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An extension theorem with analytic singularities
for generalized (N, k)-crosses

by ARKADIUSZ LEWANDOWSKI (Krakow)

Abstract. The main result of the paper is a new Hartogs type extension theorem for
generalized (N, k)-crosses with analytic singularities for separately holomorphic functions
and for separately meromorphic functions. Our result is a simultaneous generalization
of several known results, from the classical cross theorem, through the extension theo-
rem with analytic singularities for generalized crosses, to the cross theorem with analytic
singularities for meromorphic functions.

1. Introduction. In arecent paper [JP5], Jarnicki and Pflug introduced
the so-called (N, k)-crosses and gave a new Hartogs type extension theorem
which generalizes the classical cross theorem (see [AZ], [NZ]). We shall con-
sider more general objects: generalized (IV, k)-crosses, and prove for them an
extension theorem with analytic singularities (for definitions and the state-
ment of the main result see Section , a simultaneous generalization of
the extension theorem for generalized crosses with analytic singularities (see
[JP2]) and the cross theorem with analytic singularities for meromorphic
functions (see [JP6, Theorem 11.2.1], see also [JP4]), which in turn is, in
some sense, a generalization of the Rothstein theorem (see [R]). In particu-
lar, the main theorem from [JP5] is contained in our result.

The paper is organized as follows. Section [2] brings the definition of gen-
eralized (N, k)-cross and the statement of the main result. We write down
some results about crosses and (N, k)-crosses there, as well. Section (3| con-
tains some useful facts. Finally, in Sections [d] and [f] we give the proof of the
main result.

The natural objects treated in this article are Riemann regions. For a
background on this topic see |[JPI]. In the present paper PLP(X) stands
for the family of all pluripolar sets of a Riemann region (X, p); furthermore,
O(X) is the space of all holomorphic functions on X, and M(X) is the space
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of all meromorphic functions on X. Moreover, for an f € M(X) we denote
by S(f) its singular set (as is well known, it is either empty or an analytic
set of pure codimension one).

2. Generalized (N, k)-crosses and the statement of the main re-
sult. Let D; be a Riemann domain over C" and let § # A; C D, for
j=1,...,N,N>2 Forke{l,...,N}let (N, k) :={a=(a1,...,an) €
{0,1}V : |a| = k}, where |a| := a1 + --- + ay. Put

Dj ifO[jzl, N

Xoji= Xy = Xoj.

o {Aj ifaj =0, H “
J=1

For a € I(N,k) such that o, = - - =, =1, 5y = -+ =y, =0,
where ry < - <rpandi; < --- <iny_g, put

k N—k
D, = HDTS, A, = H A,
s=1 s=1

For a = (a1, ...,a,) € X,, with a as above, put a2 := (a;,,...,a;y_,) € Aqa-
Analogously, define al, := (a,,...,ar,) € Dy. For every a € I(N,k) and
every a = (@i, ..., aiy_,) € Ay define

ia,oc = (ia,a,la ce 77:a,oz,N> Dy — X,
by

zj foj=1,

ta,0,j(2) = {

(if j = 0, then j € {i1,...,iy—k}, and if a;j = 1, then j € {ry,...,74}).
Similarly, for any o € I(N, k) and any b = (by,,...,b,,) € D, define

i=1,....N, z=(2y,..., eD
CL]' ifOéjZO, J i (Zrl Zrk) @

lb,a = (lb,a,la cee >lb,a,N) Ay — X,
zi fa;=0
lyoi(2) =4 ! ’ i =1,....,N, 2= (24,,...,2i A,.
b,a,j (Z) {b_] if a; = 1, J ) y 4V, 2 (Z“, aZzN,k) € Aq

DEFINITION 2.1. For any o € I(N, k) let X, C A,. We define a gener-
alized (N, k)-cross

Tri = Tar((A5, D)1 (Ba)acivg) = | {a€ Xatad ¢ Zo}
ael(N,k)
and its center
C(Trg) =TnirN (A X x Ay).
It is straightforward that

Q:(TN,k):(Alx'”XAN)\ ﬂ {Z€A1X-"XAleg€2a},
a€I(N,k)
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which implies that €(Ty j) is non-pluripolar provided that Ay x --- x Ay
is non-pluripolar and at least one of the X, ’s is pluripolar (see Proposition
532).
Observe that in the case k = 1 the set I(N,k) consists of exactly N
elements and in this situation we shall use the more convenient notation
2i=20,.010,..0: J=1...N.
~—
j=1  N—j

Furthermore, note that if in the definition of generalized (N, k)-cross we

take k =1 and Xy = --- = Xy = (), then we obtain a classical N-fold cross
(see [JP3)])
X = X((45, Dj)}21) = Taa((Aj, Dy)ity, (0)75)).

