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Comparison of explicit and implicit difference schemes
for parabolic functional differential equations

by ZDz1sEAW KAMONT and KAROLINA KROPIELNICKA (Gdarisk)

Abstract. Initial-boundary value problems of Dirichlet type for parabolic functional
differential equations are considered. Explicit difference schemes of Euler type and implicit
difference methods are investigated. The following theoretical aspects of the methods are
presented. Sufficient conditions for the convergence of approximate solutions are given
and comparisons of the methods are presented. It is proved that the assumptions on
the regularity of the given functions are the same for both methods. It is shown that
the conditions on the mesh for explicit difference schemes are more restrictive than the
suitable assumptions for implicit methods. There are implicit difference schemes which are
convergent while the corresponding explicit difference methods are not convergent. Error
estimates for both methods are constructed.

1. Introduction. Difference methods for parabolic functional differen-
tial equations (with initial-boundary conditions) are obtained by replac-
ing partial derivatives with difference operators. Moreover, since differen-
tial equations contain functional variables which are elements of the set
of continuous functions defined on a subset of a finite-dimensional space,
some interpolating operators are needed. This leads to functional difference
equations of Volterra type. The stability of functional difference schemes is
investigated by using comparison techniques.

In recent years, a number of papers concerning explicit difference methods
for parabolic problems have been published. Difference approximations of
nonlinear equations with initial-boundary conditions of Dirichlet type were
considered in [8], [10], [22]. Numerical treatment of functional differential
equations with initial-boundary conditions of Neumann type can be found
in 3], [I2]. The convergence results for a general class of difference schemes
related to parabolic problems with solutions defined on unbounded domains
can be found in [I6], [29]. The papers [], [6], [9], [13], [14], [I7] concern
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implicit difference schemes for parabolic problems. Error estimates implying
the convergence of implicit difference schemes are obtained in those papers
by using difference inequalities or simple theorems on recurrent inequalities.

Monotone iterative methods and implicit difference schemes for com-
puting approximate solutions to parabolic equations with time delay were
analyzed in [15], [18], [19], [30].

All the above results on numerical methods for parabolic functional dif-
ferential equations have the following property: the authors have assumed
that solutions of initial-boundary value problems are defined on intervals
[0,a] x [—¢,c] € RYT™. It is clear that the sets of the form [0,a] x Q where
@ C R" is a bounded set are natural domains on which solutions of mixed
problems for parabolic functional differential equations are considered. We
start investigations of difference schemes for nonlinear parabolic functional
equations with solutions defined on [0, a] x Q.

Note that cylindrical domains appear in theoretical results on the exis-
tence and uniqueness of solutions to parabolic functional differential prob-
lems (|11, [20], [26], [27]).

In this paper we investigate theoretical questions for explicit and implicit
difference schemes generated by initial-boundary value problems of Dirich-
let type for functional differential equations with solutions considered on
cylindrical domains.

Now we formulate our functional differential problems. For any metric
spaces X and Y we denote by C(X,Y) the class of all continuous func-
tions from X into Y. We use vectorial inequalities to mean that the same
inequalities hold between their corresponding components.

Let @ C R™ be a bounded domain with the boundary 9@Q. Write E =
[0,a] x Q, Eg = [~bp, 0] x Q where @Q is the closure of Q. For each (t,z) € E
we define

Dlt,z] ={(r,y) eR™™": 7 <0, (t+ 7,2 +y) € By UE}.

For a function z : Eg UE — R and (t,x) € E we define a function z ) :
Dlt,z] — R by 2 4)(1,y) = 2(t + 7,2 + y) for (7,y) € D[t,x]. Thus z ) is
the restriction of z to the set (Ep U E) N ([—bo,t] x R™), shifted to the set
Dlt, x].

There is [¢,d] C R™ such that D[t,z] C [-bo — a,0] X [¢,d] for (t,z) € E.
Write I = [~by — a,0], B = I X [¢,d]. Let M,,x, be the class of all n x n
symmetric matrices with real elements. Set 2 = F x C(B,R) x R"™ x My, xp,
OFE = [0,a] x 9Q and suppose that F : 2 — R, ¢ : Eg UJE — R are
given functions. Let z be an unknown function of the variables (t,z), x =
(1,...,2y). We consider the problem consisting of the functional differential
equation

(1.1) Opz(t,x) = F(t, 7, 2(4,0), Ou2(t, ), Ora2(t, 7))
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and the initial-boundary condition

(1.2) z(t,x) = p(t,z) on EgUOE
where 0,2 = (0, 02,2), Orz =[Oz, Z]ijl. We will say that I satisfies
condition (V') if for each (t,z,q,5) € EXR"™ X M, %, and for w,w € C(B,R)

such that w(r,y) = w(r,y) for (1,y) € D[t,x] we have F(t,z,w,q,s) =
F(t,x,w,q,s). Condition (V') means that the value of F' at (¢, z,w,q,s) € 2
depends on (t,z,q, s) and on the restriction of w to the set D[t, z] only. We
assume that F' satisfies condition (V') and we consider classical solutions to
1), 2.

We prove that there are explicit and implicit difference schemes for ,
which are convergent, and we compare them.

Two types of of assumptions are needed in theorems on the convergence
of functional difference problems generated by , . The first type
conditions concern the regularity of F. Assumptions on the regularity of the
given functions are the same for explicit and for implicit difference methods.
We prove that error estimates are the same for both methods.

The second type conditions concern the mesh. We show that we need
strong assumptions on the mesh for explicit difference methods and we do
not need assumptions on the mesh for implicit difference schemes. We show
that there are implicit difference methods which are convergent, while the
corresponding explicit difference schemes are not. We present error estimates
for both methods.

The authors of [1, [3], [4], [8], [10], [12], [13], [16], [22] have assumed
that the given functions satisfy the Lipschitz condition or satisfy nonlinear
estimates of Perron type with respect to function variables and that these
conditions are global with respect to function variables. Our assumptions are
more general. We assume that nonlinear estimates of Perron type are local
with respect to function variables. It is clear that there are differential equa-
tions with deviated variables and differential integral equations such that
local estimates of Perron type hold and global inequalities are not satisfied.

Relations between explicit and implicit difference methods for quasilin-
ear functional differential equations are given in [5]. The present paper is a
continuation of [5].

