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Convergence in capacity on smooth hypersurfaces
of compact Kähler manifolds

by Vu Viet Hung (Son La) and Hoang Nhat Quy (Da Nang)

Abstract. We study restrictions of ω-plurisubharmonic functions to a smooth hyper-
surface S in a compact Kähler manifold X. The result obtained and the characterization
of convergence in capacity due to S. Dinew and P. H. Hiep [to appear in Ann. Scuola
Norm. Sup. Pisa Cl. Sci.] are used to study convergence in capacity on S.

1. Introduction. In [BT1, BT2], Bedford and Taylor laid the founda-
tions of the theory of the complex Monge–Ampère operator which is nowa-
days a central part of pluripotential theory. Convergence in capacity Cn on
domains in Cn was introduced in [BT2]. Initially Bedford and Taylor used
this capacity to solve deep problems concerning small sets in pluripotential
theory. It was soon realized, however, that capacities are very useful techni-
cal tools in solving Monge–Ampère equations with singular data. Especially,
the discovery of Xing [Xi1] that the complex Monge–Ampère operator is
continuous with respect to convergence in capacity attracted much interest.
Recently, Kołodziej [Ko2] introduced the capacity CX on a compact Kähler
manifold X. In [GZ1], Guedj and Zeriahi proved that CX is locally equiva-
lent to Cn. In [DH], Dinew and Hiep gave characterizations of convergence
in capacity CX .

The main aim of the present note is to study restrictions of ω-plurisub-
harmonic functions to a smooth hypersurface S in a compact Kähler man-
ifold X. The result obtained and the characterizations of convergence in
capacity in [DH] are used to study convergence in capacity on the hypersur-
face S.

In Section 1, we introduce some definitions which can be found in [BK],
[BT1]–[BT3], [Ce1], [Ce2], [De1], [De2], [GZ1], [GZ2], [HKH], [H1]–[H3], [Hö],
[KH], [Kl], [Ko1]–[Ko3], [Si1], [Si2] and [Xi1], [Xi2].
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Our main results are the following theorems which generalize Theorem 2.4
in [H1]:

Theorem A. Let S be a smooth hypersurface in a compact Kähler man-
ifold X and u ∈ F(X,ω) be such that

	
X |ϕS |ω

n
u <∞ for some ϕS ∈ D(S, a)

and a > 0. Then u|S ∈ E1(S, ωS).

Theorem B. Let S be a smooth hypersurface in a compact Kähler mani-
fold X and let uj , vj ∈ PSH−(X,ω)∩L∞(X) and u0 ∈ F(X,ω) be such that
uj − vj → 0 in CX as j →∞, uj , vj ≥ u0 for all j ≥ 1,

	
X |ϕS |ω

n
u <∞ for

some ϕS ∈ D(S, a), a > 0 and either

(i) for each z ∈ S there exist a neighbourhood U of z and ψ ∈ PSH−(U)
∩ L∞(U), φ ∈ B(U) such that ωnuj

+ ωnvj
≤ ddcψ ∧ (ddcφ)n−1 on U

for all j ≥ 1, or
(ii) there exist a neighbourhood U of S and an increasing function F :

R+ → R+ such that
∞�

1

F (1/t) dt <∞ and
�

E

[ωnuj
+ ωnvj

] ≤ F (CX(E)),

for every Borel set E ⊂ U , and all j ≥ 1.

Then uj |S − vj |S → 0 in CS as j →∞.

2. Preliminaries

2.1. Let Ω be a domain in Cn. We denote by PSH(Ω) the set of plurisub-
harmonic (psh) functions on Ω, and by PSH−(Ω) the subclass of negative
functions.

2.2. Let X be a compact Kähler manifold with a fundamental form ω =
ωX with

	
X ω

n = 1. An upper semicontinuous function ϕ : X → [−∞,∞)
is called ω-plurisubharmonic (ω-psh) if ϕ ∈ L1(X) and ω + ddcϕ ≥ 0. We
denote by PSH(X,ω) (resp. PSH−(X,ω)) the set of ω-psh (resp. negative
ω-psh) functions on X.

