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An extension theorem with analytic singularities
for generalized (N, k)-crosses

by Arkadiusz Lewandowski (Kraków)

Abstract. The main result of the paper is a new Hartogs type extension theorem for
generalized (N, k)-crosses with analytic singularities for separately holomorphic functions
and for separately meromorphic functions. Our result is a simultaneous generalization
of several known results, from the classical cross theorem, through the extension theo-
rem with analytic singularities for generalized crosses, to the cross theorem with analytic
singularities for meromorphic functions.

1. Introduction. In a recent paper [JP5], Jarnicki and Pflug introduced
the so-called (N, k)-crosses and gave a new Hartogs type extension theorem
which generalizes the classical cross theorem (see [AZ], [NZ]). We shall con-
sider more general objects: generalized (N, k)-crosses, and prove for them an
extension theorem with analytic singularities (for definitions and the state-
ment of the main result see Section 2), a simultaneous generalization of
the extension theorem for generalized crosses with analytic singularities (see
[JP2]) and the cross theorem with analytic singularities for meromorphic
functions (see [JP6, Theorem 11.2.1], see also [JP4]), which in turn is, in
some sense, a generalization of the Rothstein theorem (see [R]). In particu-
lar, the main theorem from [JP5] is contained in our result.

The paper is organized as follows. Section 2 brings the definition of gen-
eralized (N, k)-cross and the statement of the main result. We write down
some results about crosses and (N, k)-crosses there, as well. Section 3 con-
tains some useful facts. Finally, in Sections 4 and 5, we give the proof of the
main result.

The natural objects treated in this article are Riemann regions. For a
background on this topic see [JP1]. In the present paper PLP(X) stands
for the family of all pluripolar sets of a Riemann region (X, p); furthermore,
O(X) is the space of all holomorphic functions on X, andM(X) is the space
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of all meromorphic functions on X. Moreover, for an f ∈ M(X) we denote
by S(f) its singular set (as is well known, it is either empty or an analytic
set of pure codimension one).

2. Generalized (N, k)-crosses and the statement of the main re-
sult. Let Dj be a Riemann domain over Cnj and let ∅ 6= Aj ⊂ Dj for
j = 1, . . . , N, N ≥ 2. For k ∈ {1, . . . , N} let I(N, k) := {α = (α1, . . . , αN ) ∈
{0, 1}N : |α| = k}, where |α| := α1 + · · ·+ αN . Put

Xα,j :=
{
Dj if αj = 1,
Aj if αj = 0,

Xα :=
N∏
j=1

Xα,j .

For α ∈ I(N, k) such that αr1 = · · · = αrk = 1, αi1 = · · · = αiN−k = 0,
where r1 < · · · < rk and i1 < · · · < iN−k, put

Dα :=
k∏
s=1

Drs , Aα :=
N−k∏
s=1

Ais .

For a = (a1, . . . , an) ∈ Xα, with α as above, put a0
α := (ai1 , . . . , aiN−k) ∈ Aα.

Analogously, define a1
α := (ar1 , . . . , ark) ∈ Dα. For every α ∈ I(N, k) and

every a = (ai1 , . . . , aiN−k) ∈ Aα define

ia,α = (ia,α,1, . . . , ia,α,N ) : Dα → Xα
by

ia,α,j(z) :=
{
zj if αj = 1,
aj if αj = 0,

j = 1, . . . , N, z = (zr1 , . . . , zrk) ∈ Dα

(if αj = 0, then j ∈ {i1, . . . , iN−k}, and if αj = 1, then j ∈ {r1, . . . , rk}).
Similarly, for any α ∈ I(N, k) and any b = (br1 , . . . , brk) ∈ Dα define

lb,α = (lb,α,1, . . . , lb,α,N ) : Aα → Xα,

lb,α,j(z) :=
{
zj if αj = 0,
bj if αj = 1,

j = 1, . . . , N, z = (zi1 , . . . , ziN−k) ∈ Aα.

Definition 2.1. For any α ∈ I(N, k) let Σα ⊂ Aα. We define a gener-
alized (N, k)-cross

TN,k := TN,k((Aj , Dj)Nj=1, (Σα)α∈I(N,k)) =
⋃

α∈I(N,k)

{a ∈ Xα : a0
α /∈ Σα}

and its center
C(TN,k) := TN,k ∩ (A1 × · · · ×AN ).

It is straightforward that

C(TN,k) = (A1 × · · · ×AN ) \
⋂

α∈I(N,k)

{z ∈ A1 × · · · ×AN : z0
α ∈ Σα},
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which implies that C(TN,k) is non-pluripolar provided that A1 × · · · × AN
is non-pluripolar and at least one of the Σα’s is pluripolar (see Proposition
3.2).

Observe that in the case k = 1 the set I(N, k) consists of exactly N
elements and in this situation we shall use the more convenient notation

Σj := Σ(0,...,0︸︷︷︸
j−1

,1,0,...,0︸︷︷︸
N−j

), j = 1, . . . N.

Furthermore, note that if in the definition of generalized (N, k)-cross we
take k = 1 and Σ1 = · · · = ΣN = ∅, then we obtain a classical N -fold cross
(see [JP3])

X := X((Aj , Dj)Nj=1) = TN,1((Aj , Dj)Nj=1, (∅)Nj=1).

If we take k = 1 (and any Σj , j = 1, . . . , N), then we get a generalized N -fold
cross (again see [JP3])

T := TN,1 = TN,1((Aj , Dj)Nj=1, (Σj)
N
j=1).