Sufficient conditions for the existence and uniqueness of classical or gen-
eralized solutions of parabolic functional differential equations can be found
in [2], [111, [21], [23]-[26], [31].

Differential equations with deviated arguments and differential integral
problems can be derived from , by specializing given operators.
Information on applications of functional differential equations can be found
in [31].
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2. Discretization of functional differential equations. For any
spaces X and Y we denote by F(X,Y') the class of all functions defined
on X and taking values in Y. We will denote by N and Z the sets of natural
numbers and integers respectively.

We define a mesh on Ep U E in the following way. Let (ho,h’), b =
(h1,...,hy), stand for steps of the mesh with respect to ¢ and x respectively.
Set h = (ho, h') and t") = rhg, r € Z. For m = (my,...,my,) € Z" we put
z(m) = (myhy,...,myhy) and

:{x(m):mEZn}a Qh:QmRZ7 @h:@mRZ
Write J = {(¢,5) :4,j=1,...,n,i# j} and ¢; = (0,...,0,1,0,...,0) € R"
with 1 in the ith position, 1 < ¢ < n. Suppose that we have defined the sets
J4, J_ C Jsuch that JLUJ_ = J, J NJ_ = (). We assume that (j,7) € Jy if

(i,7) € J4. In particular, it may happen that J; = () or J_ = (). Relations be-
tween J,, J_ and equation 1' are given in Section 3. For PAUDNS R} we put

Ggm) = {x(erei) ci=1,...,n}U {x(mfe") c1=1,...,n},
65" = {2t s (i, j) € JYU (a9 (i) € T}
U {zmrei—e) . (i, 4) € J}

and 9(™) = 0§m) U Hém). Write

IntQy, = {x(m) € Qp: 0(’”) C @h}, ath =Qpn \ Int Qy,.
We will approximate the partial derivatives 0y = (0z,,- - ., 05, ) and

Opz = [8$i$j]?;j:1
with difference operators 6 = (d1,...,d,) and
8% = 6] j=1

respectively. We will calculate the difference expressions 5z(t(7"), x(m)) and
6@ z(t™) £(m) for each point (t0), (™) € [0,a] x Q. Then we need addi-
tional mesh points on the set Q. For each (™ € 9yQp and i,j =1,...,n,
1 # j, we define

/\Z(T) = max{\ € (0,1] : 2™ + \hse; € Q},

/\gm) = max{\ € (0,1] : (™ — \nse; € Q},
AETA = max{A € (0,1] : CU(m) + A(hie; + hjej) € Q},
A =max{X € (0,1] : 2™ + A(—hie; + hje;) € Q)
/\5 3 = max{A € (0,1] : z(m + A(hie; — hjej) € Q},
)\E 3 = max{\ € (0,1] : 2™ — X(he; + hje;) € Q}.
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It is clear that these numbers depend on 2™ € 9yQy. For simplicity of no-
i, A A ;i Ai_ j_ instead of )\Z(.T), ete. Set

tation we write A i g

) Ty joy Ny g
S,(ll) = {z € 0Q : there are '™ € 8,Q;, and i € {1,...,n} such that
=2 4+ )\ Lhie; or x = M — N, hiei},
(2) = {z € 8Q : there are '™ € 8,Q;, and (i,5) € J such that
=2 + Aiyjy (hiei + hje;) or
T = SL‘(m) + )\i+j_ (hzel — hjej) or
z=zm — Ni_j_ (hie; + hjej)}
and S, = S U S Write X), = Q4 U S, Then X, is the set of all mesh
points in Q.
Denote by A the set of all h = (hg, k') such that there are Ky € C and
co > 0 satisfying Koho = bo and h;h;' < ¢ for (i,j) € J. Let K € N be
defined by Khy < a < (K + 1)hy. Write

By ={(t"2):0<r <K, z€ X},

Eop={0t",2): —Ky<r <0,z € X},
BBy ={(t",2):0<r < K,z €8},
B, ={tM,2):0<r<K-1,z€Q},

Hh:{t :0<r<K}

where h € A. For functions z : Fgp, UE, = R, x: X;, = R, w: 60, — R we
write z("™) = 2(¢t() 2(m)) for (¢, 20™)) € 6;, x Qp, and x(™ = x(z(™) for
™ e Qp, and W) = w(t™) for t) € 6y,

If v € [-1,1] and (t™), 2™ + phie; + vhje;) € [~bo,a] x Xj then
we put z(mmtpeitve;) — z(t(r),x(m) + phie; + vhje;) and y(mtheitve;) —
X(x(m—&—,uhiei—l-uhjej)).

Solutions of difference functional equations are elements of the space
F(Eo U Ep, R). Equation (I.1)) contains the function variable z(; ,,) which is
an element of the space C(D]t, z], R). Thus we need an interpolating operator
Tn : F(Egp U ER,R) — C(Ep U E,R). In Section 3 we adopt additional
assumptions on Tj,. For z € F(Ey, U Ep,R) and (t(r),x(m)) € 0y, x Qp we
write (T52)(,m) instead of (Th2) () 4om)). Set

Fexn[2]7™ = F(t0), 2™ (T3,2) 1 g, 620, 6@ 2mm)

and

i [Z(T—i-l,m) o Z(r,m)]'

ho

502(T’m) =
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We will approximate classical solutions of (1.1f), (1.2)) with solutions of the
difference functional equation

(2.1) 802™™ = Fey p[2] ™)
with the initial-boundary condition
(2.2) 2t x) = pp(t,x))  on EgpUdE),

where ¢p, @ Egp U OgER — R is a given function. Problem (2.1)), (2.2) is
considered as an explicit difference scheme of Euler type for (1.1f), (1.2).
Set

Fin a0 = F(HD, 207 (Ty2) g, 671§ (r1m))
The functional difference equation
(23) 602(T’m) — Flmh[z](nm)

with the initial-boundary condition is considered as an implicit differ-
ence scheme for , .

The above numerical methods have the following properties: the differ-
ence operators 0z and 62z are calculated at the point (t(r), x(m)) in 1'
and at (¢0+D 2(m) in . The function variable (7})(,,, appears in a
classical sense in both methods.