2.3. In [Ko2], Kołodziej introduced the capacity CX,ω on X by

CX(E) = CX,ω(E) = sup
{ �
E

ωnϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0
}

where ωnϕ = (ω+ddcϕ)n and n = dimX. In [GZ1], Guedj and Zeriahi proved
that CX is a Choquet capacity on X and

CX(E) =
�

X

(−h∗E,ω)ωnh∗E,ω
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where h∗E,ω denotes the upper semicontinuous regularization of hE,ω given
by

hE,ω(z) = sup{ϕ(z) : ϕ ∈ PSH−(X,ω), ϕ|E ≤ −1}.

2.4. Let uj , vj ∈ PSH(X,ω). We say that uj − vj converges to 0 in CX
if

CX({|uj − vj | > δ})→ 0 as j →∞

for all δ > 0.

2.5. A family {µi}i∈I of positive measures on X is said to be uniformly
absolutely continuous with respect to capacity CX if for every ε > 0 there
exists δ > 0 such that for each Borel subset E ⊂ X with CX(E) < δ the
inequality µi(E) < ε holds for all i ∈ I. We then write µi � CX uniformly
for i ∈ I.

2.6. Let Ω be a bounded hyperconvex domain in Cn. In [De2], Demailly
introduced the class of psh functions which are bounded near the boundary:

B(Ω) = {ϕ ∈ PSH(Ω) : ∃K ⊂⊂ Ω such that ϕ ∈ L∞(Ω \K)}.

In [De2], he proved that ddcϕ ∧ T is well-defined for each ϕ ∈ B(Ω) and
every non-negative closed current T on Ω.

The following classes of psh functions were introduced by Cegrell in [Ce1]
and [Ce2]:

E0 = E0(Ω) =
{
ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

�

Ω

(ddcϕ)n <∞
}
,

F = F(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃ E0(Ω) 3 ϕj ↘ ϕ, sup

j≥1

�

Ω

(ddcϕj)n <∞},

E = E(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃F(Ω) 3 ϕK = ϕ on K, ∀K ⊂⊂ Ω

}
,

In [Ce2], he proved that the complex Monge–Ampère operator is well-defined
on E(Ω) and this is the largest possible domain of definition.

2.7. We define the class of ω-psh functions on which the complex Monge–
Ampère operator is well-defined in every local coordinate:

DMAloc(X,ω) = {ϕ ∈ PSH−(X,ω) : ∀z ∈ X, there is a neighbourhood U
of z and a potential θ of ω on U such that ϕ+ θ ∈ E(U)}.

2.8. In [GZ2], Guedj and Zeriahi introduced the classes of ω-psh func-
tions

E(X,ω) =
{
ϕ ∈ PSH−(X,ω) : lim

j→∞

�

{ϕ>−j}

ωnmax(ϕ,−j) = 1
}
,



178 V. V. Hung and H. N. Quy

Ep(X,ω) =
{
ϕ ∈ PSH−(X,ω) : ∃{ϕj}j≥1 ⊂ PSH∩L∞(X,ω) with

ϕj ↘ ϕ and sup
j≥1

�

X

|ϕj |pωnϕj
<∞

}
.

They proved that the complex Monge–Ampère operator is well-defined on
E(X,ω) by

ωnϕ := lim
j→∞

1{ϕ>−j}ω
n
max(ϕ,−j).

They showed that the complex Monge–Ampère operator is continuous under
decreasing limits (see Theorem 1.9 in [GZ2] or Proposition 2.8 in [H3]). They
also showed that

Ep(X,ω) =
{
ϕ ∈ E(X,ω) :

�

X

|ϕ|pωnϕ <∞
}
.

