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Comparison of explicit and implicit difference schemes
for parabolic functional differential equations

by Zdzisław Kamont and Karolina Kropielnicka (Gdańsk)

Abstract. Initial-boundary value problems of Dirichlet type for parabolic functional
differential equations are considered. Explicit difference schemes of Euler type and implicit
difference methods are investigated. The following theoretical aspects of the methods are
presented. Sufficient conditions for the convergence of approximate solutions are given
and comparisons of the methods are presented. It is proved that the assumptions on
the regularity of the given functions are the same for both methods. It is shown that
the conditions on the mesh for explicit difference schemes are more restrictive than the
suitable assumptions for implicit methods. There are implicit difference schemes which are
convergent while the corresponding explicit difference methods are not convergent. Error
estimates for both methods are constructed.

1. Introduction. Difference methods for parabolic functional differen-
tial equations (with initial-boundary conditions) are obtained by replac-
ing partial derivatives with difference operators. Moreover, since differen-
tial equations contain functional variables which are elements of the set
of continuous functions defined on a subset of a finite-dimensional space,
some interpolating operators are needed. This leads to functional difference
equations of Volterra type. The stability of functional difference schemes is
investigated by using comparison techniques.

In recent years, a number of papers concerning explicit difference methods
for parabolic problems have been published. Difference approximations of
nonlinear equations with initial-boundary conditions of Dirichlet type were
considered in [8], [10], [22]. Numerical treatment of functional differential
equations with initial-boundary conditions of Neumann type can be found
in [3], [12]. The convergence results for a general class of difference schemes
related to parabolic problems with solutions defined on unbounded domains
can be found in [16], [29]. The papers [4], [6], [9], [13], [14], [17] concern
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implicit difference schemes for parabolic problems. Error estimates implying
the convergence of implicit difference schemes are obtained in those papers
by using difference inequalities or simple theorems on recurrent inequalities.

Monotone iterative methods and implicit difference schemes for com-
puting approximate solutions to parabolic equations with time delay were
analyzed in [15], [18], [19], [30].

All the above results on numerical methods for parabolic functional dif-
ferential equations have the following property: the authors have assumed
that solutions of initial-boundary value problems are defined on intervals
[0, a] × [−c, c] ⊂ R1+n. It is clear that the sets of the form [0, a] × Q where
Q ⊂ Rn is a bounded set are natural domains on which solutions of mixed
problems for parabolic functional differential equations are considered. We
start investigations of difference schemes for nonlinear parabolic functional
equations with solutions defined on [0, a]×Q.

Note that cylindrical domains appear in theoretical results on the exis-
tence and uniqueness of solutions to parabolic functional differential prob-
lems ([11], [20], [26], [27]).

In this paper we investigate theoretical questions for explicit and implicit
difference schemes generated by initial-boundary value problems of Dirich-
let type for functional differential equations with solutions considered on
cylindrical domains.

Now we formulate our functional differential problems. For any metric
spaces X and Y we denote by C(X,Y ) the class of all continuous func-
tions from X into Y. We use vectorial inequalities to mean that the same
inequalities hold between their corresponding components.

Let Q ⊂ Rn be a bounded domain with the boundary ∂Q. Write E =
[0, a]×Q, E0 = [−b0, 0]×Q where Q is the closure of Q. For each (t, x) ∈ E
we define

D[t, x] = {(τ, y) ∈ R1+n : τ ≤ 0, (t+ τ, x+ y) ∈ E0 ∪ E}.
For a function z : E0 ∪ E → R and (t, x) ∈ E we define a function z(t,x) :
D[t, x]→ R by z(t,x)(τ, y) = z(t+ τ, x+ y) for (τ, y) ∈ D[t, x]. Thus z(t,x) is
the restriction of z to the set (E0 ∪ E) ∩ ([−b0, t] × Rn), shifted to the set
D[t, x].

There is [c, d] ⊂ Rn such that D[t, x] ⊂ [−b0− a, 0]× [c, d] for (t, x) ∈ E.
Write I = [−b0 − a, 0], B = I × [c, d]. Let Mn×n be the class of all n × n
symmetric matrices with real elements. Set Ω = E×C(B,R)×Rn×Mn×n,
∂0E = [0, a] × ∂Q and suppose that F : Ω → R, ϕ : E0 ∪ ∂0E → R are
given functions. Let z be an unknown function of the variables (t, x), x =
(x1, . . . , xn). We consider the problem consisting of the functional differential
equation

(1.1) ∂tz(t, x) = F (t, x, z(t,x), ∂xz(t, x), ∂xxz(t, x))
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and the initial-boundary condition

(1.2) z(t, x) = ϕ(t, x) on E0 ∪ ∂0E

where ∂xz = (∂x1z, . . . , ∂xnz), ∂xx = [∂xixjz]
n
i,j=1.We will say that F satisfies

condition (V ) if for each (t, x, q, s) ∈ E×Rn×Mn×n and for w, w̃ ∈ C(B,R)
such that w(τ, y) = w̃(τ, y) for (τ, y) ∈ D[t, x] we have F (t, x, w, q, s) =
F (t, x, w̃, q, s). Condition (V ) means that the value of F at (t, x, w, q, s) ∈ Ω
depends on (t, x, q, s) and on the restriction of w to the set D[t, x] only. We
assume that F satisfies condition (V ) and we consider classical solutions to
(1.1), (1.2).

We prove that there are explicit and implicit difference schemes for (1.1),
(1.2) which are convergent, and we compare them.

Two types of of assumptions are needed in theorems on the convergence
of functional difference problems generated by (1.1), (1.2). The first type
conditions concern the regularity of F. Assumptions on the regularity of the
given functions are the same for explicit and for implicit difference methods.
We prove that error estimates are the same for both methods.

The second type conditions concern the mesh. We show that we need
strong assumptions on the mesh for explicit difference methods and we do
not need assumptions on the mesh for implicit difference schemes. We show
that there are implicit difference methods which are convergent, while the
corresponding explicit difference schemes are not. We present error estimates
for both methods.

The authors of [1], [3], [4], [8], [10], [12], [13], [16], [22] have assumed
that the given functions satisfy the Lipschitz condition or satisfy nonlinear
estimates of Perron type with respect to function variables and that these
conditions are global with respect to function variables. Our assumptions are
more general. We assume that nonlinear estimates of Perron type are local
with respect to function variables. It is clear that there are differential equa-
tions with deviated variables and differential integral equations such that
local estimates of Perron type hold and global inequalities are not satisfied.

Relations between explicit and implicit difference methods for quasilin-
ear functional differential equations are given in [5]. The present paper is a
continuation of [5].

Sufficient conditions for the existence and uniqueness of classical or gen-
eralized solutions of parabolic functional differential equations can be found
in [2], [11], [21], [23]–[26], [31].

Differential equations with deviated arguments and differential integral
problems can be derived from (1.1), (1.2) by specializing given operators.
Information on applications of functional differential equations can be found
in [31].
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2. Discretization of functional differential equations. For any
spaces X and Y we denote by F(X,Y ) the class of all functions defined
on X and taking values in Y. We will denote by N and Z the sets of natural
numbers and integers respectively.

We define a mesh on E0 ∪ E in the following way. Let (h0, h
′), h′ =

(h1, . . . , hn), stand for steps of the mesh with respect to t and x respectively.
Set h = (h0, h

′) and t(r) = rh0, r ∈ Z. For m = (m1, . . . ,mn) ∈ Zn we put
x(m) = (m1h1, . . . ,mnhn) and

Rn
h = {x(m) : m ∈ Zn}, Qh = Q ∩ Rn

h, Qh = Q ∩ Rn
h.