The definition of the difference operators

(2.4) 0z = (012, 0n2), 6Pz = [8i2]y

falls naturally into two steps. In the first step we assume that z("™) € Int Q.
Then we consider the case when z(™) € 9yQy,. For (t0),2(™) € 6}, x Int Qy,
we write

5;rz(r,m) _ %[Z(r,m—s—ei) o Z(T,m)]’
5i—z(r,m) _ hi[z(r,m) Z(r,mfei)]7 1<i<n,

and
(2.5) 82 = LigF(mm) g hm)) g hm) = gEg M)y 1 < <
The difference expressions 6;;2"™ for (i,j) € J are defined by

(2.6) 82" = 3[6F 07 2 4 576k for (i) € T,

(2.7) 82" = Lot 4 57620 for (i, ) € Ty

We now define the difference operators (2.4) for (¢, (™) € 6), x 9,Q;,. We
put first, for 1 <1 < n,

—_

1
9. 52 (r,m) _ (rm4+Xi_e;)  _(rm—X;_e;)
(2.8) z —hi()\i+ v [z + z ]

)
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2 1 1
4 (r,m—&-)\i+ €;) (r,m)
W2 iy Oy, +A0) N
1 Z(T,m*/\i_ei) )
MOy M)

(29) 6iiz(7"m) =
+

For (i,7) € J_ we write

(2.10) (SijZ(T’m) _ i {A(m (rm)+B(m) (Tm+/\1+el)+0(m) (rym—Xi_es)

+ ng)z(r7m+kj+ej) + E(ﬁm)z(r,m—kjiej)
4+ FUm) rm=Xi_j, (eimej)) | Ggm)z(r7m+ki+j,(€i—€j))}

where
A(,m) _ 1 _ 1 B 1 ’
AipgANiigy o AjpAis Al
(m) 1 (m) 1
B_ = T C_ = T
Aiy (Niy +Ai0) Ai—(Aiy +Ai)
1 1
ng) _ : EEm) _ ,
Ajr (N +A50) Ajm(Ajy +A40)
(m) -1 (m) —1
Fm — ., GV = .
Aim gy Ny A ) Ao (Nip g+ Aisgy)
For (i,7) € J4+ we write
(211) 5ijz(r’m) = {A(m (r;m) + B( m) (7" mAXie;) + C_(’_m)z(hmf)\i_ei)

hih;j
+ D(m)z(r,m+)\j+e]~) + E_(i_m)z(r,mf)\j_ej)

—|—F_$_ ) (rnmAAi i, (eites)) 4 Gim)z(rvm*)\i_j_(ei+ej))}

where
m —1 ! !
Al = VIO VPR Vb VRS VIO Vi
ermey Y ey
m —1 " -
SR T evEs R EE A v e )
Fim = GSF):)\i g +)\z‘+j+)'

Aiy gy <)"i+ g TN )’
The vector 62" and the matrix 62 2("™) are defined b i . . The

vector 6z"t1™) and the matrix 6 z(*+1™) appear in
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In the same way we define the difference expressions
Sx ™ = (51X(m)7 o ’5nx(m)) and @y (M) = = [8 A )] -

where y : X — R.

The above definitions have the following properties. Put A\;, = A\;_ =1
fori = 1,...,nand/\i+j7 :Ai7j+ = 1f0r(i,j) eJ_ and)\i+j+ = )\i,j, =1
for (4,7) € J4+. Then the definitions (2.8 . are equivalent to f
respectively. It follows that we can use formulas ' for all points
(t( r) :c(m)) € 0 x Qh Note that the numbers Z(rtt m‘Wh vhj) where W, vV E

[—1,1] appear in . It follows that (| , is an implicit difference

method for (|1.1)), 1)

We will prove that under natural assumptions on the given functions
and on the mesh there exists exactly one solution up : Eyp U Ep, — R to

(2.1), (2.2) and there is exactly one solution vy : Egp U Ep — R to (2.3)),
(2.2]). Solutions of the above difference functional problems are approximate

solutions to (1.1)), (1.2]). We give sufficient conditions for the convergence of
the sequences of approximate solutions to a classical solution to (|1.1)), (1.2).

3. Solutions of functional differential and diﬁ'erence problems.
We first construct estimates for solutions to , . A function z :
EyUE — R will be called of class C*2 if z € C(Eo U E ,R) and z(-,z) :
[—bo,a] — R is of class C! for z € Q and z(t, -) : @ — R is of class 02 for

€ [~bo,a]. For z € C(EgUE,R), u € F(Ey,UE}) we define the seminorms

|lz|l: = max{|z(7,x)| : (1,2) € EgUE, T < t}, 0<t<a,
|z||h.r = max{|u(T,x)| : (1,2) € Eg, UEp, T < t("“)}, 0<r<K,
For w € C(B,R) we put ||w||p = max{|w(r,y)|: (1,y) € B}.
ASSUMPTION Hy[F, ¢]. The function F' : {2 — R of the variables (¢, z, w,
q,s), where ¢ = (q1,...,qn), 8 = [Sijli,j=1,...,n, satisfies the conditions:

1) F is continuous and satisfies condition (V'),
2) the partial derivatives

OgF = 0y, F, ..., 00, F), OsF =105, Fli' ;=1

Sij

exist on {2 and the functions O, F : 2 — R", O,F : 2 — My, are
continuous and bounded,
3) the matrix 0sF is symmetric and

(3.1) Z oy F(P)yiy; >0 for y = (y1,...,yn) ER",
B,j=1
where P = (t,z,w,q,s) € §2,
4) there is g : [0,a] x Ry such that
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(i) o is continuous and it is nondecreasing with respect to both vari-
ables and for each 7 € R} the maximal solution of the Cauchy
problem

(32) (1) = ot w(t), w(0)=m,
is defined on [0, al,

(ii) the estimate
|F(t,£€, w, O[n]a O[nxn])| < Q(t’ HwHB)

is satisfied for (¢, z,w) € ExC(B,R), where 0p,; = (0,...,0) € R"
and Op,xpn] € Mpxn is the zero matrix,

5) p € C(EyUOE,R) and 7 € Ry is defined by the relations
(3.3) lo(t,z)| <fon Ey and |p(t,z)] <w(t,7) on E
where w( -, 7) is the maximal solution to (3.2)) with n = 7.