Finally note that if we take any k ∈ {1, . . . , N} and Σα = ∅ for every
α ∈ I(N, k), then we get the (N, k)-cross (see [JP5])

XN,k = XN,k((Aj , Dj)Nj=1) := TN,k((Aj , Dj)Nj=1, (∅)α∈I(N,k)).
Definition 2.2 (see [JP6, Chapter 2]). We say that a Riemann region

(X, p) over Cn is relatively compact if there exists a Riemann region (X ′, p′)
over Cn such that X is a relatively compact open set in X ′ and p = p′|X .

Definition 2.3 (see [JP6, Chapter 3]). Let (X, p) be a Riemann region
over Cn and let A ⊂ X. The relative extremal function of A with respect to
X is the upper semicontinuous regularization h?A,X of the function

hA,X := sup{u : u ∈ PSH(X), u ≤ 1, u|A ≤ 0}.
For an open set Y ⊂ X we put hA,Y := hA∩Y,Y , h

?
A,Y := h?A∩Y,Y .

Remark 2.4.
(a) If Y is a connected component of X, then hA,X = hA,Y and h?A,X =

h?A,Y on Y.
(b) h?A,X ∈ PSH(X).
(c) If Y1 ⊂ Y2 ⊂ X are open, A1 ⊂ Y1 and A1 ⊂ A2 ⊂ Y2, then

hA2,Y2 ≤ hA1,Y1 and h?A2,Y2
≤ h?A1,Y1

on Y1.

Definition 2.5 (see [JP6, Chapter 3]). We say that a set A ⊂ X is
pluriregular at a point a ∈ A if h?A,U (a) = 0 for any open neighborhood U
of a. Define

A? = A?,X := {a ∈ A : A is pluriregular at a}.
We say that A is locally pluriregular if A 6= ∅ and A is pluriregular at each
of its points, i.e. ∅ 6= A ⊂ A?.
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Remark 2.6.

(a) If ∅ 6= Y ⊂ X is open, then it is locally pluriregular.
(b) If ∅ 6= B ⊂ A ⊂ X and B ⊂ Y with Y open, then B?,Y ⊂ A?,X∩Y =

(A ∩ Y )?,Y .
(c) h?A,X = 0 on A?.
(d) If A is locally pluriregular, then h?A,X ≡ hA,X ≡ h?A?,X ≡ hA?,X .
(e) A \A? is a pluripolar set.
(f) (A \ P )? = A? for any pluripolar set P .
(g) If A ⊂ X and B ⊂ Y are locally pluriregular, then so is A×B.
(h) If X is relatively compact (see Definition 2.2), then a set P ⊂ X is

pluripolar iff h?P,X ≡ 1.

Definition 2.7 ([JP5]). Let

X̂N,k = X̂N,k((Aj , Dj)Nj=1)

:=
{

(z1, . . . , zN ) ∈ D1 × · · · ×DN :
N∑
j=1

h?Aj ,Dj (zj) < k
}
.

Note the obvious inclusion X̂N,k−1 ⊂ X̂N,k.

Definition 2.8. LetM be any subset of TN,k. Then for any α ∈ I(N, k)
and any a ∈ Aα define the fiber of M at a to be

Ma := {z ∈ Dα : ia,α(z) ∈M}.
Similarly, for any b ∈ Dα define the fiber of M at b to be

M b := {z ∈ Aα : lb,α(z) ∈M}.
Definition 2.9. For a relatively closed set M ⊂ TN,k (we allow M = ∅

here) we say that a function f : TN,k \M → C is separately holomorphic on
TN,k \M if for every α ∈ I(N, k) and for every a ∈ Aα \Σα the function

Dα \Ma 3 z 7→ f(ia,α(z))

is holomorphic. In this case we write f ∈ Os(TN,k \M).
We denote by Ocs(TN,k \M) the space of all f ∈ Os(TN,k \M) such that

for any α ∈ I(N, k) and for every b ∈ Dα the function

Aα \ (Σα ∪M b) 3 z 7→ f(lb,α(z))

is continuous.

Definition 2.10 (see [JP1, Section 3.4]). Let (X, p) be a Riemann region
over Cn, let M be a closed subset of X such that

for any domain D ⊂ X the set D \M is connected and dense in X,(2.1)

and let ∅ 6= F ⊂ O(X \M). We say that a point a ∈M is non-singular with
respect to F (written a ∈Mns,F ) if there exists an open neighborhood U of
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a such that for each f ∈ F there exists a function f̃ ∈ O(U) with f̃ = f on
U \M.

If a ∈ Ms,F := M \Mns,F , then we say that a is singular with respect
to F . If Ms,F = M, then we say that M is singular with respect to F .

Remark 2.11.

(a) The set Ms,F is closed in M.

(b) For any function f ∈ F there exists a holomorphic extension f̃ ∈
O(X \Ms,F ).

(c) Ms,F is singular with respect to the family F̃ := {f̃ : f ∈ F}.
(d) If M 6= ∅ is an analytic, singular set, then M is of pure codimension

one (cf. [C, Appendix I]).
(e) Let M ⊂ X be an analytic set of pure dimension n− 1, and let M =⋃

i∈IMi be the decomposition ofM into irreducible components (cf. [C,
Section 5.4]). Then

Ms,F =
⋃

i:Mi⊂MsF

Mi =
⋃

i:Mi∩RegM∩Ms,F 6=∅

Mi

In particular, the setMs,F is also analytic (cf. [JP1, Proposition 3.4.5]).

Now we are prepared to state the main result.