2.9. In [Xi2], Xing introduced the following class of ω-psh functions:

F(X,ω) = {ϕ ∈ PSH−(X,ω) : ϕjωn−1
ϕj
∧ ω � CX uniformly for j ≥ 1}

where ϕj = max(ϕ,−j), j ≥ 1. He proved that the complex Monge–Ampère
operator is well-defined on F(X,ω) (see Proposition 1 and Theorem 5 in
[Xi2]) by

ωnϕ := ω ∧ ωn−1
ϕ + ddc(ϕ ∧ ωn−1

ϕ ).

He also proved that DMAloc(X,ω) ⊂ F(X,ω) (see Theorem 2 in [Xi2]).
For K(X,ω) ∈ {DMAloc(X,ω),F(X,ω)} we set

Ka(X,ω) = {ϕ ∈ K(X,ω) : ωnϕ � CX}.
It is known that E1(X,ω) ⊂ Fa(X,ω).

2.10. Let S be a hypersurface in a compact Kähler manifold X. For each
a > 0, we denote by D(S, a) the family of ω-psh functions ϕ ∈ PSH−(X,ω)∩
C(X \ S) such that for every z ∈ S, there exist a neighbourhood U of
z and a holomorphic function f on U with S ∩ U = {w ∈ U : f(w) = 0},
ϕ−a log |f | ∈ L∞(U\S) and f ′(w) 6= 0 for all w ∈ Reg(S)∩U . In Proposition
3.1 we show that if a > 0 is small enough then D(S, a) 6= ∅.

2.11. Let S be a smooth hypersurface in a compact Kähler manifold X.
For each z ∈ S we can find a neighbourhood U of z and a strictly psh
function θ on U such that ω = ddcθ. Define ωS = ddcθ|S on U ∩ S. Then
ωS is a fundamental form on S. Obviously if u ∈ PSH(X,ω) is such that
u|S 6≡ −∞ then u|S ∈ PSH(S, ωS).

Let X be a compact Kähler manifold and u1, . . . , un−1 ∈ PSH(X,ω)
∩ L∞(X), ϕ ∈ PSH(X,ω). We can define the wedge product ωu1 ∧ · · · ∧
ωun−1 ∧ ωϕ and it is continuous under decreasing limits (see Theorem 2.1
and Remark 2.2 in [BT3]). We prove that the integration by parts formula
holds for these products.
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2.12. Integration by parts formula

Proposition 2.1. Let X be a compact Kähler manifold and u1, . . . ,
un−1, v ∈ PSH(X,ω) ∩ L∞(X), ϕ ∈ PSH(X,ω). Then�

X

vωu1∧· · ·∧ωun−1∧ωϕ =
�

X

vωu1∧· · ·∧ωun−1∧ω+
�

X

ϕωu1∧· · ·∧ωun−1∧ddcv.

Proof. First, we assume that v ∈ PSH(X,ω) ∩ C∞(X). Set ϕj =
max(ϕ,−j). By integration by parts we have�

X

vωu1∧· · ·∧ωun−1∧ωϕj =
�

X

vωu1∧· · ·∧ωun−1∧ω+
�

X

ϕjωu1∧· · ·∧ωun−1∧ddcv.

Letting j →∞, from ωu1 ∧ · · ·∧ωun−1 ∧ωϕj → ωu1 ∧ · · ·∧ωun−1 ∧ωϕ weakly
and from Lebesgue’s convergence theorem we get�

X

vωu1∧· · ·∧ωun−1∧ωϕ =
�

X

vωu1∧· · ·∧ωun−1∧ω+
�

X

ϕωu1∧· · ·∧ωun−1∧ddcv.

In the general case, by Theorem 1 in [BK], we can choose vj ∈ PSH(X,ω)∩
C∞(X) such that vj ↘ v (see also [De1]). By the first case we have�

X

vjωu1∧· · ·∧ωun−1∧ωϕ=
�

X

vjωu1∧· · ·∧ωun−1∧ω+
�

X

ϕωu1∧· · ·∧ωun−1∧ddcvj .