Write J = {(i, j) : i, j = 1, . . . , n, i 6= j} and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn

with 1 in the ith position, 1 ≤ i ≤ n. Suppose that we have defined the sets
J+, J− ⊂ J such that J+∪J− = J , J+∩J− = ∅. We assume that (j, i) ∈ J+ if
(i, j) ∈ J+. In particular, it may happen that J+ = ∅ or J− = ∅. Relations be-
tween J+, J− and equation (1.1) are given in Section 3. For x(m) ∈ Rn

h we put

θ
(m)
1 = {x(m+ei) : i = 1, . . . , n} ∪ {x(m−ei) : i = 1, . . . , n},

θ
(m)
2 = {x(m+ei+ej) : (i, j) ∈ J} ∪ {x(m−ei−ej) : (i, j) ∈ J}

∪ {x(m+ei−ej) : (i, j) ∈ J}

and θ(m) = θ
(m)
1 ∪ θ(m)

2 . Write

IntQh = {x(m) ∈ Qh : θ(m) ⊂ Qh}, ∂0Qh = Qh \ IntQh.

We will approximate the partial derivatives ∂x = (∂x1 , . . . , ∂xn) and

∂xx = [∂xixj ]ni,j=1

with difference operators δ = (δ1, . . . , δn) and

δ(2) = [δij ]ni,j=1

respectively. We will calculate the difference expressions δz(t(r), x(m)) and
δ(2)z(t(r), x(m)) for each point (t(r), x(m)) ∈ [0, a]×Qh. Then we need addi-
tional mesh points on the set ∂Q. For each x(m) ∈ ∂0Qh and i, j = 1, . . . , n,
i 6= j, we define

λ
(m)
i+

= max{λ ∈ (0, 1] : x(m) + λhiei ∈ Q},

λ
(m)
i−

= max{λ ∈ (0, 1] : x(m) − λhiei ∈ Q},

λ
(m)
i+ j+

= max{λ ∈ (0, 1] : x(m) + λ(hiei + hjej) ∈ Q},

λ
(m)
i− j+

= max{λ ∈ (0, 1] : x(m) + λ(−hiei + hjej) ∈ Q},

λ
(m)
i+ j−

= max{λ ∈ (0, 1] : x(m) + λ(hiei − hjej) ∈ Q},

λ
(m)
i− j−

= max{λ ∈ (0, 1] : x(m) − λ(hiei + hjej) ∈ Q}.
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It is clear that these numbers depend on x(m) ∈ ∂0Qh. For simplicity of no-
tation we write λi+ , λi− , λi+ j+ , λi+ j− , λi− j+ , λi− j− instead of λ(m)

i+
, etc. Set

S
(1)
h = {x ∈ ∂Q : there are x(m) ∈ ∂0Qh and i ∈ {1, . . . , n} such that

x = x(m) + λi+hiei or x = x(m) − λi−hiei},

S
(2)
h = {x ∈ ∂Q : there are x(m) ∈ ∂0Qh and (i, j) ∈ J such that

x = x(m) + λi+j+(hiei + hjej) or

x = x(m) + λi+j−(hiei − hjej) or

x = x(m) − λi−j−(hiei + hjej)}

and Sh = S
(1)
h ∪ S

(2)
h . Write Xh = Qh ∪ Sh. Then Xh is the set of all mesh

points in Q.
Denote by ∆ the set of all h = (h0, h

′) such that there are K0 ∈ C and
c0 > 0 satisfying K0h0 = b0 and hih

−1
j ≤ c0 for (i, j) ∈ J. Let K ∈ N be

defined by Kh0 ≤ a < (K + 1)h0. Write

Eh = {(t(r), x) : 0 ≤ r ≤ K, x ∈ Xh},

E0.h = {(t(r), x) : −K0 ≤ r ≤ 0, x ∈ Xh},

∂0Eh = {(t(r), x) : 0 ≤ r ≤ K, x ∈ Sh},

E′h = {(t(r), x) : 0 ≤ r ≤ K − 1, x ∈ Qh},

θh = {t(r) : 0 ≤ r ≤ K}

where h ∈ ∆. For functions z : E0.h ∪ Eh → R, χ : Xh → R, ω : θh → R we
write z(r,m) = z(t(r), x(m)) for (t(r), x(m)) ∈ θh ×Qh and χ(m) = χ(x(m)) for
x(m) ∈ Qh and ω(r) = ω(t(r)) for t(r) ∈ θh.

If µ, ν ∈ [−1, 1] and (t(r), x(m) + µhiei + νhjej) ∈ [−b0, a] × Xh then
we put z(r,m+µei+νej) = z(t(r), x(m) + µhiei + νhjej) and χ(m+µei+νej) =
χ(x(m+µhiei+νhjej)).

Solutions of difference functional equations are elements of the space
F(E0.h ∪Eh,R). Equation (1.1) contains the function variable z(t,x) which is
an element of the space C(D[t, x],R). Thus we need an interpolating operator
Th : F(E0.h ∪ Eh,R) → C(E0 ∪ E,R). In Section 3 we adopt additional
assumptions on Th. For z ∈ F(E0.h ∪ Eh,R) and (t(r), x(m)) ∈ θh × Qh we
write (Thz)[r,m] instead of (Thz)(t(r),x(m)). Set

Fex.h[z](r,m) = F (t(r), x(m), (Thz)[r,m], δz
(r,m), δ(2)z(r,m))

and

δ0z
(r,m) =

1
h0

[z(r+1,m) − z(r,m)].
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We will approximate classical solutions of (1.1), (1.2) with solutions of the
difference functional equation

(2.1) δ0z
(r,m) = Fex.h[z](r,m)

with the initial-boundary condition

(2.2) z(t(r), x) = ϕh(t, x)) on E0.h ∪ ∂0Eh

where ϕh : E0.h ∪ ∂0Eh → R is a given function. Problem (2.1), (2.2) is
considered as an explicit difference scheme of Euler type for (1.1), (1.2).

Set

Fim.h[z](r,m) = F (t(r), x(m), (Thz)[r,m], δz
(r+1,m), δ(2)z(r+1,m)).

The functional difference equation

(2.3) δ0z
(r,m) = Fim.h[z](r,m)

with the initial-boundary condition (2.2) is considered as an implicit differ-
ence scheme for (1.1), (1.2).

The above numerical methods have the following properties: the differ-
ence operators δz and δ(2)z are calculated at the point (t(r), x(m)) in (2.1)
and at (t(r+1), x(m)) in (2.3). The function variable (Th)[r,m] appears in a
classical sense in both methods.

The definition of the difference operators

(2.4) δz = (δ1z, . . . , δnz), δ(2)z = [δijz]ni,j=1

falls naturally into two steps. In the first step we assume that x(m) ∈ IntQh.
Then we consider the case when x(m) ∈ ∂0Qh. For (t(r), x(m)) ∈ θh × IntQh
we write

δ+i z
(r,m) =

1
hi

[z(r,m+ei) − z(r,m)],

δ−i z
(r,m) =

1
hi

[z(r,m) − z(r,m−ei)], 1 ≤ i ≤ n,

and

(2.5) δiz
(r,m) = 1

2 [δ+i z
(r,m) + δ−i z

(r,m)], δiiz(r,m) = δ+i δ
−
i z

(r,m)), 1 ≤ i ≤ n.

The difference expressions δijz(r,m) for (i, j) ∈ J are defined by

δijz
(r,m) = 1

2 [δ+i δ
−
j z

(r,m) + δ−i δ
+
j z

(r,m)] for (i, j) ∈ J−,(2.6)

δijz
(r,m) = 1

2 [δ+i δ
+
j z

(r,m) + δ−i δ
−
j z

(r,m)] for (i, j) ∈ J+.(2.7)

We now define the difference operators (2.4) for (t(r), x(m)) ∈ θh×∂0Qh. We
put first, for 1 ≤ i ≤ n,

δiz
(r,m) =

1
hi(λi+ + λi−)

[z(r,m+λi+ei) − z(r,m−λi−ei)],(2.8)
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δiiz
(r,m) =

2
h2
i

[
1

λi+(λi+ + λi−)
z(r,m+λi+ei) − 1

λi+λi−
z(r,m)(2.9)

+
1

λi−(λi+ + λi−)
z(r,m−λi−ei)

]
.