Theorem 2.12 (Extension theorem for generalized (N, k)-crosses with
analytic singularities). Let Dj be a Riemann domain of holomorphy over
Cnj , Aj ⊂ Dj be locally pluriregular for any j = 1, . . . , N, let Σα ⊂ Σ0

α ⊂ Aα
with Σ0

α pluripolar for any α ∈ I(N, k). Let TN,k := TN,k((Aj , Dj)Nj=1,

(Σα)α∈I(N,k)), XN,k := XN,k((Aj , Dj)Nj=1). Let F be an analytic subset of
X̂N,k with codimF ≥ 1, and let G be an analytic subset of X̂N,k with
codimG ≥ 1 such that F ⊂ G. Assume that for α ∈ I(N, k) and a ∈ Aα \Σ0

α

the fiber (TN,k ∩ G)a is thin. Let G ⊂ Ocs(TN,k \ G) be such that for any
f ∈ G, α ∈ I(N, k) and a ∈ Aα \ Σ0

α the function fa,α := f ◦ ia,α ex-
tends meromorphically to Dα \ (TN,k ∩ F )a, i.e. there exists a function
f̃a,α ∈M(Dα \ (TN,k ∩ F )a) such that S(f̃a,α) ⊂ (TN,k ∩G)a \ (TN,k ∩ F )a
and f̃a,α = fa,α on Dα\(TN,k∩G)a. Denote by F̂ the union of all irreducible
components of F of codimension one. Then for any f ∈ G there exists an
f̃ ∈M(X̂N,k \ F̂ ) such that S(f̃) ∩TN,k ⊂ G and f̃ = f on TN,k \G.

Moreover, if F = ∅ and Ĝ is the union of all irreducible components of G
of codimension one, then:

• for any f ∈ F := Ocs(TN,k \G) there exists an f̂ ∈ O(X̂N,k \ Ĝ) such
that f̂ = f on TN,k \G,
• Ĝ is singular with respect to the family {f̂ : f ∈ F},



198 A. Lewandowski

• f̂(X̂N,k \ Ĝ) ⊂ f(TN,k \ G) for any f ∈ F (the Σ0
α’s are redundant

here).

If in addition G = ∅, then for every f ∈ F there exists an f̂ ∈ O(X̂N,k) such
that f̂ = f on TN,k and f̂(X̂N,k) ⊂ f(TN,k). In this case the assumption
that the Dj’s are domains of holomorphy is not necessary.

Observe that Theorem 2.12 generalizes the following results:

• (Take G = ∅, k = 1, Σ1 = · · · = ΣN = ∅)
Theorem 2.13 (Main cross theorem, [AZ], [NZ]). Let Dj be a Riemann

domain over Cnj , let Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N. Put X :=
X((Aj , Dj)Nj=1). Let f ∈ Os(X). Then there exists a uniquely determined
f̂ ∈ O(X̂) such that f̂ = f on X.

• (Take G = ∅, Σα = ∅, α ∈ I(N, k))
Theorem 2.14 (Extension theorem for (N, k)-crosses, [JP5]). For every

f ∈ Os(XN,k) there exists an f̂ ∈ O(X̂N,k) such that f̂ = f on XN,k and
f̂(X̂N,k) ⊂ f(XN,k).

Theorems 2.13 and 2.14 are formulated for Os, while there is Ocs in the
assumptions of Theorem 2.12. However, using argument similar to the one
given in Section 4 below, one can show that Theorem 2.12 in the case of
G = ∅ and empty Σα’s holds true for F = Os(TN,k).

• (Take G = ∅, k = 1)

Theorem 2.15 (Extension theorem for generalized crosses, [JP3]). As-
sume that Dj is a Riemann domain over Cnj , and Aj ⊂ Dj is locally pluri-
regular. Assume additionally that Σj ⊂ A1× · · · ×Aj−1×Aj+1× · · · ×AN
is pluripolar for j = 1, . . . , N . Let X and T be as in Definition 2.1. Then
for every f ∈ Ocs(T) there exists an f̂ ∈ O(X̂) such that f̂ = f on T.

• (Take F = ∅, k = 1)

Theorem 2.16 (Extension theorem for generalized crosses with analytic
singularities, [JP2]). Assume that Dj is a Riemann domain of holomorphy
over Cnj , Aj ⊂ Dj is locally pluriregular, Σj ⊂ A1×· · ·×Aj−1×Aj+1×· · ·×
AN is pluripolar for j = 1, . . . , N . Let X and T be as in Definition 2.1. Let
S := T ∩G, where G is an analytic subset of an open neighborhood U ⊂ X̂
of T with codimG ≥ 1. Let

F :=
{Os(X \ S) if Σ1 = · · · = ΣN = ∅,
Ocs(T \ S) otherwise.

Then there exist an analytic set Ŝ ⊂ X̂ and an open neighborhood U0 ⊂ U
of T such that:
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• Ŝ ∩ U0 ⊂ G,
• for any f ∈ F there exists an f̂ ∈ O(X̂ \ Ŝ) such that f̂ = f on T \ S,
• Ŝ is singular with respect to the family {f̂ : f ∈ F},
• if U = X̂, then Ŝ is the union of all components of G of codimension
one.