If we take k =1 (and any X, j = 1,..., N), then we get a generalized N -fold
cross (again see [JP3)|)

T := Ty = Tna((4;, D)0, (25)750)-
Finally note that if we take any k € {1,...,N} and X, = 0 for every

a € I(N,k), then we get the (IV, k)-cross (see [JP5])

Xnk = Xnr((4;, Dj)j'v:ﬁ = Tnr((4;, Dj);'vzh D) aer(vk))-
DEFINITION 2.2 (see |[JP6L Chapter 2|). We say that a Riemann region
(X, p) over C" is relatively compact if there exists a Riemann region (X', p’)
over C" such that X is a relatively compact open set in X’ and p = p/| x.

DEFINITION 2.3 (see [JPG, Chapter 3]). Let (X, p) be a Riemann region
over C" and let A C X. The relative extremal function of A with respect to
X is the upper semicontinuous regularization hj*47 y of the function

hax :=sup{u:ue PSH(X),u<1uls <0}
For an open set Y C X we put hay := hany,y, Wy = Wiqyy-

REMARK 2.4.

(a) If Y is a connected component of X, then hy x = hay and b% =

k5 y on'Y.

(b) ax € PSH(X).

() f Y1 C Yo C X are open, A; C Y7 and 4 C Ay C Ya, then

hayy, < ha,y, and hf427y2 < hf‘h,Yl on Yi.

DEFINITION 2.5 (see [JPG, Chapter 3]). We say that a set A C X is
plurireqular at a point a € A if hlU(a) = 0 for any open neighborhood U
of a. Define

A* = A*X .= {a € A: Ais pluriregular at a}.

We say that A is locally plurireqular if A # () and A is pluriregular at each
of its points, i.e. ) # A C A*.
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REMARK 2.6.

(a) If 0 #Y C X is open, then it is locally pluriregular.
(b) If) # B C AC X and B C Y with Y open, then B*Y c A*XNY =
(ANnY)=Y.

(c) b x =0on A*.

(d) If A is locally pluriregular, then th =hyx = hij = hax x.

(e) A\ A* is a pluripolar set.

(f) (A\ P)* = A* for any pluripolar set P.

(g) f AC X and B C Y are locally pluriregular, then so is A x B.

(h) If X is relatively compact (see Definition [2.2), then a set P C X is

pluripolar iff h};’ vy =1L
DEFINITION 2.7 ([JP5]). Let
X = Xna((45, DY)

N
= {(lesz) €Dy x--xXDn: Zhﬁijj(zj) < k:}
j=1

Note the obvious inclusion X Nk—1 C X Nk

DEFINITION 2.8. Let M be any subset of T ;. Then for any o € I(N, k)
and any a € A, define the fiber of M at a to be

My :={z2 € Dy :1q0(2) € M}.
Similarly, for any b € D,, define the fiber of M at b to be
M :={z€ Ay : lyo(2) € M}.

DEFINITION 2.9. For a relatively closed set M C Ty, (we allow M =0
here) we say that a function f: Ty \ M — C is separately holomorphic on
Ty \ M if for every a € I(N, k) and for every a € A, \ X, the function

Do\ My 3 2+ f(ia,a(2))

is holomorphic. In this case we write f € Os(Tn \ M).
We denote by O5(Tn i \ M) the space of all f € Oy(Ty i\ M) such that
for any o € I(N, k) and for every b € D, the function

A\ (B UM®) 3 2 f(lya(2))
1s continuous.

DEFINITION 2.10 (see [JP1, Section 3.4]). Let (X, p) be a Riemann region
over C", let M be a closed subset of X such that

(2.1) for any domain D C X the set D\ M is connected and dense in X,

and let ) £ F C O(X \ M). We say that a point a € M is non-singular with
respect to F (written a € M, r) if there exists an open neighborhood U of
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a such that for each f € F there exists a function fve O(U) with f: f on
U\ M.

If a € Mg 7 := M\ My, r, then we say that a is singular with respect
to F. If My 7 = M, then we say that M is singular with respect to F.

REMARK 2.11.

(a) The set M, r is closed in M.

(b) For any function f € F there exists a holomorphic extension f €
O(X\ My 7). o

(c) Mj F is singular with respect to the family F := {f : f € F}.

(d) If M # () is an analytic, singular set, then M is of pure codimension
one (cf. [C, Appendix IJ).

(e) Let M C X be an analytic set of pure dimension n — 1, and let M =

Uier M; be the decomposition of M into irreducible components (cf. [C,
Section 5.4]). Then

Ms,f = U M; = U M;

it M;CMgsr i: M;NRegMNM, 770

In particular, the set M # is also analytic (cf. [JP1, Proposition 3.4.5]).
Now we are prepared to state the main result.