For (i, j) ∈ J− we write

δijz
(r,m) =

1
hihj
{A(m)
− z(r,m) +B

(m)
− z(r,m+λi+ei) + C

(m)
− z(r,m−λi−ei)(2.10)

+D
(m)
− z(r,m+λj+ej) + E

(m)
− z(r,m−λj−ej)

+ F
(m)
− z(r,m−λi−j+ (ei−ej)) +G

(m)
− z(r,m+λi+j− (ei−ej))}

where

A
(m)
− =

1
λi+ j−λi− j+

− 1
λj+λj−

− 1
λi+λi−

,

B
(m)
− =

1
λi+(λi+ + λi−)

, C
(m)
− =

1
λi−(λi+ + λi−)

,

D
(m)
− =

1
λj+(λj+ + λj−)

, E
(m)
− =

1
λj−(λj+ + λj−)

,

F
(m)
− =

−1
λi− j+(λi− j+ + λi+ j−)

, G
(m)
− =

−1
λi+ j−(λi+ j− + λi− j+)

.

For (i, j) ∈ J+ we write

δijz
(r,m) =

1
hihj
{A(m)

+ z(r,m) +B
(m)
+ z(r,m+λi+ei) + C

(m)
+ z(r,m−λi−ei)(2.11)

+D
(m)
+ z(r,m+λj+ej) + E

(m)
+ z(r,m−λj−ej)

+ F
(m)
+ z(r,m+λi+j+ (ei+ej)) +G

(m)
+ z(r,m−λi−j− (ei+ej))}

where

A
(m)
+ =

−1
λi+ j+λi− j−

+
1

λi+λi−
+

1
λj−λj+

,

B
(m)
+ =

−1
λi+(λi+ + λi−)

, C
(m)
+ =

−1
λi−(λi+ + λi−)

,

D
(m)
+ =

−1
λj+(λj+ + λj−)

, E
(m)
+ =

−1
λj−(λj+ + λj−)

,

F
(m)
+ =

1
λi+ j+(λi+ j+ + λi− j−)

, G
(m)
+ =

1
λi− j−(λi− j− + λi+ j+)

.

The vector δz(r,m) and the matrix δ(2)z(r,m) are defined by (2.5)–(2.11). The
vector δz(r+1,m) and the matrix δ(2)z(r+1,m) appear in (2.3).
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In the same way we define the difference expressions

δχ(m) = (δ1χ(m), . . . , δnχ
(m)) and δ(2)χ(m) = [δijχ(m)]ni,j=1

where χ : Xh → R.
The above definitions have the following properties. Put λi+ = λi− = 1

for i = 1, . . . , n and λi+ j− = λi− j+ = 1 for (i, j) ∈ J− and λi+ j+ = λi− j− = 1
for (i, j) ∈ J+. Then the definitions (2.8)–(2.11) are equivalent to (2.5)–(2.7)
respectively. It follows that we can use formulas (2.8)–(2.11) for all points
(t(r), x(m)) ∈ θh×Qh. Note that the numbers z(r+1,m+µhi+νhj) where µ, ν ∈
[−1, 1] appear in (2.3). It follows that (2.3), (2.2) is an implicit difference
method for (1.1), (1.2).

We will prove that under natural assumptions on the given functions
and on the mesh there exists exactly one solution uh : E0.h ∪ Eh → R to
(2.1), (2.2) and there is exactly one solution vh : E0.h ∪ Eh → R to (2.3),
(2.2). Solutions of the above difference functional problems are approximate
solutions to (1.1), (1.2). We give sufficient conditions for the convergence of
the sequences of approximate solutions to a classical solution to (1.1), (1.2).

3. Solutions of functional differential and difference problems.
We first construct estimates for solutions to (1.1), (1.2). A function z :
E0 ∪ E → R will be called of class C1.2 if z ∈ C(E0 ∪ E,R) and z( · , x) :
[−b0, a] → R is of class C1 for x ∈ Q and z(t, ·) : Q → R is of class C2 for
t ∈ [−b0, a]. For z ∈ C(E0∪E,R), u ∈ F(E0.h∪Eh) we define the seminorms

‖z‖t = max{|z(τ, x)| : (τ, x) ∈ E0 ∪ E, τ ≤ t}, 0 ≤ t ≤ a,
‖z‖h.r = max{|u(τ, x)| : (τ, x) ∈ E0.h ∪ Eh, τ ≤ t(r)}, 0 ≤ r ≤ K,

For w ∈ C(B,R) we put ‖w‖B = max{|w(τ, y)| : (τ, y) ∈ B}.

Assumption H0[F,ϕ]. The function F : Ω → R of the variables (t, x, w,
q, s), where q = (q1, . . . , qn), s = [sij ]i,j=1,...,n, satisfies the conditions:

1) F is continuous and satisfies condition (V ),
2) the partial derivatives

∂qF = (∂q1F, . . . , ∂qnF ), ∂sF = [∂sijF ]ni,j=1

exist on Ω and the functions ∂qF : Ω → Rn, ∂sF : Ω → Mn×n are
continuous and bounded,

3) the matrix ∂sF is symmetric and

(3.1)
n∑

i,j=1

∂sijF (P )yiyj ≥ 0 for y = (y1, . . . , yn) ∈ Rn,

where P = (t, x, w, q, s) ∈ Ω,
4) there is % : [0, a]× R+ such that
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(i) % is continuous and it is nondecreasing with respect to both vari-
ables and for each η ∈ R+ the maximal solution of the Cauchy
problem

(3.2) ω′(t) = %(t, ω(t)), ω(0) = η,

is defined on [0, a],
(ii) the estimate

|F (t, x, w, 0[n], 0[n×n])| ≤ %(t, ‖w‖B)

is satisfied for (t, x, w) ∈ E×C(B,R), where 0[n] = (0, . . . , 0) ∈ Rn

and 0[n×n] ∈Mn×n is the zero matrix,

5) ϕ ∈ C(E0 ∪ ∂0E,R) and η̃ ∈ R+ is defined by the relations

(3.3) |ϕ(t, x)| ≤ η̃ on E0 and |ϕ(t, x)| ≤ ω(t, η̃) on ∂0E

where ω( · , η̃) is the maximal solution to (3.2) with η = η̃.

Lemma 3.1. If Assumption H0[F,ϕ] is satisfied and z̃ : E0 ∪ E → R is
a solution to (1.1), (1.2) and z̃ is of class C1.2 then

(3.4) |z̃(t, x)| ≤ ω(t, η̃) on E.

Proof. For ε > 0 we denote by ω( · , η̃, ε) the maximal solution of the
Cauchy problem

ω′(t) = %(t, ω(t)) + ε, ω(0) = η̃ + ε.

There exists ε̃ > 0 such that for 0 < ε < ε̃ the function ω( · , η̃, ε) is defined
on [0, a] and

lim
ε→0

ω(t, η̃, ε) = ω(t, η̃) uniformly on [0, a].

Write ζ(t) = ‖z̃‖t for t ∈ [0, a]. We now prove that

(3.5) ζ(t) < ω(t, η̃, ε) for t ∈ [0, a].