• (Take k = 1)

Theorem 2.17 (Cross theorem with singularities for meromorphic func-
tions, [JP6, Theorem 11.2.1], see also [JP4]). Let Dj , Aj , Σj ,X,T be as in
Theorem 2.16, j = 1, . . . , N . Let Σj ⊂ Σ0

j ⊂ A1×. . .×Aj−1×Aj+1×. . .×AN
be pluripolar, j = 1, . . . , N . Let M ⊂ S ⊂ T be relatively closed and as-
sume that for every j ∈ {1, . . . , N} and every (a′j , a

′′
j ) ∈ (A′j × A′′j ) \ Σ0

j :=
((A1 × · · · ×Aj−1)× (Aj+1 × · · · ×AN )) \Σ0

j , the fiber S(a′j ,·,a′′j ) is thin. Let

G ⊂
{Os(X \ S) if Σ1 = · · · = ΣN = ∅,
Ocs(T \ S) otherwise

be such that for any f ∈ G, j ∈ {1, . . . , N}, and (a′j , a
′′
j )∈(A′j ×A′′j ) \Σ0

j ,
the function f(a′j , ·, a′′j ) extends meromorphically to Dj \M(a′j ,·,a′′j ), i.e. there

exists a function f̃j,(a′j ,a′′j ) ∈M(Dj \M(a′j ,·,a′′j )) with S(f̃j,(a′j ,a′′j )) ⊂ S(a′j ,·,a′′j ) \
M(a′j ,·,a′′j ) and f̃j,(a′j ,a′′j ) = f(a′j , ·, a′′j ) on Dj \ S(a′j ,·,a′′j ). Let M̂ ⊂ X̂ be con-
structed via Theorem 10.2.9 from [JP6] with respect to the family

F :=
{Os(X \M) if Σ1 = · · · = ΣN = ∅,
Ocs(T \M) otherwise.

Then there exists a generalized cross T′ := TN,1((Aj , Dj)Nj=1, (Σ
′
j)
N
j=1), with

Σ0
j ⊂ Σ′j and Σ′j pluripolar, j = 1, . . . , N, such that for any f ∈ G there

exists an f̃ ∈M(X̂ \ M̂) with:

• M̂ ∩T′ ⊂M,
• S(f̃) ∩T′ ⊂ S,
• f̃ = f on T′ \ S.
Remark 2.18. Note that if we have M = T∩F, where F is an analytic

subset of an open neighborhood UF of T contained in X̂, then Theorem 2.17
holds true with M̂ constructed via Theorem 2.16 (with the data (G,S) =
(F,M)).

3. Prerequisites. In this section we recall some definitions and results
which will be needed later.

Lemma 3.1 ([JP6, Lemma 2.1.14]). Let K be a Riemann domain, let
L ⊂ K be a subdomain, and let A0 ⊂ A ⊂ K be such that A0 ⊂ L. Assume
that A0 is not analytically thin at a point a0 ∈ L ∩ A0 (see Definition 1.4.3



200 A. Lewandowski

in [JP6]). For a family F of functions f : A → C consider the following
conditions:

(i) for every f ∈ F there exists an f̂ ∈ O(L) such that f̂ = f on A0

(f̂ is uniquely determined),
(ii) for every f ∈ F and for every a ∈ C \ f(A) the function 1/(f − a)

belongs to F ,
(iii) for every f ∈ F and for every a ∈ C with |a| > ‖f‖A the function

1/(f − a) belongs to F .

Then:

(a) If (i) and (ii) are satisfied, then f̂(L) ⊂ f(A) for every f ∈ F (in
particular, ‖f̂‖D ≤ ‖f‖A for every f ∈ F).

(b) If (i) and (iii) are satisfied, then ‖f̂‖L ≤ ‖f‖A for every f ∈ F .

Proposition 3.2 ([JP6, Proposition 2.3.31]). Let (X, p), (Y, q) be Rie-
mann regions over Cn,Cm, respectively, countable at infinity. Then:

(a) If A ⊂ X × Y is pluripolar, then

{z ∈ X : A(z,·) /∈ PLP(Y )} ∈ PLP(X),

where
A(z,·) := {w ∈ Y : (z, w) ∈ A}.

(b) Let Q ⊂ X × Y be such that Q(a,·) ∈ PLP(Y ), a ∈ X. Let C ⊂ X × Y
be such that

{z ∈ X : C(z,·) /∈ PLP(Y )} /∈ PLP(X).

Then C \Q /∈ PLP(X × Y ).

Lemma 3.3 ([JP6, Example 3.2.6]). Let ϕ : (X, p)→ (X̂, p̂) be the max-
imal holomorphic extension and let u be a plurisubharmonic function on X̂
such that u ≤ C on ϕ(X). Then u ≤ C on X̂.

Proposition 3.4 ([JP6, Proposition 3.2.25]). Let Xk ↗ X with Xk open
for every k ∈ N, and Ak ⊂ Xk with Ak ↗ A. Then h?A?k,Xk ↘ h?A?,X .

Proposition 3.5 ([JP6, Proposition 3.2.27]). Let X be a relatively com-
pact Riemann domain. Let A ⊂ X be non-pluripolar and let 0 < ε < 1. Put

∆(ε) := {z ∈ X : h?A,X(z) < ε}.
Then h?A,∆(ε) = (1/ε)h?A,X on ∆(ε). In particular, h?A,∆(ε)(z) < 1, z ∈ ∆(ε),
which implies that A ∩ S is non-pluripolar for any connected component S
of ∆(ε).

In the case where A is locally pluriregular, we do not need to assume that
X is relatively compact.
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Lemma 3.6 ([JP5]). Let Dj be a Riemann domain of holomorphy over
Cnj and let Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N. Then

h?bXN,k−1,bXN,k
(z) = max

{
0,

N∑
j=1

h?Aj ,Dj (zj)− k + 1
}
,

z = (z1, . . . , zN ) ∈ X̂N,k.

4. Proof of Theorem 2.12 in the case F = ∅. Recall that here Ĝ
equals the union of all irreducible components of G of codimension one.

Proof of Theorem 2.12 in the case F = ∅. Observe that the inclusion
f̂(X̂N,k \ Ĝ) ⊂ f(TN,k \G) for every f ∈ F is a consequence of Lemma 3.1
with

(K,L,A0, A,F) = (X̂N,k \ Ĝ, X̂N,k \ Ĝ,TN,k \G,TN,k \G,F).