Letting j →∞, by Lebesgue’s convergence theorem and by Corollary 5.2 in
[Ce2] we get�

X

vωu1∧· · ·∧ωun−1∧ωϕ =
�

X

vωu1∧· · ·∧ωun−1∧ω+
�

X

ϕωu1∧· · ·∧ωun−1∧ddcv.

3. Proof of main results. First, we state some results that will be
used in the proofs of our main results. These are simple modifications of
already known results, but we shall sketch some of the proofs for the sake of
completeness:

Proposition 3.1. Let S be a hypersurface in a compact Kähler mani-
fold X. Then D(S, a) 6= ∅ for some a > 0.

Proof. We can find finite open covers Wi ⊂⊂ Vi ⊂⊂ Ui, 1 ≤ i ≤ m, of
X and holomorphic functions fi on Ui such that X =

⋃m
i=1Wi, S ∩ Ui =

{z ∈ Ui : fi(z) = 0}, f ′(z) 6= 0, for all z ∈ Reg(S) ∩ Ui and ‖fi‖L∞(Ui) ≤ 1.
Set

M = sup
1≤i,j≤m

sup
{∣∣∣∣ log

|fi(z)|
|fj(z)|

∣∣∣∣ : z ∈ Vi ∩ Vj}.
We choose hi ∈ C∞0 (X) with 0 ≤ hi ≤ 1, hi|Wi = 1 and supp hi ⊂⊂ Vi. We
can find ε0 > 0 such that ε0ddchi + ω ≥ 0 for all 1 ≤ i ≤ m. Set

ϕS(z) =
ε0
M

sup
1≤i≤m

{log |fi(z)|+Mhi(z) : z ∈ Vi} − ε0.
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We can check that

ϕS(z) =
ε0
M

sup
1≤i≤m

{log |fi(z)|+Mhi(z) : z ∈ supphi} − ε0.

Hence ϕS ∈ PSH−(X,ω)∩C(X\S). It is also easy to show that ϕS ∈ D(S, a)
for a = ε0/M > 0.

Proposition 3.2. Let S be a smooth hypersurface in a compact Kähler
manifold X. Then aωn−1

u |S ≤ ωn−1
u ∧ ωϕ for all u ∈ PSH(X,ω) ∩ L∞(X)

and all ϕ ∈ D(S, a).

Proof. Take z ∈ S. We can find a neighbourhood U of z, a holomorphic
function f on U and a bounded psh function θ on U such that S ∩ U =
{w ∈ U : f(w) = 0}, f ′(w) 6= 0 for all w ∈ U , ϕ− a log |f | ∈ L∞(U \ S) and
ω = ddcθ. Since ϕ+ θ − a log |f | ∈ PSH(U \ S) ∩ L∞(U \ S) we can extend
it to a psh function h on U . By Corollary 4.2 in [BT3], we get

ωn−1
u ∧ ωϕ = [ddc(u+ θ)]n−1 ∧ ddc(ϕ+ θ)

= [ddc(u+ θ)]n−1 ∧ ddc(a log |f |+ h)

≥ a[ddc(u+ θ)]n−1 ∧ ddc log |f | = a[ddc(u+ θ)]n−1|S∩U
= aωn−1

u |S∩U .

Remark. For each hypersurface S in a compact Kähler manifold X we
set

m(S,X, ω) = sup{a > 0 : D(S, a) 6= ∅}

By Propositions 3.1 and 3.2 we obtain

0 < m(S,X, ω) ≤
	
X ω

n

	
S ω

n−1
S

.

Proposition 3.3. Let u1
j , . . . , u

n
j , v

1
j , . . . , v

n
j , u0 ∈ F(X,ω) be such that

ukj , v
k
j ≥ u0 for all 1 ≤ k ≤ n and j ≥ 1 and ukj − vkj → 0 in CX as j →∞,

for all 1 ≤ k ≤ n. Then

lim
j→∞

�

X

f [ωu1
j
∧ · · · ∧ ωun

j
− ωv1j ∧ · · · ∧ ωvn

j
] = 0, ∀f ∈ C(X).

