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On the connectedness of boundary
and complement for domains

by Andrzej Czarnecki (Kraków), Marcin Kulczycki (Kraków)
and Wojciech Lubawski (Warszawa)

Abstract. This article gives a short and elementary proof of the fact that the con-
nectedness of the boundary of an open domain in Rn is equivalent to the connectedness
of its complement.

It is known that an open domain in R2 is connected if and only if its
complement is connected. An analogous result for n > 2 is regarded as known
for some mathematicians. However, to the best of the authors’ knowledge,
there is no handy citable reference that would establish this fact. This short
note aims to provide such a reference while handling the problem in a fast
and efficient way.

The case of n = 2 is proved in [N] and appears as an exercise in [B]. It
was also solved independently by K. Rudol in 1981 and his proof was later
simplified by K. Ciesielski, but this solution has not been published. Our
approach is not based on these existing results and differs from them also in
the case of n = 2.

An easy consequence of the theorem is that a bounded domain of holo-
morphy in Cn, where n ≥ 2, has a connected boundary [J].

Let A, IntA and ∂A denote respectively the closure, the interior, and the
boundary of the set A.

Theorem. Let U ⊂ Rn be an open domain. Let F = Rn \ U . Then ∂U
is connected if and only if F is connected.

Proof. The implication ⇒ follows easily by contradiction from the nor-
mality of Rn.

For the proof of ⇐ assume that F is connected, but ∂U is not. Split ∂U
into two closed disjoint nonempty sets C and D. Pick open sets A and B
such that:
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• A is a neighbourhood of C and B is a neighbourhood of D,
• A ∩B = ∅,
• the intersection of C and each component of A is nonempty and the

intersection of D and each component of B is nonempty.

Note that U ∪A ∪B is open and connected because U is connected and
the intersection of U and every component of A or B is nonempty. This
implies that U ∪A ∪B is also pathwise connected.

The set F ∪A∪B is connected for the same reason as above. Note that it
is open, as it can be written as A∪B ∪ IntF ∪∂F , where the first three sets
are open, and the fourth is a subset of A ∪ B. Therefore it is also pathwise
connected.

Denote by dn the euclidean metric in Rn. Let S1 be the unit circle in R2

and let a = (0, 1), b = (0,−1). Define a map f : Rn → S1 in the following
way:

• f(A) = a,
• f(B) = b,
• for a point x ∈ U \ (A ∪B) define f(x) as the point on the left half of
S1 for which

(∗) dn(x,A)
dn(x,B)

=
d2(f(x), a)
d2(f(x), b)

,

• for a point x ∈ F \ (A ∪ B) define f(x) as the point on the right half
of S1 for which (∗) holds.

It is a simple consequence of the definition of A and B that f is well defined
and continuous.

Pick pa ∈ A and pb ∈ B. Let γ1 be a path that joins pa to pb in U ∪A∪B.
Let γ2 be a path that joins pb to pa in F ∪A∪B. Let H be a homotopy in Rn

between the loop γ1∗γ2 and a constant loop. Then f ◦H is a homotopy in S1

between f(γ1 ∗γ2) and some constant loop—a contradiction, since f(γ1 ∗γ2)
is not null homotopic in S1.
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