Suppose for contradiction that (3.5) fails to be true. Then the set

Σ+ = {t ∈ [0, a] : ζ ≥ ω(t, η̃, ε)}
is not empty. Write t̃ = minΣ+. From (3.3) it follows that t̃ > 0 and there
exists x̃ ∈ Q such that ω(t̃, η̃, ε) = ζ(t̃) = |z̃(t̃, x̃)|. The condition |z̃(t, x)| <
ω(t, η̃, ε) for (t, x) ∈ ∂0E implies that x̃ ∈ Q. Two cases are possible: either
(i) z̃(t̃, x̃) = ω(t̃, η̃, ε) or (ii) z̃(t̃, x̃) = −ω(t̃, η̃, ε). In the first case,

(3.6) D−ζ(t̃) ≥ ω′(t̃, η̃, ε)
where D− is the left-hand lower Dini derivative. Write

A(t, x) = F (t, x, z̃(t,x), ∂xz̃(t, x), ∂xxz̃(t, x))− F (t, x, z̃(t,x), 0[n], 0[n×n]),

B(t, x) = F (t, x, z̃(t,x), 0[n], 0[n×n]).
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Then

A(t, x) =
n∑
i=1

1�

0

∂qiF (P (τ, t, x)) dτ ∂xi z̃(t, x)

+
n∑

i,j=1

1�

0

∂sijF (P (τ, t, x)) dτ ∂xixj z̃(t, x)

where P (τ, t, x), 0 ≤ τ ≤ 1, are intermediate points defined by the Hadamard
mean value theorem. Since x̃ ∈ Q, we have ∂xz̃(t̃, x̃) = 0[n] and

n∑
i,j=1

∂xixj z̃(t̃, x̃)yiyj ≤ 0 for y = (y1, . . . , yn) ∈ Rn.

The above relations and (3.1) imply
n∑

i,j=1

1�

0

∂sijF (P (τ, t̃, x̃)) dτ ∂xixj z̃(t̃, x̃) ≤ 0

and consequently A(t̃, x̃) ≤ 0. Then

D−ζ(t̃) ≤ ∂tz̃(t̃, x̃) = A(t̃, x̃) +B(t̃, x̃) ≤ %(t̃, ω(t̃, η̃, ε)) < ω′(t̃, η̃, ε),

which contradicts (3.6). The case z̃(t̃, x̃) = −ω(t̃, η̃, ε) can be treated in a
similar way. Hence, Σ+ is empty and inequality (3.5) is proved. Letting ε
tend to 0 in (3.5) we obtain (3.4).

AssumptionH[F,ϕ, ϕh]. The functions F : Ω→R and ϕ : E0∪∂0E → R
satisfy Assumption H0[F,ϕ] and

1) for P = (t, x, w, q, s) ∈ Ω we have

(3.7) ∂sijF (P ) ≥ 0 for (i, j) ∈ J+, ∂sijF (P ) ≤ 0 for (i, j) ∈ J−,

2) the steps of the mesh satisfy the conditions

(3.8)
1
hi
∂siiF (P )−

n∑
j=1
j 6=i

1
hj
|∂sijF (P )| − 1

2
|∂qiF (P )| ≥ 0,

where P ∈ Ω, i = 1, . . . , n,
3) there is α0 : ∆→ R+ such that

|ϕ(t, x)− ϕh(t, x)| ≤ α0(h) on E0 ∪ ∂0E and lim
h→0

α0(h) = 0,

4) the constant η̄ ∈ R+ is defined by the relations

(3.9) |ϕh(t, x)| ≤ η̄ on E0.h and |ϕh(t, x)| ≤ ωh(t, η̄) on ∂0Eh

where ω( · , η̄) is the maximal solution to (3.2) with η = η̄.
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Remark 3.2. We have assumed that the matrix ∂sF satisfies the condi-
tion: for each (i, j) ∈ J we have

∂sijF (P ) ≥ 0 on Ω or ∂sijF (P ) ≤ 0 on Ω.

Conditions (3.7) can be considered as definitions of J+ and J−.

Remark 3.3. Suppose that there is c̃ > 0 such that

∂siiF (P )−
n∑
j=1
j 6=i

|∂sijF (P )| ≥ c̃, P ∈ Ω, i = 1, . . . n.

Then condition (3.1) is satisfied (see [28]) and there is ε0 > 0 such that for
‖h‖ < ε0 and for h1 = · · · = hn inequalities (3.8) hold.

Assumption H[Th]. The operator Th : F(E0.h∪Eh,R)→ C(E0∪E,R)
satisfies the conditions:

1) for z, z̄ ∈ F(E0.h ∪ Eh,R) we have

‖Th[z]− Th[z̄]‖t(r) ≤ ‖z − z̄‖h.r, 0 ≤ r ≤ K,
2) if z : E0 ∪ E → R+ is of class C1.2 then there is γ? : ∆ → R+ such

that

‖Th[zh]− z‖t ≤ γ?(h), 0 ≤ t ≤ a, lim
h→0

γ?(h) = 0,

where zh is the restriction of z to E0.h ∪ Eh,
3) if 0h ∈ F(E0.h ∪ Eh,R) is given by 0h(t, x) = 0 for (t, x) ∈ E0.h ∪ Eh

then Th[0h](t, x) = 0 for (t, x) ∈ E0 ∪ E.
Remark 3.4. If Q = (−c, c) where (−c, c) ⊂ Rn, c = (c1, . . . , cn), ci > 0

for 1 ≤ i ≤ n, then the interpolating operator Th given in [7, Chapter VI]
satisfies Assumption H[Th]. The construction of Th presented in [7] can be
extended to the set E0 ∪ E considered in this paper.

Suppose that Assumption H[F,ϕ, ϕh] is satisfied. For P ∈ Ω we put

X0(P ) = − 2h0

n∑
i=1

1
h2
i

1
λi−λi+

∂siiF (P )(3.10)

+ 2h0

∑
(i,j)∈J

1
hihj

1
λi−λi+

|∂sijF (P )|

+ h0

∑
(i,j)∈J−

1
hihj

1
λi− j+λi+ j−

∂sijF (P )

− h0

∑
(i,j)∈J+

1
hihj

1
λi− j−λi+ j+

∂sijF (P ),

and
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X
(i)
+ (P ) =

2h0

λi+(λi− + λi+)

[
λi+
2hi

∂qiF (P )

+
1
h2
i

∂siiF (P )−
n∑
j=1
j 6=i

1
hihj
|∂sijF (P )|

]
,

X
(i)
− (P ) =

2h0

λi−(λi− + λi+)

[
−λi−
2hi

∂qiF (P )

+
1
h2
i

∂siiF (P )−
n∑
j=1
j 6=i

1
hihj
|∂sijF (P )|

]
,

where i = 1, . . . , n and

Y
(i,j)
+ (P ) =

h0

hihj

1
λi+ j+(λi− j− + λi+ j+)

∂sijF (P ) for (i, j) ∈ J+,

Z
(i,j)
+ (P ) =

h0

hihj

1
λi− j−(λi− j− + λi+ j+)

∂sijF (P ) for (i, j) ∈ J+,

Y
(i,j)
− (P ) =

−h0

hihj

1
λi− j+(λi− j+ + λi+ j−)

∂sijF (P ) for (i, j) ∈ J−,

Z
(i,j)
− (P ) =

−h0

hihj

1
λi+ j−(λi− j+ + λi+ j−)

∂sijF (P ) for (i, j) ∈ J−.

Suppose that χ : Xh → R and x(m) ∈ Qh. Write

(3.11)

Θ
(m)
h [χ, P ] = χ(m)X0(P ) +

n∑
i=1

[χ(m+λi+ei)X
(i)
+ (P ) + χ(m−λi−ei)X

(i)
− (P )]

+
∑

(i,j)∈J+

[χ(m+λi+j+(ei+ej))Y
(i,j)
+ (P ) + χ(m−λi−j−(ei+ej))Z

(i,j)
+ (P )]

+
∑

(i,j)∈J−

[χ(m−λi−j+(ei−ej))Y
(i,j)
− (P ) + χ(m+λi+j−(ei−ej))Z

(i,j)
− (P )]

where P = (t, x, w, q, s) ∈ Ω. Important properties of difference schemes are
given in the next lemma.