THEOREM 2.12 (Extension theorem for generalized (N, k)-crosses with
analytic singularities). Let D; be a Riemann domain of holomorphy over
C", Aj C Dj be locally pluriregular for any j = 1,..., N, let X, C X9 C A,
with X% pluripolar for any o € I(N,k). Let Ty = Tni((Aj, D, )J 1
(Ea)aeI(N,k)), XN = XN,k((Aj,Dj)évzl). Let ' be an analytic subset of
}A(Mk with codim F' > 1, and let G be an analytic subset of )A(Mk with
codim G > 1 such that F C G. Assume that for « € I(N,k) and a € Ay \ X9
the fiber (Tnx N G)q is thin. Let G C O5(Tn i \ G) be such that for any
f € G,a € I(N,k) and a € A, \ XY the function fon = f 0dga e1-
tends meromorphically to Do \ (Tng N F)q, i.e. there exists a function
fa,a E M(Da \ (TN,k N F)a) such that S(f@a) E (TN,k N G)a \ (TN,k N F)a
and foo = fa,a 00 Do\ (TN NG)q. Denote by F the union of all irreducible

components of F of codimension one. Then for any f € G there exists an
fEM(XNk\F) such thatS(f)ﬂTN,kCG(mdf fonTni\G.

Moreover, if F = and G is the union of all irreducible components of G
of codimension one, then:

o forany f € F:= OS(Tn i \ G) there exists an fe (’)()A(Mk \ G) such
thatf fonTni\G,
o G is singular with respect to the family {f feF},
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o A()ZNJC \G) f(Tni \G) for any f € F (the X9’s are redundant
here).

If in addition G = 0, then for every f € F there exists an ]?6 O(XMk) such
that f = f on Ty and f(Xng) C f(Tng). In this case the assumption
that the D;’s are domains of holomorphy is not necessary.

Observe that Theorem [2.12] generalizes the following results:
o (Take G=0, k=1, =--- =Xy =0)

THEOREM 2.13 (Main cross theorem, [AZ|, [NZ]). Let D; be a Riemann
domain over C", let A; C Dj be locally plurireqular, j =1,...,N. Put X :=
X((Aj,Dj)éV:l). Let f € Os(X). Then there exists a uniquely determined

fe (’)()A() such that f: f on X.

o (Take G =0, X, =0, o € I(N,k))

THEOREM 2.14 (Extension theorem for (N, k)—crosse/s\, [JP5]). For every
[ € Os(Xn ) there exists an f € O(Xn) such that f = f on Xy and
FXnk) C F(Xw ).

Theorems and are formulated for Oy, while there is O¢ in the
assumptions of Theorem [2.12] However, using argument similar to the one
given in Section [] below, one can show that Theorem [2.12] in the case of
G = 0 and empty %,’s holds true for F = O4(Tn ).

o (Take G=0, k=1)

THEOREM 2.15 (Extension theorem for generalized crosses, [JP3]). As-
sume that D; is a Riemann domain over C", and A; C D; is locally pluri-
regular. Assume additionally that X; C Ay x--- X Aj_1 X Aj1 x - x Ay
1s pluripolar for j = 1,...,N. Let X and T be as in Definition 2.1. Then
for every f € OS(T) there exists an fe (’)()A() such that f = f on T.

o (Take F =0,k =1)

THEOREM 2.16 (Extension theorem for generalized crosses with analytic
singularities, [JP2]). Assume that D; is a Riemann domain of holomorphy
over C", A; C Dj is locally plurireqular, Xj C Ay X -+ X Aj_1 X Ajiq1 X%
Ay s pluripolar for j =1,...,N. Let X and T be as in Definition 2.1. Let
S :=TNG, where G is an analytic subset of an open neighborhood U C X
of T with codimG > 1. Let

F .= {OS(X\S) if X ==Xy =0,
Tl OYT\S) otherwise.

Then there exist an analytic set S c X and an open neighborhood Uy C U
of T such that:



An extension theorem with analytic singularities 199

§ﬂ Uy C G, R R R

for any f € F there exists an f € O(X\ S) such that f = f on T\ S,
S is singular with respect to the family {f : f € F},

if U =X, then S is the union of all components of G of codimension
one.

o (Take k =1)

THEOREM 2.17 (Cross theorem with singularities for meromorphic func-
tions, [JP6, Theorem 11.2.1|, see also [JP4]). Let D;, A;, X;, X, T be as in
Theorem j=1,...,N. Let ¥; C EJQ CAIx...xAj_1xAjx...xAnx
be pluripolar, j = 1,...,N. Let M C S C T be relatively closed and as-
sume that for every j € {1,.. N} and every (a}, a) € (A x AY)\ Z? =
((Al X oo X Aj—l) X (Aj+1 X e X AN))\ j’ the ﬁber S(aj,-,a;-’) is thin. Let

G Os(X\S) if X1 =-=2Xn=0,
OST\S) otherwise
be such that for any f €G, j€{l,...,N}, and (a},a]) € (A} x A;’)\Z?,
the function f(d’ j, . 3/) extends meromorphzcally to Dj \M(a alh)s i.e. there

exists a function f] (a),a) € M(Dj\ My .a;/)) with S(f] 'a ) C 5’( 4 )\
My .ar) and fJ Lat) = fla, - a) on Dj\ Sy . ah)- Let M cX be con-

> 4
structed via Theorem 10.2.9 from |JPG] with respect to the family
s [ON\M) FTi= =5y =0,
Tl OYT\ M) otherwise.
Then there exists a generalized cross T := Tn1((A;, D; )j 1 (2})?[:1), with
E? C X% and X% pluripolar, j = 1,..., N, such that for any f € G there
exists an f € M(X\ J\/Z) with:

. ]\/ZD T C M,

e S(f)NT' C S,

e f=fonT\S.

