operator P : l1 → l1 is an integral operator and satisfies (3.2). Indeed,
l1 = L1(N, 2N, µ) with the counting measure µ(A), where µ(A) is the number
of elements of A and N = {0, 1, 2, . . .}. We have

(Px)i =
∞∑
j=0

pijxj =
�

N
k(i, j)x(j)µ(dj),

where we put k(i, j) = pij and x(j) = xj , which means that P is an integral
operator. Since N is a discrete topological space condition (3.2) follows from

(5.3)
∞∑
i=0

pij =
�

N
k(i, j)µ(di) = 1 for each j ∈ N.

Now assume that there exists n > 0 such that bn = 0, bi > 0 for i 6= n,
and di > 0 for i > 0. Then for each t > 0 we have pij(t) > 0 when i ≤ j,
j ≤ i ≤ n, or n ≤ j ≤ i, and we have pij(t) = 0 if j ≤ n < i.

Now we check when P ∗(t)1A ≥ 1A. We have P ∗(t)1A(j) =
∑

i∈A pij(t).
This means that P ∗(t)1A ≥ 1A if and only if

∑
i∈A pij(t) ≥ 1 for all j ∈ A.

From condition (5.3) and the above inequalities for pij(t) we deduce that if
j > n and j ∈ A then A = N and if j ≤ n and j ∈ A then {0, 1, . . . , n} ⊂ A.
Thus the only sets A which satisfy P ∗(t)1A ≥ 1A are ∅, N, and Nn =
{0, 1, . . . , n}. Moreover if the sequence x∗ = (x∗i ) is an invariant density
and S = suppx∗ then P ∗(t)1S ≥ 1S . It follows that the semigroup has at
most one invariant density, because in the opposite case we could find two
invariant densities with disjoint supports, which is impossible. Also since
pij(t) = 0 for j ≤ n < i, we can restrict the semigroup {P (t)}t≥0 to the
space L1(Nn, 2Nn , µ), and {P (t)}t≥0 is still a stochastic semigroup on this
space. The existence of an invariant density follows immediately from the
ergodic theorem for Markov chains on a finite space. The invariant density
x∗ = (x∗i ) can also be found directly by solving the system

a0x0 = d1x1,

a1x1 = b0x0 + d2x2,

a2x2 = b1x1 + d3x3,

...
anxn = bn−1xn−1.

We have checked all assumptions of Theorem 3.1. Thus for each x̄ ∈ l1 there
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exists a constant c(x̄) such that the solution of (5.1) with the initial condition
x(0) = x̄ satisfies

lim
t→∞

xi(t) =
{
c(x̄)x∗i for i ≤ n,
0 for i > n.

Now consider a continuous random walk with an absorbing state at zero,
that is, the gambler’s ruin problem. This process is described by (5.1) with
ai = bi + di = 1 for i ≥ 1, b−1 = b0 = d0 = 0 and bi = b, di = d for i ≥ 1,
i.e., it is given by the following system:

(5.4)
x′0(t) = dx1(t),
x′1(t) = −x1(t) + dx2(t),
x′i(t) = −xi(t) + bxi−1(t) + dxi+1(t), i ≥ 2.

By b we denote the birth rate (the probability of winning the game). The
death rate (the probability of losing) is denoted by d. We assume additionally
that b > d. The semigroup {P (t)}t≥0 generated by (5.4) has the unique
invariant density x∗ = (x∗i ), where x

∗
0 = 1 and x∗i = 0 for i ≥ 1. Let x̄ ∈ D.

Since in the long run, the probability of losing all of the initial capital i
(probability of absorption) is (d/b)i (see [A, Ch.6.4.3]), we have

c(x̄) =
∞∑
i=0

(
d

b

)i
x̄i and lim

t→∞
(P (t)x̄)0 = c(x̄)x∗0.
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