We divide the proof into three steps.

Step 1: We prove the theorem in the case G = ∅ (recall that here we do
not assume that the Dj ’s are domains of holomorphy).

In view of Proposition 7.2.6 in [JP6], we may assume that each Dj is a
Riemann domain of holomorphy. Indeed, note that by virtue of the continuity
of the operation of extension, the class Ocs is stable under taking the envelope
of holomorphy. Furthermore, using Proposition 3.4 we may assume that Dj

is relatively compact (cf. Definition 2.2) and Aj ⊂⊂ Dj for j = 1, . . . , N.
We apply induction on N. There is nothing to prove in the case N = k.

Moreover, the case k = 1 is solved by Theorem 2.15. Thus, the conclusion
holds true for N = 2. Suppose it holds true for N − 1 ≥ 2. Now, we apply
induction on k. For k = 1 this is just Theorem 2.15. Suppose that the
conclusion is true for k − 1 with 2 ≤ k ≤ N − 1.

Fix an f ∈ F . Define

Q := QN = {zN ∈ AN : ∃α ∈ I0(N, k) : (Σα)(·,zN ) /∈ PLP},
where I0(N, k) := I(N, k) ∩ {α : αN = 0}. Proposition 3.2 implies that
Q ∈ PLP. For an aN ∈ AN \Q put

TN−1,k(aN ) := TN−1,k((Aj , Dj)N−1
j=1 , ((Σ(β,0))(·,aN ))β∈I(N−1,k)).

Consider also the generalized (N − 1, k − 1)-cross

TN−1,k−1 := TN−1,k−1((Aj , Dj)N−1
j=1 , (Σ(β,1))β∈I(N−1,k−1)).

It can be easily seen that for a fixed aN ∈ AN \Q we have

(TN,k)(·,aN ) = TN−1,k(aN ) ∪TN−1,k−1,

where (TN,k)(·,aN ) is the fiber of the set TN,k over aN . Define

YN−1,k := XN−1,k((Aj , Dj)N−1
j=1 ), YN−1,k−1 := XN−1,k−1((Aj , Dj)N−1

j=1 ).
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For any aN ∈ AN \ Q we have f(·, aN ) ∈ Ocs(TN−1,k(aN )). Then, by the
inductive assumption, for any aN ∈ AN \Q there exists an f̂aN ∈ O(ŶN−1,k)
such that f̂aN = f(·, aN ) on TN−1,k(aN ).

Define a 2-fold classical cross

Z = X(B1, B2;E1, E2) := X((Bj , Ej)2j=1),

where B1 = TN−1,k−1, B2 = AN \Q, E1 = ŶN−1,k, E2 = DN . Clearly

Z = (TN−1,k−1 ×DN ) ∪ (ŶN−1,k × (AN \Q)).

(Jarnicki and Pflug in [JP5] considered a 2-fold cross of the form (ŶN−1,k−1×
DN )∪ (ŶN−1,k ×AN ). This is also possible here. However, our new method
simplifies the further reasoning.)

Observe that Ẑ = X̂N,k. Indeed, in view of the inductive assumption,
TN−1,k−1 is connected (this follows from the connectedness of ŶN−1,k−1

and the inclusion f̂(ŶN−1,k−1) ⊂ f(TN−1,k−1), f ∈ Ocs(TN−1,k−1)). Take
an ε ∈ (0, 1) and let U(ε) be the connected component of the open set

{z ∈ ŶN−1,k−1 : h?
TN−1,k−1, bYN−1,k−1

(z) < ε}

containing TN−1,k−1. Then ŶN−1,k−1 is the envelope of holomorphy of U(ε).
To see this, take a g ∈ O(U(ε)). Then g|TN−1,k−1

∈ Ocs(TN−1,k−1) and
by the inductive assumption there is a ĝ ∈ O(ŶN−1,k−1) with ĝ = g on
TN−1,k−1. Since TN−1,k−1 is not pluripolar, we get ĝ = g on U(ε). Hence any
g ∈ O(U(ε)) admits a holomorphic extension to ŶN−1,k−1, which is a pseudo-
convex domain (cf. [JP5]). Using Lemma 3.3 we get h?

TN−1,k−1, bYN−1,k−1
= 0.

Hence h?
TN−1,k−1, bYN−1,k

= h?bYN−1,k−1, bYN−1,k
and it suffices to use Lemma 3.6

and pluripolarity of Q.
Let Ff : Z→ C be given by the formula

Ff (z′, zN ) :=

{
f̂zN (z′) if (z′, zN ) ∈ ŶN−1,k × (AN \Q),
f(z′, zN ) if (z′, zN ) ∈ TN−1,k−1 ×DN .

Fix an aN ∈ AN \ Q. It is obvious that f(·, aN ) ∈ Ocs(TN−1,k−1). Then
there exists a ĝaN ∈ O(ŶN−1,k−1) satisfying ĝaN = f(·, aN ) on TN−1,k−1.

We shall show that we have the equality f̂aN = ĝaN on ŶN−1,k−1. Since both
f̂aN and ĝaN are extensions of f(·, aN ), we only need to prove the existence
of some non-pluripolar set B ⊂ TN−1,k(aN )∩TN−1,k−1 and use the identity
principle. Observe that the set

B := C(TN−1,k(aN )) ∩ C(TN−1,k−1)

is good for our purpose. In particular, f̂aN (z′) = f(z′, aN ), z′ ∈ TN−1,k−1,
which shows that Ff is well-defined.
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It is clear that Ff ∈ Os(Z). Thus, using Theorem 2.13 we get the exis-
tence of a function f̂ ∈ O(Ẑ) with f̂ = Ff on Z.