LEMMA 3.1. If Assumption Hy[F, ] is satisfied and Z : Eg UE — R is
a solution to (1.1)), (1.2) and 2 is of class C'2 then
(3.4) |Z(t,x)] <w(t,m) on E.

Proof. For e > 0 we denote by w(-,7,¢) the maximal solution of the
Cauchy problem

() = olt,w() +e, w(0) =i +e.

There exists € > 0 such that for 0 < ¢ < £ the function w(-,7,¢) is defined
on [0, a] and

liII(l] w(t,n,e) =w(t,n) uniformly on [0, al.

Write ((t) = ||Z]|¢ for ¢t € [0,a]. We now prove that

(3.5) C(t) <w(t,m,e) fortel0,al

Suppose for contradiction that fails to be true. Then the set
Ly ={tel0,a]: ¢z w(t7,e)}

is not empty. Write £ = min X, . From it follows that £ > 0 and there
exists & € Q such that w(t,7,¢) = ((t) = |2(¢,2)|. The condition |Z(¢, )| <
w(t,n,e) for (t,x) € O E implies that & € Q). Two cases are possible: either
(i) 2(¢,%) = w(t,,¢) or (ii) 2(f, ) = —w(t,7,¢). In the first case,

(3.6) D_¢(0) = o/ (F,,2)

where D_ is the left-hand lower Dini derivative. Write
A(t, ) = F(t, @, 21 2), 0 2(t, x), Op Z(t, 7)) — F(L, 2, 2t 2, O] O )
B(t,r) = F(t, 2, Z(t,2), O] O xn] ) -
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Then

93 fo,

=1

O0g, F(P(T,t,2)) dr 0y, 2(t, )

<.
3 Q=

1
+ S('?SUF (1,t,x))dr &Uixjé(t,x)
4,j=10

where P(7,t,z),0 < 7 < 1, are intermediate points defined by the Hadamard
mean value theorem. Since 7 € @, we have 9,2(¢,7) = 0, and

Zaﬂwa t,%)yiy; <0 fory= (y1,...,yn) € R™.
i,j=1

The above relations and (3.1]) imply

n 1

> N 0s, F(P(7,%,2)) dr 0z,0,2(E,3) < 0

ij=10
and consequently A(Z, #) < 0. Then
D_((t) < 02(t,7) = A(t,2) + B(t,2) < o(t, w(t,7,€)) < Ww'(L,7,¢),

which contradicts (3.6). The case 2(t,Z) = —w(t,7,¢) can be treated in a
similar way. Hence, X', is empty and inequality (3.5) is proved. Letting ¢
tend to 0 in (3.5) we obtain (3.4). =

ASSUMPTION H[F, ¢, pp]. The functions F' : 2—Rand ¢ : EgUhE — R
satisfy Assumption Hy[F, ¢| and

1) for P = (t,z,w,q,s) € 2 we have
(3.7) 0s,. F(P) >0 for (i,5) € Jy, 0s,, F(P) <0 for (i,j) € J_,

Sij Sij

2) the steps of the mesh satisfy the conditions

1 1
(3.8) Lo pp) -3 10, F(P)] = 5104, F(P)] 2
7 j=1
JFi

where P € 2,i=1,...,n
3) there is ap : A — R, such that

(o(t.2) — on(t.2)] < o) on By UOVE and  Jim ag(h) =0,
4) the constant 7 € Ry is defined by the relations
(3.9) lon(t,z)| <7 on Eyp and |on(t,z)| < wp(t,n) on OoE},
where w( -, 7) is the maximal solution to (3.2) with n =17
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REMARK 3.2. We have assumed that the matrix 0,F satisfies the condi-

tion: for each (i,7) € J we have
Os; F(P)>0o0n §2 or 0s,F(P)<0on{2.

Conditions ([3.7]) can be considered as definitions of J; and J_.
REMARK 3.3. Suppose that there is ¢ > 0 such that

05, F(P) =Y |05, F(P)|>¢, Pef, i=1,.n.

7=1

J#
Then condition (3.1]) is satisfied (see [28]) and there is €9 > 0 such that for
|h|| < eo and for hy = --- = h,, inequalities (3.8)) hold.

AssuMPTION H|[T}]. The operator Tj, : F(Ey,UEpL,R) — C(EyUE,R)
satisfies the conditions:

1) for z,z € F(Ey ;U Ep,R) we have
1Thlz] = ThlZlll o) < llz = Zllnr, 0<r <K,
2) if z: Eg UE — Ry is of class C!2 then there is v, : A — R, such
that
||Th[2h] - ZHt < ’Y*(h)7 0<t< a, }1111%7*(}1) = 07
where zj, is the restriction of z to Egp U Ey,
3) if 0y € F(Eyp U ER,R) is given by 04(¢,z) =0 for (t,z) € Egp, U Ep
then 7},[04](¢,xz) = 0 for (¢t,x) € Ey U E.

REMARK 3.4. If Q = (—¢,c) where (—¢,c) CR", ¢ = (c1,...,¢n), ¢ >0
for 1 < i < n, then the interpolating operator T} given in |7, Chapter VI]
satisfies Assumption H|[T}]. The construction of T}, presented in [7] can be
extended to the set Fy U E considered in this paper.

Suppose that Assumption H[F, ¢, o] is satisfied. For P € 2 we put
n
1 1

! Xo(P) = =2ho 2 35 3~ Osul'(P
(3.10) o(P) o;h? )\i_)\i+8“ (P)
+ 2hg Z 1 1 0, F(P)
i hz‘hj A /\i+ ij
(i,5)€J
1 1
+ ho 0s,. F(P)
(i,j)GJ_ hlh] )\Z* ]+)\Z+‘]7 J
1 1
— hg 8SZ]F(P)7
gyen, it Mg iy

and



146 Z. Kamont and K. Kropielnicka

(’L) 2h0 ’L+
XV(P) = ————— 3
1 <
Fpg )= ; ey 22 F (P) ’]’
o \ J#i
(@) 0 — i
xX"(p)= 0q, F'(P
— ( ) )\27()\1'7 +)\Z+) |: 2h2 q; ( )
LI
gt ; hih; ‘BS”F(P)@ ’
J#i
where ¢t =1,...,n and
. h 1
Y(W)(P) _ o 0s,. F(P) for (i,7) € Jy,
* hily iy gy g+ Aig )Y :
(i.9) ho 1 i\ j
A P) = 0s,, F(P) for (i,7) € J4,
+ ( ) hzhj )\i,j, (Ai,j, + )\i+j+) j ( ) ( ) +
(i) —ho 1 ' j
v (py = 0s,. F(P) for (i,j) € J_,
hihj Ni_ g ()\z‘, J+ + )\z'+ j7> ’
i _ 1 ..
209 (p) — ho 8, F(P) for (i,5) € J_.