REMARK 2.18. Note that if we have M = T N F, where F' is an analytic
subset of an open neighborhood Up of T contained in X, then Theorem
holds true with M constructed via Theorem (with the data (G,S) =
(F, M)).

3. Prerequisites. In this section we recall some definitions and results
which will be needed later.

LEMMA 3.1 ([JP6, Lemma 2.1.14|). Let K be a Riemann domain, let
L C K be a subdomain, and let Ag C A C K be such that Ag C L. Assume
that Ay is not analytically thin at a point ag € L N Ay (see Definition 1.4.3
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in |[JP6]). For a family F of functions f : A — C consider the following
conditions:
(i) for every f € F there exists an fe O(L) such that f: f on Ay
(f is uniquely determined),
(ii) for every f € F and for every a € C\ f(A) the function 1/(f — a)
belongs to F,
(iii) for every f € F and for every a € C with |a| > || f|la the function
1/(f — a) belongs to F.

Then:
(a) If (i) and (ii) are satisfied, then f(L) C f(A) for every f € F (in
particular, ||fllp < || flla for every f € F).
(b) If (i) and (iii) are satisfied, then ||f||z < ||f|la for every f € F.
PRrOPOSITION 3.2 (|JP6l Proposition 2.3.31]). Let (X,p),(Y,q) be Rie-
mann regions over C", C™, respectively, countable at infinity. Then:
(a) If AC X XY is pluripolar, then
{r€X: A, )¢ PLP(Y)} € PLP(X),
where
Ay ={weY : (z,w) € A}
(b) Let @ C X XY be such that Qq.) € PLP(Y),a € X. Let C C X XY
be such that
{2€X:C,. ¢ PLP(Y)} ¢ PLP(X).
Then C\ Q ¢ PLP(X xY).

LEMMA 3.3 (JTP6, Example 3.2.6]). Let ¢ : (X,p) — (X,D) be the maa-
imal holomorphic extension and let u be a plurisubharmonic function on X
such that u < C on ¢(X). Then u < C on X.

PROPOSITION 3.4 ([JPG, Proposition 3.2.25]). Let X, /X with X}, open
for every k € N, and A C Xy with A / A. Then h*ZvXk N P x-

PROPOSITION 3.5 ([JPG, Proposition 3.2.27]). Let X be a relatively com-
pact Riemann domain. Let A C X be non-pluripolar and let 0 < e < 1. Put
Ae) :={z€ X : hj x(2) <e}.

Then Iy 5y = (1/e)h% x on A(e). In particular, h:"A(E)(z) <1, z€ A(e),
which implies that AN S is non-pluripolar for any connected component S
of A(e).

In the case where A is locally plurireqular, we do not need to assume that
X is relatively compact.
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LEMMA 3.6 ([JP5]). Let D; be a Riemann domain of holomorphy over
C" and let A; C Dj be locally pluriregular, j =1,...,N. Then

N
h% < (z):maX{O,Zh’Aijj(zj)—k—l-l},
j=1

XNk—1:XN,k

z2=(21,...,2N) € XNk-

4. Proof of Theorem in the case F = (). Recall that here G

equals the union of all irreducible components of G of codimension one.

_Proof of Theorem in the case F' = (). Observe that the 1nclus1on
f(XNk \G) C (T \ G) for every f € F is a consequence of Lemma
with

(K. L, Ao, A, F) = Xy \ G, Xng \ G, Ty \ G, T \ G, F).
We divide the proof into three steps.

STEP 1: We prove the theorem in the case G = () (recall that here we do
not assume that the D;’s are domains of holomorphy).

In view of Proposition 7.2.6 in [JP6], we may assume that each Dj is a
Riemann domain of holomorphy. Indeed, note that by virtue of the continuity
of the operation of extension, the class Of is stable under taking the envelope
of holomorphy. Furthermore, using Proposition @ we may assume that D;
is relatively compact (cf. Definition and A; CC Djforj=1,...,N.

We apply induction on N. There is nothing to prove in the case N = k.
Moreover, the case k = 1 is solved by Theorem |2 Thus, the conclusion
holds true for N = 2. Suppose it holds true for N — 1 > 2. Now, we apply
induction on k. For £ = 1 this is just Theorem [2.15] Suppose that the
conclusion is true for K — 1 with 2 <k < N — 1.