Proof. We only prove the equality in the case f ∈ C∞(X). We choose
A > 0 such that Aω + ddcf ≥ 0 and Aω − ddcf ≥ 0. By decomposing
ωu1

j
∧ · · · ∧ ωun

j
− ωv1j ∧ · · · ∧ ωvn

j
as a sum of n terms, we can assume that

ukj = vkj for all 2 ≤ k ≤ n. To simplify the notation we set

Tj = ωu2
j
∧ · · · ∧ ωun

j

We have
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X

f [ωu1
j
∧ · · · ∧ ωun

j
− ωv1j ∧ · · · ∧ ωvn

j
]
∣∣∣ = ∣∣∣ �

X

fddc(u1
j − v1

j ) ∧ Tj
∣∣∣

=
∣∣∣ �
X

(u1
j − v1

j )dd
cf ∧ Tj

∣∣∣
≤ 3A

�

X

|u1
j − v1

j |ω ∧ Tj

≤ 3A
[
ε+

�

{|u1
j−v1j |>ε}

−u0ω ∧ Tj
]
,

for all ε > 0. From CX({|u1
j − v1

j | > ε}) → 0 as j → ∞ and from Corollary
4 in [Xi2], we get

lim
j→∞

∣∣∣ �
X

f [ωu1
j
∧ · · · ∧ ωun

j
− ωv1j ∧ · · · ∧ ωvn

j
]
∣∣∣ ≤ 3Aε

for all ε > 0. Letting ε→ 0 we obtain

lim
j→∞

�

X

f [ωu1
j
∧ · · · ∧ ωun

j
− ωv1j ∧ · · · ∧ ωvn

j
] = 0.

Proposition 3.4. Let Ω be a domain in Cn and ψ ∈ PSH−(Ω)∩L∞(Ω),
φ ∈ B(Ω). Then PSH(Ω) ⊂ L1

loc(dd
cψ ∧ (ddcφ)n−1).

Proof. Without loss of generality, we can assume that −1 ≤ ψ ≤ 0 on Ω
and −1 ≤ φ ≤ 0 on Ω \Ω′′ for some Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω. Set φ̃ = max(φ,−1).
Take ϕ ∈ PSH−(Ω) and f ∈ C∞0 (Ω) with 0 ≤ f ≤ 1, f |Ω′ = 1. We choose
A > 0 such that Addc|z|2 + ddcf ≥ 0. Since supp df ⊂ Ω \Ω′′ and φ = φ̃ on
Ω \Ω′′, we have

�

Ω

−fϕddcψ ∧ (ddcφ)n−1 =
�

Ω

−ψddc(fϕ) ∧ (ddcφ)n−1

=
�

Ω

−ψfddcϕ ∧ (ddcφ)n−1 + 2
�

Ω

−ψdf ∧ dcϕ ∧ (ddcφ)n−1

+
�

Ω

−ψϕddcf ∧ (ddcφ)n−1

≤
�

Ω

fddcϕ ∧ (ddcφ)n−1 + 2
�

Ω

−ψdf ∧ dcϕ ∧ (ddcφ̃)n−1

+
�

Ω

−ψϕddcf ∧ (ddcφ̃)n−1

=
�

Ω

ϕddcf ∧ (ddcφ)n−1 + 2
�

Ω

−ψdf ∧ dcϕ ∧ (ddcφ̃)n−1

+
�

Ω

−ψϕddcf ∧ (ddcφ̃)n−1



182 V. V. Hung and H. N. Quy

=
�

Ω

ϕddcf ∧ (ddcφ̃)n−1 + 2
�

Ω

−ψdf ∧ dcϕ ∧ (ddcφ̃)n−1

+
�

Ω

−ψϕddcf ∧ (ddcφ̃)n−1.