Lemma 3.5. Suppose that Assumption H0[F,ϕ] and conditions 1), 2) of
Assumption H[F,ϕ, ϕh] are satisfied and χ : Xh → R, x(m) ∈ Qh and

G
(m)
h [χ, P ] = h0

n∑
i=1

∂qiF (P ) δiχ(m)

+ h0

n∑
i,j=1

∂sijF (P )δijχ(m), P = (t, x, w, q, s) ∈ Ω,
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where δχ and δ(2)χ are given by (2.8)–(2.11). Then

(3.12) G
(m)
h [χ, P ] = Θ

(m)
h [χ, P ]

and

X
(i)
+ (P ) ≥ 0, X

(i)
− (P ) ≥ 0 for i = 1, . . . , n,(3.13)

Y
(i,j)
+ (P ) ≥ 0, Z

(i,j)
+ (P ) ≥ 0 for (i, j) ∈ J+,(3.14)

Y
(i,j)
− (P ) ≥ 0, Z

(i,j)
− (P ) ≥ 0 for (i, j) ∈ J−,(3.15)

and

(3.16) X0(P ) +
n∑
i=1

[X(i)
+ (P ) +X

(i)
− (P )]

+
∑

(i,j)∈J+

[Y (i,j)
+ (P ) + Z

(i,j)
+ (P )] +

∑
(i,j)∈J−

[Y (i,j)
− (P ) + Z

(i,j)
− (P )] = 0.

Proof. An easy computation shows that (3.12) is a consequence of (2.8)–
(2.11). From (3.7), (3.8) we obtain (3.13)–(3.15). Condition (3.16) follows
from the formulas forX0(P ),X(i)

+ (P ),X(i)
− (P ), Y (i,j)

+ (P ), Y (i,j)
− (P ),Z(i,j)

+ (P ),
Z

(i,j)
− (P ).

Theorem 3.6. Suppose that Assumptions H[Th] and H[F,ϕ, ϕh] are sat-
isfied.

I. There exists exactly one solution vh : E0.h ∪ Eh → R to (2.3), (2.2),
and

(3.17) |vh(t, x)| ≤ ω(t, η̄) for (t, x) ∈ Eh,
where ω( · , η̄) is the maximal solution of the Cauchy problem (3.2) with η = η̄
and η̄ is defined by (3.9).

II. Assume additionally that the steps of the mesh satisfy the condition

(3.18) 1 +X0(P ) ≥ 0, P = (t, x, w, q, s) ∈ Ω,
where X0(P ) is given by (3.10). Then there is exactly one solution uh :
E0.h ∪ Eh → R to (2.1), (2.2), and

(3.19) |uh(t, x)| ≤ ω(t, η̄) for (t, x) ∈ Eh.
Proof. The proof will be divided into two parts.
I. We prove that there exists exactly one solution vh : E0.h ∪ Eh → R

to (2.3), (2.2). Suppose that 0 ≤ r < K is fixed and that the solution vh to
(2.3), (2.2) is given on (E0.h ∪ Eh) ∩ ([−b0, t(r)] × Rn). We prove that the
values vh(t(r+1), x), x ∈ Xh, exist and they are unique. It is sufficient to
show that there exists exactly one solution of the system of equations

(3.20) z(r+1,m) = v
(r,m)
h + h0F (t(r), x(m), (Thvh)[r,m], δz

(r+1,m), δ(2)z(r+1,m))
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where x(m) ∈ Qh, and
(3.21) z(t(r+1), x) = ϕh(t(r+1), x) for x ∈ Sh.
Set

Σh = {χ ∈ F(Xh,R) : χ(x) = ϕ(t(r+1), x) for x ∈ Sh}.
For χ, χ̃ ∈ Σh we put

[|χ− χ̃|] = max{|(χ− χ̃)(x)| : x ∈ Xh}.
It follows from Assumption H[F,ϕ, ϕh] that there is Ah ∈ R+ such that

(3.22) Ah +X0(P ) ≥ 0 for P = (t, x, w, q, s) ∈ Ω,
where X0(P ) is given by (3.10). Let Wh be the operator defined on Σh by

Wh[χ](m) =
1

1 +Ah
[Ahχ(m) + v

(r,m)
h

+ h0F (t(r), x(m), (Thvh)[r,m], δχ
(m), δ(2)χ(m))], x(m) ∈ Qh,

where δχ(m) and δ(2)χ(m) are defined by (2.8)–(2.11) and

Wh[χ](x) = ϕh(t(r+1), x) for x ∈ Sh.
Then Wh : Σh → Σh. It is clear that problem (3.20), (3.21) is equivalent to
the equation

(3.23) χ = Wh[χ].

We prove that

(3.24) [|Wh[χ]−Wh[χ̃]|] ≤ Ah
1 +Ah

[|χ− χ̃|] on Σh.

If x(m) ∈ Qh then there is P ∈ Ω such that

(1 +Ah)[Wh[χ](m) −Wh[χ̃](m)]

= Ah(χ−χ̃)(m)+h0

n∑
i=1

∂qiF (P ) δi(χ−χ̃)(m)+h0

n∑
i,j=1

∂sijF (P ) δij(χ−χ̃)(m).

We conclude from Lemma 3.5 that

(1 +Ah)[Wh[χ](m) −Wh[χ̃](m)] = (Ah +X0(P ))(χ− χ̃)(m)

+
n∑
i=1

X
(i)
+ (P )(χ− χ̃)(m+λi+ei) +

n∑
i=1

X
(i)
− (P )(χ− χ̃)(m−λi−ei)

+
∑

(i,j)∈J+

[Y (i,j)
+ (P )(χ−χ̃)(m+λi+j+(ei+ej)) + Z

(i,j)
+ (P )(χ−χ̃)(m−λi−j−(ei+ej))]

+
∑

(i,j)∈J−

[Y (i,j)
− (P )(χ−χ̃)(m−λi−j+(ei−ej)) + Z

(i,j)
− (P )(χ−χ̃)(m−λi+j−(ei−ej))].
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It follows from (3.13)–(3.16), (3.22) that

|Wh[χ](m) −Wh[χ̃](m)| ≤ Ah
1 +Ah

[|χ− χ̃|], x(m) ∈ Qh.

If x ∈ Sh then Wh[χ](x)−Wh[χ̃](x) = 0. The above relations imply (3.24).
The Banach fixed point theorem implies that there exists exactly one solution
to (3.23). It follows that the values vh(t(r), x), x ∈ Xh, exist and they are
unique. The function vh is given on E0.h. Then the proof of the existence
and uniqueness of a solution to (2.3), (2.2) is completed by induction on r,
0 ≤ r ≤ K.

Now we prove (3.17), Write ω̃(r)
h = ‖vh‖h.r, 0 ≤ r ≤ K. It follows easily

that
ω̃

(r+1)
h ≤ ω(r)

h + h0%(t(r), ω̃(r)
h ), 0 ≤ r ≤ K − 1,

and ω̃(0)
k ≤ η̄. The function ω( · , η̄) satisfies the recurrent inequality

(3.25) ω(t(r+1), η̄) ≥ ω(t(r), η̄) + h0%(t(r), ω(t(r), η̄)), 0 ≤ r ≤ K − 1.

From the initial inequality ω̃(0)
h ≤ ω(t(0), η̄) we conclude that ω̃(r)

h ≤ ω(t(r), η̄)
for 0 ≤ r ≤ K and (3.17) follows.