Fix an f € F. Define

Q:=Qn ={2nv € AN : 3a € Iy(N, k) : (Xa)(..y) & PLP},
where Io(N,k) := I(N,k) N {a : axy = 0}. Proposition implies that
Q € PLP. For an ay € Ay \ Q put

Tn-1k(an) == Tn-1k((A5, D)YSY (Z5,0) (an))Ber(N—10))-

Consider also the generalized (N — 1,k — 1)-cross

Tn-1h-1 = Ta-15-1((45, D))NS" (Z(5.1)) ser(v—1,6-1))-
It can be easily seen that for a fixed ay € Ay \ Q we have

(TNk)(an) = T-1k(an) U TN 141,

where (TNJC)(_ is the fiber of the set Ty ; over ay. Define

,aN)

Yvo1k = Xno1w((A5, D), Yvogeer = Xvoe—1 (A, D).
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For any ay € Ay \ @ we have f(-,an) € Of(Tn-1x(an)). Then, by the
inductive assumption, for any ay € Ay \ Q there exists an f,, € O(Yn_14)
such that f,, = f(-,an) on Tn_1 x(an).
Define a 2-fold classical cross
Z = X(By, Ba; Ev, Es) = X((Bj, E;)3_1),
where Bl = TN—l,k—lv B2 == AN \ Q, El = ?N—l,kv E2 = DN. Clearly

Z = (Tn_16-1 X DN) U (Yn_1 X (AN \ Q).
(Jarnicki and Pflug in [TP5] considered a 2-fold cross of the form (Y N—1k—1X
Dy)U (?Nfl,k x Apn). This is also possible here. However, our new method
simplifies the further reasoning.)

Observe that Z = )A(Mk. Indeed, in view of the inductive assumption,
Tn_1,—1 is connected (this follows from the connectedness of ?N—l,k—l
and the inclusion f(?N_Lk_l) C f(Tn-1k-1),f € O(Trn_1k-1)). Take
an € € (0,1) and let U(e) be the connected component of the open set

{z€YN_141:ht (z) < e}

TN—l,k—la?N—l,k—l
containing T n_1 ;—1. Then ?N—l,k—l is the envelope of holomorphy of U (¢).
To see this, take a g € O(U(¢)). Then g|ry_,, , € O(TN_1%-1) and
by the inductive assumption there is a g € O(?N_Lk_l) with g = g on
T n_1k—1.Since Tn_1 1 is not pluripolar, we get g = g on U(e). Hence any
g € O(U(¢g)) admits a holomorphic extension toY N—1,k—1, which is a pseudo-

convex domain (cf. [JP5]). Using Lemma (3.3 we get h =0.
R . fﬁTN 1,k— LY N k—1
H = h% - L .
ence hTN ot Ttk hYN—l,k—laYN—l,k and it suffices to use emma

and plurlpolarlty of Q
Let Fy : Z — C be given by the formula

Fan () if (2, 2n) € Yvo1g x (An \ Q),
Fp(?,2n) = L
f(2' 2n) if (2, 25) € Ty_1 61 X Dn.
Fix an ay € Ay \ Q. It is obvious that f(-,an) € OS(Tn-1-1). Then
there exists a g, € O(YN 1,k—1) satlsfylng Jay = f( ~) on Tn_q k1.
We shall show that we have the equality faN = Ja, ON YN 1,k—1. Since both

faN and g,, are extensions of f(-,an), we only need to prove the existence
of some non-pluripolar set B C Tn_1 r(an) VT xn_1x—1 and use the identity
principle. Observe that the set

B :=&(Tn_1(an)) N E(TN_1x-1)

is good for our purpose. In particular, ]?CLN(Z’) = f(Z,an), 2 € Ty_14-1,
which shows that F; is well-defined.
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It is clear that Fy € Os(Z). Thus, using Theorem we get the exis-
tence of a function f € O(Z) with f = Fy on Z.

We have to verify that f = f on Tyy. Take a point a € Ty . The
conclusion is obvious if a € Ty_1 -1 X Dy C Z. Suppose, without losing
generality, that a = (ai,...,ak,ak11,...,aN) € Dy X (Ag \ Xo), where

a=(1,...,1,0,...,0). Observe that
—— —
k N—k
T:= |J Tyoir(en)x{an} CYyo1xx (Av\Q) C Z.
zNEAN\Q

We also have

T C U (TN,k)(-,zN) X {ZN} C TN,k-
2N EAN\Q

Thus, if b= (V,by) € T, then f(b) = Fy(b) = foy (V') = f(b). Bearing this
in mind, we easily see that it suffices to find a sequence

)%, € TN {(a1s...,a5)} X (A \ Za)

such that 0¥ — a, and then continuity of f(ai,...,ax,-) will end the proof.

Since @ is pluripolar, there exists a sequence (b%;) convergent to ay
such that (b%) C Ay \ Q. Put P := [J;2;(Za)( ), which is a pluripo-
lar set. This guarantees the existence of a sequence ((b},,,...,0%_;)) C
(Ag41 X --- x Any—1) \ P, convergent to (agyt1,...,an—1). Finally we put
v = (al, by, q,-..,b%_;). It is obvious that b — a and that for every
ve N,V eTy_1,(b%) x {bX} CT.

STEP 2: We prove that for every f € F there exists an f € (’)()A(Mk \G)
such that ]?: fonTyng\G.