hihj iy g Nz g+ i) Y
Suppose that y : X; — R and 2™ € Q;,. Write
(3.11)

O, P) = X" Xo(P +Z (i) XD (P) 4y X O (p)

+ Z X(m+>\z+]+(€z+€g)) J£ )(p) +X(m*&fjf(eﬁej))zg_ivj)(p)]
('7j)€J+

+ Z (m—Xi_j4 eL_e]))Y( 79)( )+X(m+>\z‘+jf(6i—€j))Z(jvj)(p)]
(i,5)ed-

where P = (t,z,w, q,s) € £2. Important properties of difference schemes are
given in the next lemma.

LEMMA 3.5. Suppose that Assumption Ho[F, | and conditions 1), 2) of
Assumption H[F, @, ¢p) are satisfied and x : X — R, (™) € Qp, and

G [x, P] = ho Z 0y F(P) 6,:x(™

+hOZ s” ’L]X ) P
t,j=1

(t,x,w,q,s) € {2,
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where 5y and 6@y are given by (2.8)(2.11). Then

(3.12) Gy x, Pl = 6" [x, P]

and

(3.13) x9Py>o0, xPy>0 fori=1,.
(3.14) vipy=o0, Z20P)y>0  for (i,5) € Jy,
(3.15) v (py>o, z9@P)y>0 for(i,j) € J_,
and

(3.16)  Xo(P)+ Zn:[X(j) (P) + XD (pP)]
=1

+ S ey z80 e+ S e+ 289 p) =o.
(i,j)€J+ (i,j)GJ_
Proof An easy computation Shows that 1) is a consequence of ([2.8])—

. From , we obtain . Condition follows

from the formulas for XO(P) xV(p), X“)( ) Y+i’j)(P),Yfi’j)(P),Z(f’j)(P),
z5(p). w

THEOREM 3.6. Suppose that Assumptions H|[Ty]| and H[F, ¢, p] are sat-
isfied.

I. There exists exactly one solution vy, : Fop U Ep — R to (2.3)), (2.2),
and
(3.17) lop(t, )| < w(t, )  for (t,z) € Ep,

where w( -, 1) is the mazimal solution of the Cauchy problem (3.2)) withn =7

and 1 is defined by (3.9).
I1. Assume additionally that the steps of the mesh satisfy the condition

(3.18) 1+ Xo(P)>0, P=(tz,wq,s)E,
where Xo(P) is given by (3.10). Then there is exactly one solution uy, :

EopUE, — R to (2.1), 2.2), and
(3.19) lup(t, )| <w(t,7) for (t,z) € Ej.

Proof. The proof will be divided into two parts.
I. We prove that there exists exactly one solution v, : Egp U Ep — R

to (2.3 1-) Suppose that 0 < r < K is fixed and that the solution vy to
.i i is glven on (Eo; U Ey) N ([—bo, 1] x R™). We prove that the
values vy, (t t(r+1) ,x), x € Xp, exist and they are unique. It is sufficient to

show that there exists exactly one solution of the system of equations

(3.20) ) = o™ 4 hF(H0), 50, (T, g, 6201, 5 541y
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where z(™ € Qy,, and
(3.21) 2(tTHY 1) = o, (10T 1) for x € Sy

Set
Xn={x e F(Xp,R) : x(x) = go(t(”l), x) for x € Sp}.

For x, x € X} we put
[Ix = X[l = max{|(x — X)(@)| : © € X5}
It follows from Assumption H[F, ¢, @] that there is Ay, € Ry such that

(3.22) Ap+ Xo(P) >0 for P = (t,z,w,q,s) € §2,
where X((P) is given by (3.10). Let W}, be the operator defined on X}, by
1
(m) _ Ay ™ (r;m)
Whlx] 1T Ah[ + vy,

+ ho F (£, 2™ (Thon) g, X ™, 6B M), 2™ € @y,
where 6x(™ and 6 (™) are defined by f and
Whix](z) = goh(t(’”rl), x) forx € Sp.
Then Wy, : Xy — 2. It is clear that problem , is equivalent to
the equation
(3.23) X = Walxl.

We prove that

B2 (W - W < - il on .

If (™) € Q) then there is P € 2 such that
(1+ Ap)[Wi[x]™ — Wh[ o]

=Ah<x—>z)<m>+ho§jati<P 8i(x—X)"™ +hg Z 5, F(P) 655 (x—%)\™.
i=1 3,j=1

We conclude from Lemma [3.5] that
(1+ Ah)[Wh[ 10— Wi [K]"™)] = (A + Xo(P))(x — x)™

+ Z X( ) ~)(m+)\i+ei) + Z X(j)(P)O( o )Z)(m—)\i,ei)
=1
+ Z Y(’L,J 56)(m+)\i+j+(ei+ej)) + Z_(:»]) (P)(X7)2)(m_>\i_j_(ei+ej))]
(4,4)€J+

+ 30 WP Al 4 Z00(P) (- A (o)),
(1,5)€J—
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It follows from (3.13)—(3.16)), (3.22) that

Wi ™ = W3] < [x =%, 2" € Q.

1—|—A

If £ € Sj, then Wj[x](x) — Wi[Y](z) = 0. The above relations imply (3.24).
The Banach fixed point theorem implies that there exists exactly one solution
to . It follows that the values vh(t(”,x), r € Xj, exist and they are
unique. The function vy, is given on Ejyp. Then the proof of the existence
and uniqueness of a solution to , is completed by induction on r,
0<r<K.

Now we prove 1) Write (ZJ,(LT) = |lvnllpr, 0 < r < K. It follows easily
that

(TH) <wg)+hog(t(’”) JJ,(L)), 0<r<K-1,
(0)

and @, ' < 7. The function w(-,7) satisfies the recurrent inequality
(3.25) w7 > Wt 7) + hoot, w(t™, 7)), 0<r<K-1.