We have to verify that f̂ = f on TN,k. Take a point a ∈ TN,k. The
conclusion is obvious if a ∈ TN−1,k−1 × DN ⊂ Z. Suppose, without losing
generality, that a = (a1, . . . , ak, ak+1, . . . , aN ) ∈ Dα × (Aα \ Σα), where
α = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
N−k

). Observe that

T :=
⋃

zN∈AN\Q

TN−1,k(zN )× {zN} ⊂ ŶN−1,k × (AN \Q) ⊂ Z.

We also have

T ⊂
⋃

zN∈AN\Q

(TN,k)(·,zN ) × {zN} ⊂ TN,k.

Thus, if b = (b′, bN ) ∈ T , then f̂(b) = Ff (b) = f̂bN (b′) = f(b). Bearing this
in mind, we easily see that it suffices to find a sequence

(bν)∞ν=1 ⊂ T ∩ {(a1, . . . , ak)} × (Aα \Σα)

such that bν → a, and then continuity of f(a1, . . . , ak, ·) will end the proof.
Since Q is pluripolar, there exists a sequence (bνN ) convergent to aN

such that (bνN ) ⊂ AN \ Q. Put P :=
⋃∞
ν=1(Σα)(·,bνN ), which is a pluripo-

lar set. This guarantees the existence of a sequence ((bνk+1, . . . , b
ν
N−1)) ⊂

(Ak+1 × · · · × AN−1) \ P, convergent to (ak+1, . . . , aN−1). Finally we put
bν := (a1

α, b
ν
k+1, . . . , b

ν
N−1). It is obvious that bν → a and that for every

ν ∈ N, bν ∈ TN−1,k(bνN )× {bνN} ⊂ T .

Step 2: We prove that for every f ∈ F there exists an f̂ ∈ O(X̂N,k \G)
such that f̂ = f on TN,k \G.

As in Step 1, we may assume thatDj is relatively compact and Aj ⊂⊂ Dj

for j = 1, . . . , N.
We apply induction on N. There is nothing to prove in the case N = k.

The case k = 1 is solved in Theorem 2.16. Thus, the conclusion holds true
for N = 2. Suppose it holds true for N − 1 ≥ 2. Now, we apply induction
on k. As we observed (cf. Theorem 2.16), for k = 1 the result is known.
Suppose that the conclusion is true for k − 1 with 2 ≤ k ≤ N − 1.

Define

Q̃ := QN = {zN ∈ AN : ∃α ∈ I0(N, k) : (Σα)(·,zN ) /∈ PLP},
where I0(N, k) is as in Step 1, and

R := RN = {zN ∈ AN : G(·,zN ) /∈ PLP}, Q := Q̃ ∪R.
Proposition 3.2 implies that Q ∈ PLP. For an aN ∈ AN \Q let TN−1,k(aN )
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be as in Step 1. Let TN−1,k−1,YN−1,k,YN−1,k−1 be as in Step 1. Put

Z = X(B1, B2;E1, E2) := X((Bj , Ej)2j=1),

where B1 = YN−1,k−1, B2 = AN \Q,E1 = ŶN−1,k, E2 = DN . Recall that

Z = (YN−1,k−1 ×DN ) ∪ (ŶN−1,k × (AN \Q))

and Ẑ = X̂N,k.
For any fixed f ∈ F and for any aN ∈ AN \Q we have

f(·, aN ) ∈ Ocs(TN−1,k(aN ) \G(·,aN )).

The set G(·,aN ) ∩ ŶN−1,k is analytic in ŶN−1,k ⊂ (X̂N,k)(·,aN ). Observe that
in view of the definition of the set Q we have codimG(·,aN ) ≥ 1. From the
inductive assumption we conclude that for any ϕ ∈ Ocs(TN−1,k(aN )\G(·,aN ))
there exists an hϕaN ∈ O(ŶN−1,k\G(·,aN )) such that hϕaN = ϕ on TN−1,k(aN )\
G(·,aN ). In particular, there exists an h

f(·,aN )
aN ∈ O(ŶN−1,k \ G(·,aN )) with

h
f(·,aN )
aN = f(·, aN ) on TN−1,k(aN ) \G(·,aN ).
Define a function Ff : Z \G→ C by

Ff (z′, zN ) :=
{
f(z′, zN ) if (z′, zN ) ∈ (YN−1,k−1 \G(·,zN ))×DN ,

h
f(·,zN )
zN (z′) if (z′, zN ) ∈ (ŶN−1,k \G(·,zN ))× (AN \Q).

We will show that Ff is well-defined. Observe that for any aN ∈ DN we have

f(·, aN ) ∈ Ocs(TN−1,k−1 \G(·,aN )).

The set G(·,aN )∩ŶN−1,k−1 is analytic in ŶN−1,k−1 ⊂ (X̂N,k)(·,aN ). Two cases
have to be considered:

Case 1: codimG(·,aN ) ≥ 1. Then from the inductive assumption we con-
clude that for any ϕ ∈ Ocs(TN−1,k−1\G(·,aN )) there is a g

ϕ
aN ∈ O(ŶN−1,k−1\

G(·,aN )) such that gϕaN = ϕ on TN−1,k−1 \ G(·,aN ). In particular, there ex-
ists a function gf(·,aN )

aN ∈ O(ŶN−1,k−1 \ G(·,aN )) with gf(·,aN )
aN = f(·, aN ) on

TN−1,k−1 \G(·,aN ).