II. It is clear that there exists exactly one solution to (2.1), (2.2). We
prove (3.19). It follows from (2.1) that

(3.26) u
(r+1,m)
h = h0F (t(r), x(m), (Thuh)[r,m], 0[n], 0[n×n]) +A(r,m)

where

A(r,m) = u
(r,m)
h + h0[F (t(r), x(m), (Thuh)[r,m], δu

(r,m)
h , δ(2)u

(r,m)
h )

− F (t(r), x(m), (Thuh)[r,m], 0[n], 0[n×n])].

We conclude from Assumption H[F,ϕ, ϕh] and from Lemma 3.5 that for
each (t(r), x(m)) ∈ θh ×Qh there is P ∈ Ω such that

(3.27) A(r,m) = u
(r,m)
h + h0

n∑
i=1

∂qiF (P )δiu
(r,m)
h + h0

n∑
i,j=1

∂sijF (P )δiju
(r,m)
h

= u
(r,m)
h +Θ

(m)
h [uh(t(r), · ), P ] = (1 +X0(P ))u(r,m)

h

+
n∑
i=1

[X(i)
+ (P )u(r,m+λi+ei)

h +X
(i)
− (P )u(r,m−λi−ei)

h ]

+
∑

(i,j)∈J+

[Y (i,j)
+ (P )u(r,m+λi+j+(ei+ej))

h + Z
(i,j)
+ (P )u(r,m−λi−j−(ei+ej))

h

+
∑

i,j)∈J−

[Y (i,j)
− (P )u(r,m−λi−j+(ei−ej))

h + Z
(i,j)
− (P )u(r,m+λi+j−(ei−ej))

h ].
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Write ω(r)
h = ‖uh ‖h.r, 0 ≤ r ≤ K. It follows from (3.12)–(3.16) and from

(3.18), (3.26), (3.27) that

ω
(r+1)
h ≤ ω(r)

h + h0%(t(r), ω(r)
h ), 0 ≤ r ≤ K − 1,

and ω(0)
h ≤ η̄. The above relations and (3.25) imply (3.19). This completes

the proof of the theorem.

4. Convergence of difference schemes. For x = (x1, . . . , xn) ∈ Rn

and W ∈Mn×n, W = [wij ]ni,j=1 we put

‖x‖ =
n∑
i=1

|xi|, ‖W‖ = max
{ n∑
j=1

|wij | : 1 ≤ i ≤ n
}
.

Write η? = max{η̃, η̄} and C = ω(a, η?) where ω( · , η?) is the maximal
solution to (3.2) with η = η?. Set Ω[C] = {(t, x, w, q, s) ∈ Ω : ‖w‖B ≤ C}.

Assumption H[F, σ]. There is σ : [0, a]× R+ → R+ such that

1) σ is continuous and it is nondecreasing with respect to both variables,
2) σ(t, 0) = 0 for t ∈ [0, a] and the function ω̃(t) = 0 for t ∈ [0, a] is the

maximal solution of the Cauchy problem
(4.1) ω′(t) = σ(t, ω(t)), ω(0) = 0,

3) the estimate

(4.2) |F (t, x, w, q, s)− F (t, x, w̃, q, s)| ≤ σ(t, ‖w − w̃‖B)

is satisfied on Ω[C].

Remark 4.1. It is important that we have assumed condition (4.2) for
‖w‖B, ‖w̃‖B ≤ C. There are differential equations with deviated variables
and differential integral equations such that Assumption H[F, σ] holds and
condition (4.2) is not satisfied on Ω. We will give suitable examples.

Suppose that F̃ : E × Rn × Mn×n → R and L̃ : E → R, φ : E →
R1+n, φ = (φ0, φ1, . . . , φn), are given functions. We assume that F̃ and L̃,
φ are continuous and φ0(t, x) ≤ t and φ(t, x) ∈ E for (t, x) ∈ E. Then
φ(t, x)− (t, x) ∈ B for (t, x) ∈ E.

Suppose that the function G : R→ R satisfies the conditions:

(i) G is of class C1 on R and there is C̃ ∈ R+ such that |G(p)| ≤ C̃ for
p ∈ R,

(ii) the function G̃(p) = pG′(p), p ∈ R, is unbounded on R.
Let F : Ω → R be defined by

F (t, x, w, q, s) = L̃(t, x)w(φ(t, x)− (t, x))G(w(φ(t, x)− (t, x)))(4.3)

+ F̃ (t, x, q, s).
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Then (1.1) reduces to the differential equation with deviated variables

∂tz(t, x) = L̃(t, x)z(φ(t, x))G(z(φ(t, x))) + F̃ (t, x, ∂xz(t, x), ∂xxz(t, x)).

Suppose that β̃, γ̃ > 0 are such that

|L̃(t, x)| ≤ β̃, |F̃ (t, x, 0[n], 0[n×n])| ≤ γ̃ for (t, x) ∈ E.
Then

(4.4) |F (t, x, w, 0[n], 0[n×n])| ≤ β̃‖w‖B + γ̃

where (t, x, w) ∈ E × C(B,R) and the solution of (3.2) is given by

ω̃(t, η) = η exp[β̃t] +
exp[β̃t]− 1

β̃
γ̃.

It follows that the function F given by (4.3) satisfies the Lipschitz condition
with respect to the function variable on Ω[C] where C = ω̃(a, η) and the
global Lipschitz condition is not satisfied.

Now we construct an integral functional equation. For the above G :
R→ R and F̃ : E × Rn ×Mn×n → R we define

F (t, x, w, q, s) = L̃(t, x)
�

D[t,x]

w(τ, y) dy dτ G
( �

D[t,x]

w(τ, y) dy dτ
)

(4.5)

+ F̃ (t, x, q, s).

Then (1.1) reduces to the integral differential equation

∂tz(t, x) = L̃(t, x)
�

D[t,x]

z(τ, y) dy dτ G
( �

D[t,x]

z(τ, y) dy dτ
)

+ F̃ (t, x, ∂xz(t, x), ∂xxz(t, x)).

It is clear that there are β̃, α̃ > 0 such that the function F defined by (4.5)
satisfies condition (4.4) where (t, x, w) ∈ E × C(B,R). Then there is L ≥ 0
such that Assumption H[F, σ] holds for σ(t, p) = Lp and the global Lipschitz
condition is not satisfied.

Note that the function

G(p) = C0 sin(C1p) + C2 cos(C3p),

where C0, C1, C2, C3 ∈ R, satisfies the above conditions (i), (ii).

Lemma 4.2. If z : E0∪E → R is of class C1.2 then there is α? : ∆→ R+

such that

‖δz(r,m) − ∂xz(r,m)‖ ≤ α?(h), ‖δ(2)z(r,m) − ∂xxz(r,m)‖ ≤ α?(h)

where (t(r), x(m)) ∈ θh ×Qh, h ∈ ∆, and limh→0 α?(h) = 0.

We omit a simple proof of the lemma. We now give sufficient conditions
for the convergence of difference schemes (2.1), (2.2) and (2.3), (2.2).



152 Z. Kamont and K. Kropielnicka

Theorem 4.3. Suppose that Assumptions H[Th], H[F,ϕ, ϕh], H[F, σ]
are satisfied and z̃ : E0 ∪ E → R is a solution to (1.1), (1.2) and z̃ is of
class C1.2.

I. There is α : ∆→ R+ such that

(4.6) |(z̃h − vh)(t, x)| ≤ α(h) on Eh and lim
h→0

α(h) = 0,

where vh : E0.h∪Eh → R is a solution to (2.3), (2.2) and z̃ is the restriction
of z̃ to E0.h ∪ Eh.

II. Assume that the steps of the mesh satisfy the condition (3.18) where
X0(P ) is given by (3.10). Then there is α : ∆→ R+ such that

(4.7) |(z̃h − uh)(t, x)| ≤ α(h) on Eh and lim
h→0

α(h) = 0,

where uh : E0.h ∪ Eh → R is a solution to (2.1), (2.2).