From the initial inequality w( ) < w(t9), 7) we conclude that G)}(f) <w(t",7)
for 0 <r < K and (| - follows.

IT. It is clear that there exists exactly one solution to (2.1), (2.2)). We
prove ([3.19). It follows from (2.1 that

(326) g—i_l ™ = =h F( ( ) ( )7 (Thuh)[’r,m]a O[n]a O[nxn]) + A(T’m)
where
ALY = ) g [P, 2, (T ), Sy ™, 5™

F(t"), 2™, (Tyun) ] Oy Opsen) )]

We conclude from Assumption H[F,p, ] and from Lemma that for
cach (t0), z(™) € ), x Q, there is P € £ such that

(327) AU = o™ +h028qu P)s;ul™™ + hy Z 5, F(P)6ul™™
i=1 B,j=1

™ + O up (10, ), P = (1 + Xo(P))uj ™

+ Z[X(ﬁ (P) uﬁj”m“”ei’ + XD (Pyu )

+ Z rm+)\l+3+(el+ej))+Z(z7])( )UELT:mf)‘i*j*(eiJrej))
( 7J)€J+
+ Z Y(m (rym=Ai—j+(ei—ej)) +Z(_i’j)(P)uér’m+>‘i+j_(ei_ej))].

4,5)EJ—
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Write wér) = |lup ||lpr, 0 < 7 < K. It follows from |D|' and from
(3.18), (3.26]), (3.27) that

w,(lTH) < w}(lr) + hgg(t(r),w}(:)), 0<r<K-1,

and wl(lo) < 7). The above relations and 1) imply || This completes
the proof of the theorem. m

4. Convergence of difference schemes. For z = (z1,...,z,) € R"
and W € M,xn, W = [wij]?,jzl we put

n n
lzll =3 lail, W :maX{Z\wzjy : lgign}.
=1

j=1
Write 7, = max{7,7} and C = w(a,n,) where w(-,n,) is the maximal
solution to (3.2) with n = n,. Set 2[C] = {(¢,z,w,q,s) € 2 : |Jw||p < C}.
ASSUMPTION H|[F,o]. There is o : [0,a] x Ry — Ry such that
1) o is continuous and it is nondecreasing with respect to both variables,
2) o(t,0) =0 for ¢ € [0, a] and the function w(t) = 0 for ¢ € [0, a] is the
maximal solution of the Cauchy problem

(4.1) J(t) = o(t,w(t)), w(0)=0,
3) the estimate
(4.2) |F(t,z,w,q,s) — F(t,z,w,q,s)| < o(t,||lw— 0| B)

is satisfied on 2[C].

REMARK 4.1. It is important that we have assumed condition for
|lw| B, ||w||g < C. There are differential equations with deviated variables
and differential integral equations such that Assumption H[F), o] holds and
condition is not satisfied on §2. We will give suitable examples.

SupposethatF:ExR”anXn—>Rand[~1:E—>R,¢:E—>
R ¢ = (¢o,¢1,...,¢n), are given functions. We assume that F and L,
¢ are continuous and ¢g(t,z) < t and ¢(¢t,z) € E for (t,z) € E. Then
o(t,x) — (t,xz) € B for (t,z) € E.

Suppose that the function G : R — R satisfies the conditions:

(i) G is of class C' on R and there is C' € R, such that |G(p)| < C for

p €R, R
(ii) the function G(p) = pG'(p), p € R, is unbounded on R.

Let F': 2 — R be defined by

(43)  Flt,w,q,8) = Lt 2)w(d(t,2) — (4 2)Gu(d(t,z) - (t,2)))
+ F(t,x,q,s).
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Then reduces to the differential equation with deviated variables
Az(t,x) = L(t,2)z(p(t, 2))G(2(o(t, ) + F(t, x, Opz(t, ), Ouuz(t, x)).
Suppose that B, 4 > 0 are such that
IL(t, )| < B, |F(t,2,0p),0pxn)| <5 for (t,z) € E.

Then
(44) ’F(taxawyo[nbo[nxn})’ < BHw”B—i_:}/
where (t,z,w) € E x C(B,R) and the solution of (3.2]) is given by

B(t,m) = nexplfy + A1y

It follows that the function F' given by satisfies the Lipschitz condition
with respect to the function variable on 2[C] where C = &(a,n) and the
global Lipschitz condition is not satisfied.

Now we construct an integral functional equation. For the above G :
R — Rand F: E x R x My, — R we define

(45)  F(tzwas) =Lite) | wrydydrc( | winy)dydr)
Dlt,z] Dlt,x]
+F(t,z,q,9).
Then (|1.1)) reduces to the integral differential equation

Oz(t,x) = L(t, x) S 2(1,7) dydTG< S z(1,y) dyd7>
D[t,z] Dl[t,x]

+ F(t,z,0p2(t,2), Oppz(t, ).
It is clear that there are 3,a& > 0 such that the function F defined by l'
satisfies condition (4.4) where (t,z,w) € E x C(B,R). Then there is L > 0
such that Assumption H[F, ¢| holds for o (¢, p) = Lp and the global Lipschitz

condition is not satisfied.
Note that the function

G(p) = Cpsin(C1p) + Cy cos(Csp),
where Cy, C1,Cs, C3 € R, satisfies the above conditions (i), (ii).

LEMMA 4.2. Ifz: EgUE — R is of class C'2 then there is ay : A — R
such that

16207 — 0,2 < (), P20 — 9,02 < a(h)
where (t0), (M) € 0, x Qy, h € A, and limj,_g oy (k) = 0.

We omit a simple proof of the lemma. We now give sufficient conditions

for the convergence of difference schemes ([2.1)), (2.2]) and (2.3)), (2.2).
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THEOREM 4.3. Suppose that Assumptions H[T},], H[F, ¢, ¢n], H[F, o]

are satisfied and Z : Eg U E — R is a solution to (1.1), (L.2) and Z is of
class C12.

I. There is a: A — Ry such that
(4.6) |(Zh — vp)(t,x)| < a(h) on E,  and }lliné a(h) =0,
where vy, : EgpUER — R is a solution to (2.3)), (2.2)) and Z is the restriction
of Z to Ey.p U Ej.