On the other hand, we have
�

Ω

−fϕddcψ ∧ (ddcφ̃)n−1

=
�

Ω

−ψddc(fϕ) ∧ (ddcφ̃)n−1

=
�

Ω

−ψfddcϕ ∧ (ddcφ̃)n−1 + 2
�

Ω

−ψdf ∧ dcϕ ∧ (ddcφ̃)n−1

+
�

Ω

−ψϕddcf ∧ (ddcφ̃)n−1.

Therefore
�

Ω

−fϕddcψ ∧ (ddcφ)n−1

≤
�

Ω

ϕddcf ∧ (ddcφ̃)n−1 +
�

Ω

ψfddcϕ ∧ (ddcφ̃)n−1

+
�

Ω

−fϕddcψ ∧ (ddcφ̃)n−1

≤
�

Ω

ϕddcf ∧ (ddcφ̃)n−1 +
�

Ω

−fϕddcψ ∧ (ddcφ̃)n−1

≤ A
�

supp f

−ϕddc|z|2 ∧ (ddcφ̃)n−1 +
�

supp f

−ϕddcψ ∧ (ddcφ̃)n−1.

By Theorem 2.1 in [BT3] (also see Proposition 1.11 in [De2]) we get
�

Ω

−fϕddcψ ∧ (ddcφ)n−1

≤ CK,supp f (A sup{|z|2 : z ∈ K}+ 1)
�

K

−ϕdV2n <∞

where supp f ⊂⊂ K ⊂⊂ Ω, CK,supp f > 0 is a constant and dV2n is the
Lebesgue measure in Cn.

3.1. Proof of Theorem A. Set uj = max(u,−j) and ϕj = max(ϕ,−j).
By Proposition 3.1 we choose ϕ ∈ D(S, a) for some a > 0. By Propositions
2.1 and 3.2 we get
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a
�

S

−uj |Sωn−1
uj |S ≤

�

X

−ujωn−1
uj ∧ ωϕ

=
�

X

−ujωn−1
uj ∧ ω +

�

X

−ϕωn−1
uj ∧ ddcuj

≤
�

X

−ujωn−1
uj ∧ ω +

�

X

−ϕωnuj .

On the other hand, by Lebesgue’s convergence theorem we have
�

X

−ϕωnuj = lim
m→∞

�

X

−ϕmωnuj

= lim
m→∞

[ �
X

−ϕmωnu +
�

X

−ϕmddc(uj − u) ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u

]
=

�

X

−ϕωnu + lim
m→∞

�

X

(u− uj)ddcϕm ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u

=
�

X

−ϕωnu + lim
m→∞

�

X

(u− uj)ωϕm ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u

+
�

X

(uj − u)ω ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u

≤
�

X

−ϕωnu +
�

X

−uω ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u .

Therefore

a
�

S

−uj |Sωn−1
uj |S ≤

�

X

−ujωn−1
uj ∧ ω +

�

X

−uω ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u +

�

X

−ϕωnu .

To end the proof, we need to prove that the right hand side of the last
inequality is finite. This is equivalent to

sup
j≥1

[ �
X

−ujωn−1
uj ∧ ω +

�

X

−uω ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u

]
<∞.

Indeed, by Corollary 4 in [Xi2] we get −uω ∧
∑n−1

k=0 ω
k
uj ∧ ωn−k−1

u � CX
uniformly for all j ≥ 1. So we can find δ > 0 such that

�

E

−ujωn−1
uj ∧ ω +

�

E

−uω ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u < 1
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for all Borel sets E ⊂ X with CX(E) < δ and for all j ≥ 1. For each z ∈ X
we choose a neighbourhood Uz such that CX(Uz) < δ. From the compactness
of X we find a finite cover {Ut}mt=1 of X with CX(Ut) < δ for all t = 1, . . . ,m.
We have

�

X

−ujωn−1
uj ∧ ω +

�

X

−uω ∧
n−1∑
k=0

ωkuj ∧ ωn−k−1
u < m

for all j ≥ 1. So we have

sup
j≥1

�

S

−uj |Sωn−1
uj |S <∞.

Hence u|S ∈ E1(S, ωS).