Proof. The proof will be divided into two parts.

I. The existence and uniqueness of the solution vh : E0.h ∪ Eh → R to
(2.3), (2.2) follows from Theorem 3.6. Let Γim.h : E′h → R be defined by

δ0z̃
(r,m)
h = Fim.h[z̃h](r,m) + Γ

(r,m)
im.h on E′h.

It follows from Lemma 4.2 and from Assumption H[Th] that there is γ :
∆→ R+ such that

|Γ (r,m)
im.h | ≤ γ(h) on E′h and lim

h→0
γ(h) = 0.

Write ϑh = z̃h − vh. Then

(4.8) ϑ
(r+1,m)
h = ϑ

(r,m)
h +Ah[z̃h, vh](r,m) +Bh[z̃h, vh](r,m)

where

Ah[z̃h, vh](r,m) = h0[Fim.h[z̃h](r,m)

− F (t(r), x(m), (Thvh)[r,m], δz̃
(r+1,m)
h , δ(2)z̃

(r+1,m)
h )] + Γ

(r,m)
im.h ,

Bh[z̃h, vh](r,m) = h0[F (t(r), x(m), (Thvh)[r,m], δz̃
(r+1,m)
h , δ(2)z̃

(r+1,m)
h )

− Fim.h[vh](r,m)].

According to Assumption H[F,ϕ, ϕh] we have

Bh[z̃h, vh](r,m) = h0

n∑
i=1

∂qiF (P )δiϑ
(r+1,m)
h + h0

n∑
i,j=1

∂sijF (P ) δijϑ
(r+1,m)
h

where P ∈ Ω is an intermediate point. We conclude from Lemma 3.5 that

(4.9) Bh[z̃h, vh](r,m) = Θ
(m)
h [ϑ(t(r+1), ·), P ].

Write ε(r)h = ‖ϑh‖h.r, 0 ≤ r ≤ K. It follows from Assumption H[Th] and
Lemma 3.1 that
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(4.10)
‖(Thz̃h)[r,m]‖B ≤ ‖Thz̃h‖t(r) ≤ ‖z̃h‖h.r ≤ ω(t(r), η̃), (t(r), x(m)) ∈ θh ×Qh.
According to Assumption H[Th] and (3.17) we have

‖(Thvh)[r,m]‖B ≤ ‖Thvh‖t(r) ≤ ‖vh‖h.r ≤ ω(t(r), η̄), (t(r), x(m)) ∈ θh ×Qh.
Thus we see that

‖(Thz̃h)[r,m]‖B ≤ C, ‖(Thvh)[r,m]‖B ≤ C, (t(r), x(m)) ∈ θh ×Qh.
It follows from the above estimates and Assumption H[F, σ] that

(4.11) |Ah[z̃h, vh](r,m)| ≤ h0 σ(t(r), ε(r)h ) + h0γ(h).

We conclude from (3.13)–(3.16) and from (4.8)–(4.11) that the function εh
satisfies the recurrent inequality

ε
(r+1)
h ≤ ε(r)h + h0σ(t(r), ε(r)h ) + h0γ(h), 0 ≤ r ≤ K − 1,

and ε(0)
h ≤ α0(h). Let us denote by ωh( · , γ, α0) the maximal solution of the

Cauchy problem

(4.12) ω′(t) = σ(t, ω(t)) + γ(h), ω(0) = α0(h).

Then
lim
h→0

ωh(t, γ, α0) = 0 uniformly on [0, a]

and

ωh(t(r+1), γ, α0) ≥ ωh(t(r), γ, α0)

+ h0σ(t(r), ωh(t(r), γ, α0)) + h0γ(h), 0 ≤ r ≤ K − 1.

This gives εh(t(r)) ≤ ωh(t(r), γ, α0) for 0 ≤ r ≤ K. Thus we see that assertion
(4.6) is satisfied with α(h) = ωh(a, γ, α0).

II. We prove (4.7). Let Γex.h : E′h → R be defined by the relation

δ0z̃
(r,m)
h = Fex.h[z̃h](r,m) + Γ

(r,m)
ex.h on E′h.

It follows that there is γ : ∆→ R+ such that

|Γ (r,m)
ex.h | ≤ γ(h) on E′h, lim

h→0
γ(h) = 0.

Write ϑ̃h = z̃h − uh. Then we have

(4.13) ϑ̃
(r+1,m)
h = ϑ̃

(r,m)
h + Ãh[z̃h, uh](r,m) + B̃h[z̃h, uh](r,m)

where

Ãh[z̃h, vh](r,m) = h0[Fex.h[z̃h](r,m)

− F (t(r), x(m), (Thuh)[r,m], δz̃
(r,m)
h , δ(2)z̃

(r,m)
h )] + Γ

(r,m)
ex.h ,

B̃h[z̃h, uh](r,m)=h0[F (t(r), x(m), (Thuh)[r,m], δz̃
(r,m)
h , δ(2)z̃

(r,m)
h )−Fex.h[vh](r,m)].
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It follows from Lemma 3.5 that

(4.14) ϑ̃
(r,m)
h + B̃h[z̃h, uh](r,m) = ϑ̃

(r,m)
h +Θ

(m)
h [ϑ̃(t(r), ·), P ]

= (1 +X0(P ))ϑ̃(r,m)
h +

n∑
i=1

[X(i)
+ (P ) ϑ̃(r,m+λi+ei)

h +X
(i)
− (P )ϑ̃(r,m−λi−ei)

h ]

+
∑

(i,j)∈J+

[Y (i,j)
+ (P )ϑ̃(r,m+λi+j+(ei+ej))

h + Z
(i,j)
+ (P )ϑ̃(r,m−λi−j−(ei+ej))

h ]

+
∑

i,j)∈J−

[Y (i,j)
− (P )ϑ̃(r,m−λi−j+(ei−ej))

h + Z
(i,j)
− (P )ϑ̃(r,m+λi+j−(ei−ej))

h ]

where P ∈ Ω is an intermediate point. Write ε̃(r)h = ‖ϑ̃h‖h.r, 0 ≤ r ≤ K. We
conclude from Assumption H[Th] and (3.19) that

‖(Thuh)[r,m]‖B ≤ ‖Thuh‖t(r) ≤ ‖uh‖h.r ≤ ω(t(r), η̄), (t(r), x(m)) ∈ θh ×Qh.
The above relations and (4.10) imply

‖(Thz̃h)[r,m]‖B ≤ C, ‖(Thuh)[r,m]‖B ≤ C, (t(r), x(m)) ∈ θh ×Qh.
It follows from the above estimates and Assumption H[F, σ] that

(4.15) |Ãh[z̃h, uh](r,m)| ≤ h0σ(t(r), ε̃(r)h ) + h0γ(h).

We conclude from (3.13)–(3.16) and from (3.18), (4.13)–(4.15) that

|ϑ̃(r,m)
h + B̃h[z̃h, uh](r,m)| ≤ ε̃(r)h .

Thus we see that the function ε̃h satisfies the recurrent inequality

ε̃
(r+1)
h ≤ ε̃(r)h + h0σ(t(r), ε̃(r)h ) + h0γ(h), 0 ≤ r ≤ K − 1,

and ε̃
(0)
h ≤ α0(h). Then we obtain (4.7) with α(h) = ωh(a, γ, α0) where

ωh( · , γ, α0) is the maximal solution to (4.12) with the above given γ. This
completes the proof of the theorem.