As in Step 1, we may assume that Dj is relatively compact and A; CC D;
forj=1,...,N.

We apply induction on N. There is nothing to prove in the case N = k.
The case k = 1 is solved in Theorem Thus, the conclusion holds true
for N = 2. Suppose it holds true for N —1 > 2. Now, we apply induction
on k. As we observed (cf. Theorem [2.16)), for k& = 1 the result is known.
Suppose that the conclusion is true for £k — 1 with 2 < kK < N — 1.

Define

Q:=Qn = {2~ € Ay : 3 € Io(N, k) : (Za)(..y) & PLP},
where Ip(N, k) is as in Step 1, and
R:=Ry={:y€Ay:G . ¢ PLP}, Q:=QUR.
Proposition implies that @ € PLP. For an ay € Ay \ Q let Tn_1 1(an)
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be as in Step 1. Let Ty_1 k-1, YN—1k, YN—1k—1 be as in Step 1. Put
Z = X(Bi, Ba; Ev, Ey) == X((Bj, E;)’_1),
where B1 = Yn_1 -1, B2 = AN\ Q, E1 = ?N—Lka Ey = Dy. Recall that
Z = (Yn-15-1 % DN)U(Yn-1k % (AN \ Q)
and Z = XN,k-
For any fixed f € F and for any ay € Ay \ @ we have
f(an) € OUTN-1k(an) \ G ay))-

The set G(. 45 H?N—l,kz is analytic in ?N—l,kz C (}A(N7k)(,7aN). Observe that
in view of the definition of the set @) we have codimG(. ,,) > 1. From the
inductive assumption we conclude that for any ¢ € O(Ty_1k(an)\G(. ay))

there exists an hfy € O(Yy_1 #£\G(.an)) such that by = @ on Ty_1k(an)\
G(.ay)- In particular, there exists an hy ( an) ¢ (’)(YN 1k \ G(ay)) With
hi;(\}’“N) = f(, CLN) on TN—l,k(aN) \ G(-,aN)'
Define a function Fy : Z\ G — C by
, f(Z/, ZN) if (Zl, ZN> S (YNfl,kfl \ G(,ZN)) X Dy,
Fy(, 2n) = hf(sz)(z/) if (', 2 v
N 2N) € (Yn-1x \ G 2p)) X (AN \ Q).
We will show that F; is well-defined. Observe that for any ay € Dy we have
fan) € O(TN-15-1\ G ap))-

The set G(,@N)ﬂ?N_l,k_l is analytic in ?N—l,kz—l C (ﬁN,k)(-,aN)' Two cases
have to be considered:

CASE 1: codim G(. 4y = 1. Then from the inductive assumption we con-
clude that for any ¢ € O(Tn_11-1\G(. qy)) thereis a giy € O(Yy_1 =1\
G( )) such that g&y = ¢ on Ty_1 k—1 \ G . In particular, there ex-
ists a function gC{](v an) ¢ O(Yn_ 1e-1\ G aN)) Wlth gf( an) f(-;an) on
Tr_14-1\G(ap)

CASE 2: codim G( v) = 0 (this may happen for ay € Py C Dy, where
PN is pluripolar). In this case Ty_1x-1 \ G (van) = ) (and even Glan) =
YN 1,k—1 in view of the connectedness of YN 1,k—1 and of the identity
principle for analytic sets) and there is nothing to prove here.

In this situation, it suffices to show that for any ay € Ayx \ @ we have
the equality

ga](v an) — hf( aN)  on (?N—l,k—l \G(.,GN)) N (?N—Lk \ G('ﬂN))'

Using the definition of the set R and the inclusion ?N,l,k,l - ?Nfl,k we

see that we only need to show the equality on the set ?N—l,k—l \ G(,vaN).
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Since hﬁ,(v"“N) and ggj(\}’aN) are extensions of f(-,an), we are done if we show
that there exists a non-pluripolar set B C (Tny—1k(an)NTN-14-1)\G (. an)-
Similarly to Step 1, the set

B = (Q:(TN—I,k(aN)) N Q:(TN—I,k—l)) \ G(.@N)
is good for our purpose.

It is obvious that Fy € O4(Z \ G). Then, applying Theorem we
conclude that for any function ¥ € O4(Z \ G) there exists a function ) e
O(Z\G) such that ¢ =Won Z\G. In particular, there exists an fe O(Z\G)
with f = FronZ\G.