3.2. Proof of Theorem B. By Theorem A and by Proposition 2.10
in [DH] we have uj |S , vj |S , u0|S ∈ E1(S, ωS) for all j ≥ 1, and ωn−1

uj
|S +

ωn−1
vj
|S � CS uniformly for j ≥ 1. We prove that

(1) lim
j→∞

�

{uj |S<vj |S−δ}

ωn−1
uj
|S = 0

for all δ > 0. Indeed, by Proposition 3.1 we pick ϕ ∈ D(S, a) for some a > 0.
Set

wj = max(uj , vj), j ≥ 1.

By the proof of Theorem A we get

(2)
�

{uj |S<vj |S−δ}

ωn−1
uj
|S ≤

1
δ

�

S

(wj |S − uj |S)ωn−1
uj
|S

≤ 1
aδ

[ �
X

(wj − uj)ωn−1
uj
∧ ω +

�

X

−ϕωn−1
uj
∧ (ωuj − ωwj )

]
.

Since wj − uj → 0 in CX as j → ∞ and −u0ω
n−1
uj
∧ ω � CX uniformly for

j ≥ 1 (Corollary 4 in [Xi2]), we get

(3) lim
j→∞

�

X

(wj − uj)ωn−1
uj
∧ ω = 0.

Next we show that

(4) lim
j→∞

�

X

−ϕωn−1
uj
∧ (ωuj − ωwj ) ≤ 0.
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Indeed, setting ϕt = max(ϕ,−t), we have
�

X

−ϕωn−1
uj
∧ (ωuj − ωwj )

=
�

X

(ϕt − ϕ)ωn−1
uj
∧ (ωuj − ωwj ) +

�

X

−ϕtωn−1
uj
∧ (ωuj − ωwj )

≤
�

X

(ϕt − ϕ)ωnuj
+

�

X

−ϕtωn−1
uj
∧ (ωuj − ωwj )

for all t > 0. Moreover, by Proposition 3.3 we get

lim
j→∞

�

X

−ϕωn−1
uj
∧ (ωuj − ωwj ) ≤ lim

j→∞

�

X

(ϕt − ϕ)ωnuj

for all t > 0. This implies that to prove (4) we only need to show that

lim
t→∞

lim
j→∞

�

X

(ϕt − ϕ)ωnuj
= 0.

Case of hypothesis (i): We can find finite open covers Vi ⊂⊂ Ui, 1 ≤ i ≤
m, of X and ψi ∈ PSH−(Ui) ∩ L∞(Ui), φi ∈ B(Ui) such that X =

⋃m
i=1 Vi

and ωnuj
+ ωnvj

≤ ddcψi ∧ (ddcφi)n−1 on Ui, for all j ≥ 1 and 1 ≤ i ≤ m. By
Proposition 3.4 and Lebesgue’s monotone convergence theorem we get

lim
t→∞

lim
j→∞

�

X

(ϕt − ϕ)ωnuj
≤

m∑
i=1

lim
t→∞

lim
j→∞

�

Vi

(ϕt − ϕ)ωnuj

≤
m∑
i=1

lim
t→∞

�

Vi

(ϕt − ϕ)ddcψi ∧ (ddcφi)n−1 = 0.

Case of hypothesis (ii): We have
�

X

(ϕt − ϕ)ωnuj
=
∞�

t

�

{ϕ<−r}

ωnuj
dr

≤
∞�

t

F (CX({ϕ < −r})) dr ≤
+∞�

t

F

(
supX |ϕ|+ c

r

)
dr,

where c is a positive constant. Letting j →∞ and t→∞ we get

lim
t→∞

lim
j→∞

�

X

(ϕt − ϕ)ωnuj
= 0.

From (2)–(4) we obtain (1). Similarly we get

lim
j→∞

�

{vj |S<uj |S−δ}

ωn−1
vj
|S = 0,

for all δ > 0. Using Theorem 3.2 in [DH] we obtain uj |S − vj |S → 0 in CS
as j →∞.
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