II. Assume that the steps of the mesh satisfy the condition (3.18)) where
Xo(P) is given by (3.10). Then there is a: A — Ry such that

(4.7) |(Zh, —up)(t,z)| < a(h) on B, and lllin% a(h) =0,
where up, : Egp U Ep — R is a solution to (2.1)), (2.2).
Proof. The proof will be divided into two parts.

I The existence and uniqueness of the solution vy, : Egp U B, — R to
, . ) follows from Theorem (3.6} . Let Iim.p ¢ B}, — R be defined by

802" = Fiun 2] ™™ + T on B},

It follows from Lemma and from Assumption H|[T}] that there is v :
A — R, such that

T | < y(h) on Bj, and  lim y(h) = 0.
Write 9y, = Z;, — vp,. Then
(4.8) 192’"“"”) = 1953"””) + Ap[Zn, va) ™™ + By[2, vp) "™
where
AnlZn, va] "™ = o [Figp[20] ™
_ F(t(r)’ x(m)’ (Thvh)[r m], 52(1”4—1,771)7 6(2)2’(:—"_1’7”))] + 1115;,.177;)7
By [2n, v] "™ = ho[F (1™, 2(™) (Thvh)[rm]aéz}(l T 52) (THm))
— Fipn[vp] ™).

According to Assumption H[F, p, pp] we have

By [z, vp] ™ = hOZa F(P)6; 19(7"+1 ™ 4 he Z O, F( )5ij19§1T+1,m)
=1 ij=1
where P € (2 is an intermediate point. We conclude from Lemma that
(4.9) Bu[z, vn) "™ = O (Y, ), P).

Write 5,(;) = |9nllpr, 0 < r < K. It follows from Assumption H[T}] and
Lemma [3.1] that
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(4.10)
1(Tnzn) |8 < 20l < [Znllnr < w @), (@, 20™) € 6 x Q.
According to Assumption H[T}] and (3.17)) we have
(Thon)prmllE < 1 Thonllirr < llonllner < w@,5), (¢, 20) € ), x Q.
Thus we see that

I(Tnzn) il < Cy (Taon) oyl < C, (¢, 20™) € 0 x Q.

It follows from the above estimates and Assumption H[F, o] that
(4.11) | An (2, o) ™| < ho o (87, 5) + hory(h).

We conclude from (3.13)—(3.16)) and from (4.8)—(4.11) that the function ¢y,

satisfies the recurrent inequality
5,(:“) < ag) + hoa(t(”,ag)) + hoy(h), 0<r<K-1,

and 520) < ag(h). Let us denote by wy( -, 7, ap) the maximal solution of the
Cauchy problem
(4.12) J(t) = o(t,w(t)) +v(h), w(0)=ag(h).
Then

]llii% wn(t,v,a0) =0 uniformly on [0, a]
and

wr(ETH) . ag) > wp (7,7, o)
+ hoo(t(r),wh(t(T),’y,ao)) +hoy(h), 0<r<K-1.

This gives e, (t() < wy, (), 7, ag) for 0 < 7 < K. Thus we see that assertion

(4.6) is satisfied with a(h) = wi(a,y, o).
IT. We prove ({.7)). Let I'ex s : E}, — R be defined by the relation

5oz N(Tm) = Fexn[2n] "™ + F(rm) on Ej.
It follows that there is v : A — R4 such that
I <v(h) on By, lim () =0.
Write 9, = 5, — us. Then we have
(4.13) G = §rm) Ay (2, un] O™ + By[Zh, uy] 0™
where
Ap[2,0p) "™ = ho[Fey p[2,] "™
— P, 2™, (Tyun) o, 2™ 62 ™) + T,
Biln, un) ™™= ho [F (0, 2™, (Tiun) rm) 02 5<2>z,<; ™) Fexnloal"™].
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It follows from Lemma [3.5] that
(4.14) 9™ 4 By, uh](W> — "™ L olmE", -, Pl

_ (1 +XO 19(7"m + Z rm—l—)\H_ez) +X( )< )ﬁgr,m—ki_ei)]
+ Z J) rm+Az+J+(ez+eg))+Zg_i,j)(P)qgg,mﬂwr(eﬁeﬂ)]
( 7])€J+
+ Z ,J) ﬁ(rm Xi—j+(ei—ej)) +Z( J)( )ggﬁmﬁ\iﬂ—(@i—ej))}
i,j)€J-

where P € {2 is an intermediate point. Write égn) = |19n]lnr, 0 <7 < K. We
conclude from Assumption H[T}] and (3.19)) that

I(Thun) g8 < N Thunller < lunllne < w@,9), (), 20M) € 6, x Q.
The above relations and (4.10]) imply
I(Thzn)pm s < Cy I Thun)pmlls <C, (¢, 20™) € 0 x Q..
It follows from the above estimates and Assumption H[F, o] that
(4.15) |An[2n, un) ™™ < hoo (£, &) 4 hoy(R).
We conclude from (3.13)—(3.16) and from (3.18)), (4.13)—(4.15) that

|1§§lr,m) + Bh[éha uh](r,m)| < évi(:“)

Thus we see that the function €}, satisfies the recurrent inequality

D < &0 oo (1), D) 4 hoy(h), 0<r < K -1,
and & < «ag(h). Then we obtain (4.7) with a(h) = wp(a,y,ag) where
h
4.12

whp(+,7,ap) is the maximal solution to (4.12)) with the above given 7. This
completes the proof of the theorem. m

REMARK 4.4. Relations between hg and h’ are required in (3.18]). Sup-
pose that the steps (hi, ..., hy) are given and we have constructed the mesh
X}, on Q, the coefficients

XiesAig fori=1,....n, XN_jp, Nipj— for (i,7) € J_,
Aimjms Nijy for (i,7) € J4

are given and the function

~ 1
Xo(P) = h—OXO(P), P =(t,z,w,q,s) € 2,

is bounded. It follows that there is £ > 0 such that condition (3.18) is
satisfied for 0 < hy < gp.
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REMARK 4.5. Condition (3.18)) shows that the conditions on the mesh for
explicit difference schemes are more restrictive than the suitable assumptions
for implicit methods.