Case 2: codimG(·,aN ) = 0 (this may happen for aN ∈ PN ⊂ DN , where
PN is pluripolar). In this case TN−1,k−1 \ G(·,aN ) = ∅ (and even G(·,aN ) =
ŶN−1,k−1 in view of the connectedness of ŶN−1,k−1 and of the identity
principle for analytic sets) and there is nothing to prove here.

In this situation, it suffices to show that for any aN ∈ AN \ Q we have
the equality

gf(·,aN )
aN

= hf(·,aN )
aN

on (ŶN−1,k−1 \G(·,aN )) ∩ (ŶN−1,k \G(·,aN )).

Using the definition of the set R and the inclusion ŶN−1,k−1 ⊂ ŶN−1,k we
see that we only need to show the equality on the set ŶN−1,k−1 \ G(·,aN ).
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Since hf(·,aN )
aN and gf(·,aN )

aN are extensions of f(·, aN ), we are done if we show
that there exists a non-pluripolar set B ⊂ (TN−1,k(aN )∩TN−1,k−1)\G(·,aN ).
Similarly to Step 1, the set

B := (C(TN−1,k(aN )) ∩ C(TN−1,k−1)) \G(·,aN )

is good for our purpose.
It is obvious that Ff ∈ Os(Z \ G). Then, applying Theorem 2.16, we

conclude that for any function Ψ ∈ Os(Z \ G) there exists a function ψ̂ ∈
O(Ẑ\G) such that ψ̂ = Ψ on Z\G. In particular, there exists an f̂ ∈ O(Ẑ\G)
with f̂ = Ff on Z \G.

We have to verify that f̂ = f on TN,k \G. Take a point a ∈ TN,k \G. The
conclusion is obvious if a ∈ (TN−1,k−1×DN ) \G ⊂ Z \G. Suppose, without
losing generality, that a = (a1, . . . , ak, ak+1, . . . , aN ) ∈ (Dα× (Aα \Σα))\G,
where α = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
N−k

). Observe that

T :=
⋃

zN∈AN\Q

(TN−1,k(zN )\G(·,zN ))×{zN}⊂ (ŶN−1,k×(AN \Q))\G⊂Z\G,

as well as

T ⊂
( ⋃
zN∈AN\Q

(TN,k)(·,zN ) × {zN}
)
\G ⊂ TN,k \G.

Thus, if b = (b′, bN ) ∈ T , then f̂(b) = Ff (b) = h
f(·,bN )
bN

(b′) = f(b). Bearing
this in mind, we easily see that it suffices to find a sequence

(bν)∞ν=1 ⊂ T ∩ {(a1, . . . , ak)} × (Aα \Σα)

such that bν → a, and use the continuity of f(a1, . . . , ak, ·).
Since Q is pluripolar, there exists a sequence (cνN ) ⊂ AN \ Q which is

convergent to aN . Put P :=
⋃∞
ν=1(Σα)(·,cνN ), which is a pluripolar set. This

guarantees the existence of a sequence ((cνk+1, . . . , c
ν
N−1)) ⊂ (Ak+1 × . . . ×

AN−1) \ P convergent to (ak+1, . . . , aN−1). Observe that a1, . . . , ak have to
be such that G(a1,...,ak,·) is pluripolar. Finally we observe that now it suffices
to take

((bνk+1)
s, . . . , (bνN )s) ⊂ (((Ak+1 × . . .×AN−1) \ P )× (AN \Q)) \G(a1,...,ak,·)

convergent to ((cνk+1, . . . , c
ν
N )) for ν ∈ N, and we are done.

Step 3. Put N̂ := G
s, bF , where F̂ := {f̂ : f ∈ F}. Then N̂ is an analytic

set contained in G, singular with respect to the family F̂ . We show that
N̂ = Ĝ. Consider two cases:

Case 1: Ĝ 6= ∅. Observe that the set X̂N,k \Ĝ is a domain of holomorphy
(cf. [JP5]). Thus there exists a non-continuable function g ∈ O(X̂N,k \ Ĝ)
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(see [JP1, Proposition 1.8.11]). Then f := g|TN,k\G ∈ O
c
s(TN,k \ G), which

implies that there exists a function f̂ ∈ O(X̂N,k \ N̂) such that f̂ = f on
TN,k \G ⊂ X̂N,k \ (N̂ ∪ Ĝ). Using non-pluripolarity of the set TN,k \G we
obtain f̂ = g on X̂N,k \ (N̂ ∪ Ĝ), from which it follows that Ĝ ⊂ N̂ . Thus,
N̂ is of pure codimension one (cf. Remark 2.11), which implies the equality
N̂ = Ĝ.

Case 2: Ĝ = ∅. Then, if N̂ is non-empty, it has to be of pure codimension
one, which clearly contradicts the fact that codimG ≥ 2.

5. Proof of Theorem 2.12 in the general case. We start with the
following

Proposition 5.1. If in Theorem 2.17 we have M = T ∩ F, where F
is an analytic subset of an open neighborhood UF of T contained in X̂ and
S = T ∩G, where G is an analytic subset of an open neighborhood UG of T
contained in X̂ such that F ⊂ G, then in the conclusion therein one can take
T′ = T.

Proof. For each f ∈ G the function f̃|T′\S is in Ocs(T′ \ S). Hence it

extends holomorphically to the function ˜̃f on X̂ \ Ŝ, where Ŝ is constructed
via Theorem 2.16. Similarly, f extends holomorphically to the function f̂ on
X̂\ Ŝ and we have ˜̃f = f̂ on X̂\ Ŝ. We also have T\S ⊂ X̂\ Ŝ, hence f̃ = f

on T \ S and S(f̃) ∩ T ⊂ S. Indeed, observe that f̃ is defined on X̂ \ M̂
and M̂ ∩T ⊂ M ⊂ S (the first inclusion follows from Remark 2.18), which

implies T \ S ⊂ X̂ \ M̂ and ˜̃f = f̂ = f on T \ S. Moreover, ˜̃f = f̃ = f on
T′ \ S, from which follows f̃ = f on T \ S. The condition S(f̃)∩T ⊂ S is a
consequence of Ŝ ∩T ⊂ S.