Remark 4.4. Relations between h0 and h′ are required in (3.18). Sup-
pose that the steps (h1, . . . , hn) are given and we have constructed the mesh
Xh on Q, the coefficients

λi−, λi+ for i = 1, . . . , n, λi−j+, λi+j− for (i, j) ∈ J−,
λi−j−, λi+j+ for (i, j) ∈ J+

are given and the function

X̃0(P ) =
1
h0
X0(P ), P = (t, x, w, q, s) ∈ Ω,

is bounded. It follows that there is ε0 > 0 such that condition (3.18) is
satisfied for 0 < h0 < ε0.
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Remark 4.5. Condition (3.18) shows that the conditions on the mesh for
explicit difference schemes are more restrictive than the suitable assumptions
for implicit methods.

Remark 4.6. Note that assumption (3.18) for (t(r), x(m)) ∈ θh× IntQh,
(w, q, s) ∈ C(B,R)× Rn ×Mn×n is equivalent to the following inequality:

(4.16) 1− 2h0

n∑
i=1

1
h2
i

∂siiF (P ) + h0

∑
(i,j)∈J

1
hihj
|∂sijF (P )| ≥ 0.

The conditions (3.18) and (4.16) are complicated because we consider func-
tional differential equations with all the derivatives [∂xixjz]

n
i,j=1. Let us con-

sider the equation

∂tz(t, x) =
n∑
i=1

∂xixiz(t, x) + f(t, x, z(t,x), ∂xz(t, x))

where f : E ×C(B,R) × Rn is a given function. Then condition (3.18) has
the form

1− 2h0

n∑
i=1

1
h2
i

1
λi−λi+

≥ 0.

Lemma 4.7. Suppose that Assumptions H[Th], H[F,ϕ, ϕh], H[F, σ] are
satisfied with σ(t, p) = Lp on [0, a] × R+ and z̃ : E0 ∪ E → R is a solution
to (1.1), (1.2) and z̃ is of class C1.2. Then

|(z̃h − vh)(t, x)| ≤ α̃(h) on Eh
where vh : E0.h∪Eh → R is a solution to (2.3), (2.2) and z̃h is the restriction
of z̃ to E0.h ∪ Eh and

α̃(h) =

{
α0(h)eLa +

γ(h)
L

(eLa − 1) if L > 0,

α0(h)eLa + aγ(h) if L = 0.

If we assume that the steps of the mesh satisfy condition (3.18) then

|(z̃h − uh)(t, x)| ≤ α̃(h) on Eh
with the above given α̃(h) where uh : E0.h ∪ Eh → R is a solution to (2.1),
(2.2).

We obtain the above estimates by solving problem (4.12) with σ(t, p)
= Lp.

Lemma 4.7 shows that we have obtained the same error estimates for
implicit and for explicit difference schemes.

Remark 4.8. The results presented in the paper can be extended to
weakly coupled functional differential systems.
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5. Numerical examples. Write

Q = {(x, y) ∈ R2 : x2 + y2 < 1},
E = [0, 0.25]×Q, E0 = {0} ×Q, ∂0E = [0, 0.25]× ∂Q.

We consider initial-boundary value problems for functional differential equa-
tions with solutions defined on E. Let us denote by z an unknown function
of the variables (t, x, y).

Implicit difference methods lead to nonlinear systems of algebraic equa-
tions. In our experiments we have obtained approximate solutions of suitable
nonlinear systems by using the Newton method. We have calculated three
Newton iterations.

Example 5.1. Consider the differential integral equation

∂tz(t, x, y) = 2∂xxz(t, x, y) + 2∂yyz(t, x, y)

+ sin[∂xxz(t, x, y)− ∂yyz(t, x, y)− 4t2(x2 − y2)z(t, x, y)] + ∂xyz(t, x, y)

+ t

x�

0

sz(t, s, y)ds− t
y�

0

sz(t, x, s) ds

− z(t, x, y) sin z(t, x, y) + f(t, x, y)z(t, x, y) + g(t, x, y)

with the initial-boundary condition

z(t, x, y) = 1 for (t, x, y) ∈ E0 ∪ ∂0E.

where
f(t, x, y) = 1− x2 − y2 + 8t− 4xyt2 − 8t2(x2 + y2)

+ sin exp{t(1− x2 − y2)},
g(t, x, y) = 1

2 exp[t(1− x2)]− 1
2 exp[t(1− y2)].

The solution of the above problem is known: it is

z̃(t, x, y) = exp{t(1− x2 − y2)}.

The following tables show the maximal values of errors for several step
sizes.

Table 1. Explicit difference method

h1 = h2 h0 Maximal error Time
2−1 10−1 2−3 10−4 9.094634 · 10−4 6 min
4 · 10−2 2−4 10−4 7.431544 · 10−4 17 min

2−5 2−5 10−4 5.910445 · 10−4 60 min

Now we consider the implicit difference schemes with steps of the mesh
given in Table 2.



Difference schemes 157

Table 2. Explicit difference method, condition (3.18) violated

h1 = h2 h0 Maximal error
2−1 10−1 10−3 1.373362 · 1011

22 10−2 10−3 5.287499 · 1013

2−5 10−3 3.140010 · 1016

Table 3. Implicit difference method

h1 = h2 h0 Maximal error Time
2−1 10−1 10−3 9.113438 · 10−4 18 s
22 10−2 10−3 7.441051 · 10−4 28 s

2−5 10−3 5.913871 · 10−4 50 s

Example 5.2. Let us consider the differential equation with deviated
variables

∂tz(t, x, y) = 2∂xxz(t, x, y) + 2∂yyz(t, x, y)− ∂xyz(t, x, y)
− cos[∂xxz(t, x, y)− ∂yyz(t, x, y)]

+ z(t, 1
2(
√

3x+ y), 1
2(x−

√
3y)) cos z(t, 1

2(x+
√

3y), 1
2(
√

3x− y))
+ f(t, x, y)z(t, x, y) + g(t, x, y),

with the initial-boundary condition

z(t, x, y) = 1 for (t, x, y) ∈ E0 ∪ ∂0E,

where

f(t, x, y)=x2−y2−1− 8t− 8t2(x2+y2)+4xyt2− cos exp{t(x2+y2−1)},
g(t, x, y) = cos{4t2(x2 − y2) exp[t(x2 + y2 − 1)]}.

The solution of the above problem is z̃(t, x, y) = et(x
2+y2−1).

Table 4. Explicit difference method

h1 = h2 h0 Maximal error Time
10−1 10−4 1.227446 · 10−4 1 min

2−1 10−1 10−5 8.719288 · 10−5 3 min
2−2 10−1 2−5 10−4 4.751054 · 10−5 20 min

Table 5. Explicit difference method, condition (3.18) violated

h1 = h2 h0 Maximal error
10−1 2 · 10−3 1.312591 · 10−4

2−1 · 10−1 10−4 1.952779 · 100

2−2 · 10−1 10−4 1.026864 · 109
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Now we consider implicit difference schemes with steps of the mesh given
in Table 5.

Table 6. Implicit difference method

h1 = h2 h0 Maximal error Time
10−1 2 · 10−3 1.325853 · 10−4 2 s.

2−1 10−1 10−4 8.771281 · 10−5 18 s.
2−2 10−1 10−4 4.757541 · 10−5 76 s.

Remark 5.3. Note that the right hand sides of the equations considered
in this section satisfy the assumptions of Theorem 4.3. The local Lipschitz
condition with respect to the function variable holds and the global Lipschitz
condition is not satisfied.

Our considerations show that there are the following relations between
explicit and implicit difference methods for (1.1), (1.2). Assumptions on the
regularity of given functions are the same in the theorems on the convergence
of explicit and implicit difference schemes. We need condition (3.18) on the
mesh for explicit difference methods, while this condition is not needed in
the case of implicit difference methods. Error estimates are the same for
both methods. Tables 2, 3 and 5, 6 show that there are implicit difference
methods which are convergent, while the corresponding explicit difference
schemes are not.
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