We have to verify that f: fon Ty \G. Take a point a € Ty \G. The

conclusion is obvious if a € (Ty_1 -1 x Dn)\ G C Z\ G. Suppose, without
losing generality, that a = (aq, ..., ak, ags1,---,an) € (Do X (A \ Za))\ G,

where a = (1,...,1,0,...,0). Observe that
—— —
k N—k
Ti= |J (Tno1ken)\Gioy)x{an} C (Yno1xx (AN\Q)\G C Z\G,
ZNEAN\Q
as well as

TC ( U (TN k) (- zn) X {ZN}) \G CTni\G.
ZNEAN\Q

Thus, if b = (V/,by) € T, then f(b) = Fy(b) = h{ " (¥) = f(b). Bearing

N
this in mind, we easily see that it suffices to find a sequence

()220 € TN {(an, - a)} % (Aa\ Ta)

such that ¥ — a, and use the continuity of f(aq,...,ax,").
Since @ is pluripolar, there exists a sequence (c%) C Anx \ @ which is
convergent to ay. Put P := UEOZI(ZOC)(,’CIVV), which is a pluripolar set. This

guarantees the existence of a sequence ((cj,,...,cx_1)) C (Agg1 X ... X
An-1) \ P convergent to (ag41,...,an—1). Observe that ay,...,a; have to
be such that G4, ... 4,,) 1s pluripolar. Finally we observe that now it suffices
to take

((0%51)% -+ (08)%) € (A X ... x AN—1) \ P) X (AN \ @) \ G ay...car,)
convergent to ((cf,...,cy)) for v € N, and we are done.

STEP 3. Put N := G, 7, where F = {]? f € F}. Then N is an analytic
set contained in G, singular with respect to the family F. We show that
N = @G. Consider two cases:

Case 1: G # (. Observe that the set X Nk\@ is a domain of holomorpl/l\y
(cf. [JP5]). Thus there exists a non-continuable function g € O(Xny \ G)
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(see [JP1, Proposition 1.8.11]). Then f := g|1,,\¢ € O5(Tnx \ G), which
implies that there exists a function f € (’)()A(N,k \ N ) such that f=fon
Ty \GC )A(N,k \ (]v U é) Using non-pluripolarity of the set Ty \ G we
obtain f: g on ﬁN,k \ (]/\\f U @), from which it follows that G C N. Thus,
]:\:7 is (z\f pure codimension one (cf. Remark , which implies the equality
N =G@G.

CasE 2: G = 0. Then, if N is non-empty, it has to be of pure codimension
one, which clearly contradicts the fact that codim G > 2. =

5. Proof of Theorem [2.12| in the general case. We start with the
following

PROPOSITION 5.1. If in Theorem .17 we have M = T N F, where F
1s an analytic subset of an open neighborhood Ur of T contained in X and
S =T NG, where G is an analytic subset of an open neighborhood Ug of T

contained in X such that F' C G, then in the conclusion therein one can take
T =T.

Proof. For each f € G the function ﬂT/\S is in OY(T’ \ S). Hence it

extends holomorphically to the function fon X \ S , where S is constructed
via Theorem u Similarly, f extends holomorphically to the function f on

X\Sandwehavef fonX\S WealsohaveT\SCX\S hencef f
on T \ S and S(f) N'T C S. Indeed, observe that f is defined on X \ M
and MNTCMCcCS (the first inclusion follows from Remark -D which

implies T\ S C X \ Mand f=f=fonT \ S. Moreover, f f=fon
T\ S, from which follows f = f on T\ S. The condition S(f) N'T C S is a
consequence of SNT C S. u

Proof of Theorem in the general case. We may assume that for any
j=1,...,N, D;j is relatively compact and A; CC D;.

We apply induction on N. There is nothing to prove in the case N = k.
The case k = 1 is solved in Theorem [2.17] Thus, the conclusion holds true for
N = 2. Suppose it holds true for N — 1 > 2. Now, we apply induction on k.
As we observed, for k = 1 the result is known. Suppose that the conclusion
is true for k — 1 with 2 <k < N — 1.

Define

Sy :={z2ny € Ay : Ja € IH(N, k) : (Eg)(.yzN) ¢ PLP},
Ry = {ZN € Ay : G(-,zN) ¢ 'P[,P}, QN =Sy URp.
We know that Qn € PLP. For any an € Ay \ Qn let Ty_q(an) be as in
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Section [d Also, let Ty_1 k-1, YN—1,k YN—1,k—1 be as in Section [ Put
Z = X(By, By; Ev, E») := X((B), Ej)i—1),
where B1 = Ty_1 K—1s By = AN\QN, Ei = ?N—l,/ﬁ Es = Dy. Recall that

Z = (TN—l,k—l X DN) U (?N—l,k X (AN \ QN))

and Z = XNJf.
For any fixed f € G and any ay € Ay \ QN we see that

f( aN) c OC(TNflk an \G ))