REMARK 4.6. Note that assumption 1’ for (t(r), ZL’(m)) € 0, x Int Qp,,
(w,q,s) € C(B,R) x R™ x M,,x, is equivalent to the following inequality:

1 1
41 1—2h0 5" = 0, F(P)+h 10, F(P)| > 0.
= ]

The conditions (3.18) and (4.16]) are complicated because we consider func-
tional differential equations with all the derivatives [0,z 2]} ;_;. Let us con-
sider the equation

Orz(t,x) = Ona,2(t, ) + F(t, 2, 2(1,0), On2(t, 7))

i=1
where f: E x C(B,R) x R" is a given function. Then condition (3.18)) has

the form
n

11
1_%02}712@20'

i=1
LEMMA 4.7. Suppose that Assumptions H|[Ty|, H[F,, @], H[F,o| are
satisfied with o(t,p) = Lp on [0,a] x Ry and Z : Eg U E — R is a solution
to (1.1), (1.2) and 2 is of class C'2. Then
|(Z, —op)(t,z)| < @&(h)  on Ep
where vy, : EgpnUER — R is a solution to (2.3)), (2.2) and Zj, is the restriction
of Z to By, U By and

a(h) = { ap(h)el + fY(Lh)(eLa —1) i L>0,
aop(h)er® + ay(h) if L=0.
If we assume that the steps of the mesh satisfy condition then
|(Zh —up)(t,z)| < a@(h) on Ep
with the above given &(h) where up, : Egp U Ep — R is a solution to ,
22).

We obtain the above estimates by solving problem (4.12)) with o(¢,p)
= Lp.

Lemma shows that we have obtained the same error estimates for
implicit and for explicit difference schemes.

REMARK 4.8. The results presented in the paper can be extended to
weakly coupled functional differential systems.
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5. Numerical examples. Write
Q={(z,y) eR*: 2 +¢* < 1},
E=100,025]xQ, Ey={0}xQ, FE=10,0.25]x0dQ.
We consider initial-boundary value problems for functional differential equa-
tions with solutions defined on E. Let us denote by z an unknown function
of the variables (t,x,y).
Implicit difference methods lead to nonlinear systems of algebraic equa-
tions. In our experiments we have obtained approximate solutions of suitable

nonlinear systems by using the Newton method. We have calculated three
Newton iterations.

ExAMPLE 5.1. Consider the differential integral equation

Orz(t,x,y) = 20522(t, ¢, y) + 20yy2(t, x,y)

+8in[0p 2 (L, 2, y) — Oyyz(t, 2, y) — 4% (2 — y*)z(t, 2, y)] + Ouy2(t, z,y)
T Yy

+ ts sz(t,s,y)ds —t S sz(t,x,s)ds
0 0

—z(t,z,y) sinz(t, z,y) + [t 2,y)2(t 2,y) + g(t,2,9)
with the initial-boundary condition
z(t,z,y) =1 for (t,z,y) € Eg U E.
where
ft,z,y) =1 —2? — y? + 8t — dayt® — 8t%(2® + 1?)
+ sinexp{t(1 — 2% — y?)},
g(t,z,y) = exp[t(l — 2%)] — 3 exp[t(l —y?)].
The solution of the above problem is known: it is
2(t,z,y) = exp{t(l — 22 — y?)}.

The following tables show the maximal values of errors for several step
sizes.

Table 1. Explicit difference method

hi1 = hs ho Maximal error Time
2711071 273107* 9.094634-10"* 6 min
4-1072 27%10* 7.431544-107* 17 min

5

275 27°10* 5.910445-10"* 60 min

Now we consider the implicit difference schemes with steps of the mesh
given in Table 2.
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Table 2. Explicit difference method, condition (3.18]) violated

h1 = hs ho Maximal error
271107! 107* 1.373362-10%
221072 107  5.287499 - 103

275 1073 3.140010 - 10'¢

Table 3. Implicit difference method

h1 = hso ho Maximal error Time
2711071 107® 9.113438-107% 185
221072 1073 7.441051-107%* 28

=

275 1072 5.913871-107* 50s

ExaMPLE 5.2. Let us consider the differential equation with deviated
variables

Oz(t,x,y) = 20522(t, x,y) + 20y 2(t, ,y) — Ozy2(t, 2, y)
— €08[0pa2(t, z,y) — Oyyz(t, ,y)]
+2(t, 5(V3z +y), 5(x — V3y)) cos 2(t, 3 (2 + V3y), 5(V3z — y))
+ [tz y)z(tz,y) + g(t 2, y),
with the initial-boundary condition
z(t,z,y) =1 for (t,z,y) € Ey U F,
where
ft,z,y) =2 —y*—1— 8t — 8t%(x® +y?) +4xyt® — cosexp{t(z®+y*>—1)},
g(t, z,y) = cos{4t*(x® — y*) exp[t(z® + y* — 1)]}.

The solution of the above problem is Z(¢, z,y) = et(@+y?=1),

Table 4. Explicit difference method

hi1 = hs ho Maximal error Time

1071 1074 1.227446 -10~* 1 min
211071 1075 8.719288 -107° 3 min
2721071 27°107% 4.751054-10° 20 min

Table 5. Explicit difference method, condition (3.18) violated

h1 = hs ho Maximal error
107t 2.107%  1.312591-107*
2-t.107t  107% 1.952779 - 10°
272.107' 107" 1.026864 - 10°
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Now we consider implicit difference schemes with steps of the mesh given
in Table 5.

Table 6. Implicit difference method

h1 = hs ho Maximal error Time
107t 2.107% 1.325853-10"* 2.

271107t 107*  8.771281-107° 18s.

2721071 107*  4.757541-107° 76 s.

REMARK 5.3. Note that the right hand sides of the equations considered
in this section satisfy the assumptions of Theorem [£:3] The local Lipschitz
condition with respect to the function variable holds and the global Lipschitz
condition is not satisfied.

Our considerations show that there are the following relations between
explicit and implicit difference methods for , . Assumptions on the
regularity of given functions are the same in the theorems on the convergence
of explicit and implicit difference schemes. We need condition on the
mesh for explicit difference methods, while this condition is not needed in
the case of implicit difference methods. Error estimates are the same for
both methods. Tables 2, 3 and 5, 6 show that there are implicit difference
methods which are convergent, while the corresponding explicit difference
schemes are not.

Acknowledgements. The authors are greatly indebted to the referee
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