Proof of Theorem 2.12 in the general case. We may assume that for any
j = 1, . . . , N, Dj is relatively compact and Aj ⊂⊂ Dj .

We apply induction on N. There is nothing to prove in the case N = k.
The case k = 1 is solved in Theorem 2.17. Thus, the conclusion holds true for
N = 2. Suppose it holds true for N − 1 ≥ 2. Now, we apply induction on k.
As we observed, for k = 1 the result is known. Suppose that the conclusion
is true for k − 1 with 2 ≤ k ≤ N − 1.

Define

SN := {zN ∈ AN : ∃α ∈ I0(N, k) : (Σ0
α)(·,zN ) /∈ PLP},

RN := {zN ∈ AN : G(·,zN ) /∈ PLP}, QN := SN ∪RN .

We know that QN ∈ PLP. For any aN ∈ AN \QN let TN−1,k(aN ) be as in
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Section 4. Also, let TN−1,k−1,YN−1,k,YN−1,k−1 be as in Section 4. Put

Z = X(B1, B2;E1, E2) := X((Bj , Ej)2j=1),

where B1 = TN−1,k−1, B2 = AN \QN , E1 = ŶN−1,k, E2 = DN . Recall that

Z = (TN−1,k−1 ×DN ) ∪ (ŶN−1,k × (AN \QN ))

and Ẑ = X̂N,k.

For any fixed f ∈ G and any aN ∈ AN \QN we see that

f(·, aN ) ∈ Ocs(TN−1,k(aN ) \G(·,aN ))

(in particular, it admits a holomorphic extension to ŶN−1,k \ G(·,aN )). The
sets G(·,aN )∩ŶN−1,k, F(·,aN )∩ŶN−1,k are analytic in ŶN−1,k ⊂ (X̂N,k)(·,aN ).
Observe that we have codimG(·,aN ) ≥ 1, codimF(·,aN ) ≥ 1.Moreover, for each
β ∈ I(N − 1, k) there exists a pluripolar set (Σ0

(β,0))(·,aN ) ⊂ ΣaN
β such that

for each a′ ∈ (A(β,0))(·,aN ) \ ΣaN
β the fiber (G(·,aN ) ∩ TN−1,k(aN ))a′ is thin

and the function (f(·, aN ))β,a′ extends meromorphically to D(β,0) \ (F(·,aN )∩
TN−1,k(aN ))a′ , i.e. there exists a function ˜(f(·, aN ))β,a′ ∈M(D(β,0)\(F(·,aN )∩

TN−1,k(aN ))a′) such that S( ˜(f(·, aN ))β,a′) ⊂ (G(·,aN ) ∩ TN−1,k(aN ))a′ \

(F(·,aN )∩TN−1,k(aN ))a′ and ˜(f(·, aN ))β,a′ = (f(·, aN ))β,a′ on D(β,0)\(G(·,aN )

∩ TN−1,k(aN ))a′ . From the inductive assumption we conclude that for any
f ∈ G there exists a function f̃aN ∈ M(ŶN−1,k \F(·,aN )) such that S(f̃aN )∩
TN−1,k(aN ) ⊂ G(·,aN ) ∩ TN−1,k(aN ) and f̃aN = f(·, aN ) on TN−1,k(aN ) \
G(·,aN ) (in particular, f̃aN ∈ O(ŶN−1,k \G(·,aN ))).

For any f ∈ G define a function Ff : Z \G→ C by

Ff (z′, zN ) :=
{
f(z′, zN ) if (z′, zN ) ∈ (TN−1,k−1 \G(·,zN ))×DN ,

f̃zN (z′) if (z′, zN ) ∈ (ŶN−1,k \G(·,zN ))× (AN \QN ).

As in Section 4 we verify Ff is well-defined and Ff ∈ Os(Z \ G), which
implies there exists an f̂ ∈ O(Ẑ \ Ĝ) such that f̂ = Ff on Z \G and f̂ = f
on TN,k \G.

Observe that there exists a pluripolar set Σ1 ⊂ TN−1,k−1 such that
for any a′ ∈ TN−1,k−1 \ Σ1 the fiber G(a′,·) is thin. Similarly, for each
aN ∈ AN \QN the fiber G(·,aN ) is thin. Moreover, for each aN ∈ AN \ QN
the function Ff (·, aN ) extends meromorphically to ŶN−1,k \ F(·,aN ). It is
easy to see that there exists a pluripolar set Σ′1 ⊂ TN−1,k−1 such that for
any a′ ∈ YN−1,k−1 \ Σ′1 the function Ff (a′, ·) extends meromorphically to
DN \ F(a′,·). Hence from Theorem 2.17 we get the existence of a function
F̃f ∈M(X̂N,k \ F̂ ) such that S(F̃f ) ∩ Z ⊂ G ∩ Z and F̃f = Ff on Z \G (in
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particular, F̃f ∈ O(Ẑ \ Ĝ)). Then we have the equalities

F̃f = Ff = f̂ on Z \G,

F̃f = f̂ on X̂N,k \ Ĝ,

F̃f = f on TN,k \G

and S(F̃f ) ∩TN,k ⊂ G. So it is enough to put f̃ := F̃f .
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