(in partlcular it admits a holomorphlc extension to YN 1k \ G a N)) The
sets G (.4 )OYN Lk Fla )ﬂYN 1, are analytic in Ya: x C (XN k) (an)-
Observe that we have codlmG(7 N =1 codlmF( ay) = 1. Moreover, for each
B € I(N — 1,k) there exists a pluripolar set (283 0))(.@1\,) C EZN such that
for each a’ € (A(ﬁ,0)>(-,aN) \ EEN the fiber (G(‘ﬂN) N TNfl,k(aN))a’ is thin
and the function (f(-,an))g,« extends meromorphically to Do)\ (F{..ay) N
Tn-1k(an))a, i-e. there exists a function (f(-, an))g o € M(D(,0)\(F{- an)
Tn-1k(an))a) such that S((f(-,an))ge) C (Gray) N Tn-1k(an))a \
(Flan)NTN-1k(an))a and (f( an))g o = (f(;an))ga on Do)\ (G(. ay)
NTx_1x(an))qe- From the inductive assumption we conclude that for any
f € G there exists a function f,, € M(?N 1.k \ Fay)) such that S(fay )N
Trn_1k(an) C Grayy N T 1k(aN) and foy = f(-;an) on Ty x(an) \
G(.ay) (in particular, faN € O(YN 16\ Glan)))-
For any f € G define a function Fy : Z \ G — C by

, f(Z,, ZN) if (Z/, ZN) S (TNfl,kfl \ G(,7ZN)) X Dy,
Ff(Z’ZN)5:{~ / : / Y,
fan (Z) i (2 2n) € (YN_1k \ G 2y)) X (AN \ QN)-
As in Section [ we verify Fy is well-defined and Fy € O, (Z \ G), which
implies there exists an f € O(Z \ G) such that f = FyonZ\ G and f=7
on TN,k \ G.

Observe that there exists a pluripolar set X7 C Txn_1,—1 such that
for any o’ € Ty_1,-1 \ X1 the fiber G(a,y is thin. Similarly, for each
an € Ay \ @y the fiber G,y is thin. Moreover, for each ax € Ax \ Qn
the function F(-,an) extends meromorphically to ?Nka \ Flay)- It is
casy to see that there exists a pluripolar set ] C Tpy_1,—1 such that for
any a € YN 1k—1 \ 2] the function Fy(d',-) extends meromorphically to
Dy \ F(y ). Hence from Theorem [2 - we get the existence of a function

FfGM(XNk\F) such that S(Ff)ﬂZCGﬂZand Ff—Ff onZ\ G (in
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particular, F} € (’)(2 \ é)) Then we have the equalities
Fy=Fi=f onZ\G,
f} =f on )A(N,k \ G,
Fr=f on Tyi\ G

and S(ﬁ}) NTx C G. So it is enough to put fi= IV\} .

Acknowledgements. This project was operated within the Founda-
tion for Polish Science IPP Programme “Geometry and Topology in Physi-
cal Models” co-financed by the EU European Regional Development Fund,
Operational Program Innovative Economy 2007-2013.

References

[AZ|  O. Alehyane et A. Zeriahi, Une nouvelle version du théoréme d’extension de Har-
togs pour les applications séparément holomorphes entre espaces analytiques, Ann.
Polon. Math. 76 (2001), 245-278.

[C] E. M. Chirka, Complex Analytic Sets, Kluwer, Dordrecht, 1989.

[JP1] M. Jarnicki and P. Plug, Extension of Holomorphic Functions, de Gruyter Expo.
Math. 34, de Gruyter, Berlin, 2000.

[JP2| —, —, An extension theorem for separately holomorphic functions with analytic
singularities, Ann. Polon. Math. 80 (2003), 143-161.

[JP3] —, —, An extension theorem for separately holomorphic functions with pluripolar
singularities, Trans. Amer. Math. Soc. 355 (2003), 1251-1267.

[JP4]| —, —, An extension theorem for separately meromorphic functions with pluripolar
singularities, Kyushu J. Math. 57 (2003), 291-302.

[JP5| —, —, A mew cross theorem for separately holomorphic functions, Proc. Amer.
Math. Soc. 138 (2010), 3923-3932.

[JP6] —, —, Separately Analytic Functions, EMS Tracts Math. 16, Eur. Math. Soc.,

Ziirich, 2011.

[NZ] T. V. Nguyen et A. Zeriahi, Systémes doublement orthogonauz de fonctions holo-
morphes et applications, in: Banach Center Publ. 31, Inst. Math., Polish Acad.
Sci., Warszawa, 1995, 281-297.

[R] W. Rothstein, Fin neuer Beweis des Hartogsschen Hauptsatzes und seine Aus-
dehnung auf meromorphe Funktionen, Math. Z. 53 (1950), 84-95.

Arkadiusz Lewandowski

Institute of Mathematics

Jagiellonian University

Yojasiewicza 6

30-348 Krakéw, Poland

E-mail: arkadiuslewandowski@Qgmail.com

Received 19.5.2011
and in final form 26.5.2011 (2453)


http://dx.doi.org/10.4064/ap76-3-5
http://dx.doi.org/10.4064/ap80-0-12
http://dx.doi.org/10.1090/S0002-9947-02-03193-8
http://dx.doi.org/10.2206/kyushujm.57.291
http://dx.doi.org/10.1090/S0002-9939-2010-10552-X
http://dx.doi.org/10.1007/BF01175583

	Introduction
	Generalized (N,k)-crosses and the statement of the main result
	Prerequisites
	Proof of Theorem 2.12 in the case F=
	Proof of Theorem 2.12 in the general case

