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On generalized topological spaces I

by Artur Piękosz (Kraków)

Abstract. We begin a systematic study of the category GTS of generalized topo-
logical spaces (in the sense of H. Delfs and M. Knebusch) and their strictly continuous
mappings. We reformulate the axioms. Generalized topology is found to be connected with
the concept of a bornological universe. Both GTS and its full subcategory SS of small
spaces are topological categories. The second part of this paper will also appear in this
journal.

1. Introduction. Generalized topology in the sense of H. Delfs and
M. Knebusch is a rather unknown chapter of general topology. In fact, it is a
generalization of the classical concept of topology. The aim of this work (con-
sisting of this paper and [P2]) is to start the systematic study of generalized
topology in this sense (not to be confused with other notions of “generalized
topology” appearing in the literature).

This concept was defined in [DK] and helped to develop a semialge-
braic version of homotopy theory. In 1991, M. Knebusch [K2] suggested that
his theory of locally semialgebraic spaces (developed in [DK] together with
H. Delfs) and weakly semialgebraic spaces (developed in [K1]) could be gener-
alized to the o-minimal context. (Here locally definable and weakly definable
spaces allow one to perform constructions analogous to those known from
the traditional homotopy theory.)

The successful generalization in [P1] of the above mentioned theory of
Delfs and Knebusch to the case of o-minimal expansions of fields prompts
the question whether similar homotopy theories can be developed by the use
of generalized topology and other ideas from [DK, K1]. Moreover, even if in
many cases a full-fledged homotopy theory may not be achievable, the use
of locally definable and weakly definable spaces over various structures will
be important. And even on the purely topological level, generalized topol-
ogy is an interesting notion, related to the notion of a bornological universe
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(see [B] or [V] for the definition). This aspect does not appear in the litera-
ture. The paper [BO] does not give the reader enough understanding of the
generalized topology (see [P1] for a discussion) despite the heavy use of the
theory of locally semialgebraic spaces from [DK]. The T -spaces of [EP] have
natural generalized topologies, and it is convenient to see them as locally
small spaces.

The category GTS of generalized topological spaces and their strictly
continuous mappings may be seen as an alternative to the standard cate-
gory Top of topological spaces and continuous mappings. It originates from
the categorical concept of Grothendieck topology, and contains Top as a full
subcategory. In general, the third order concept of a generalized topological
space is much more difficult to study than the second order concept of a
topological space. Only the use of GTS allowed infinite families of defin-
able sets (considered with their natural o-minimal topologies) to be glued
together to produce locally definable spaces in [DK] and [P1] and weakly
definable spaces in [K1] and [P1]. Many of the proofs of [DK] and [K1] are
purely topological (in the sense of generalized topology), and it is important
to extract the relevant pieces of information on particular levels of struc-
ture. The theory of infinite gluings of definable sets can be reconstructed
to a large extent in the setting of structures with topologies (to be defined
in [P2]).

The present work (consisting of this paper and [P2]) is a continuation
of [P1], which was devoted to extending the semialgebraic homotopy theory
contained in [DK, K1] to the case of spaces over o-minimal expansions of
fields. This work is much more general and gives the origin, a nice axiom-
atization, and the basic theory of the category GTS. The new (relative to
traditional topology) concept of admissibility is explained, and we deal with
main (generalized) topological concepts such as: small sets, bases, connect-
edness, and various concepts of discreteness (in this paper) as well as com-
pleteness, paracompactness, Lindelöfness, and separation axioms (in [P2]).
We prove here that both GTS and its full subcategory SS are topological
categories (as constructs).

The work contains eight subsections devoted to the categories: GTS,
SS in this paper as well as LSS, WSS and related categories, GTS(M),
ADS(M, σ) and DS(M, σ), LDS(M, σ), WDS(M, σ) in [P2]. In each sub-
section the following aspects (if applicable and relevant) are considered:
definitions, strong or generated topology, special (e.g. constructible) sets,
examples, admissibility, small sets, generation and bases, admissible union,
description of morphisms, subspaces, limit or colimit properties, interesting
functors, special properties of spaces and mappings, open questions. The
separation axioms (in the “definable” case) and completeness (in all cases)
are treated separately.
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The author hopes that from now on generalized topology (hidden in the
language of locally semialgebraic spaces of [DK], and weakly semialgebraic
spaces of [K1]) will be developed without constraints.

Notation. For families of sets U ,V, we will use the usual set-theoretic
operations ∪,∩, \ on (families considered as) sets, and analogous operations
on families of sets, for example
U ∩1 V = {U ∩ V : U ∈ U , V ∈ V}, U ×1 V = {U × V : U ∈ U , V ∈ V}.
If U = {Ui}i∈I and V = {Vi}i∈I , then we will also use another version of
family union

U ∪∗1 V = {Ui ∪ Vi : i ∈ I}.
In particular, we will write V ∩1 U = {V } ∩1 U for a set V . Occasionally, we
will use operations on families of families, for example

Φ ∩2 Ψ = {U ∩1 V : U ∈ Φ,V ∈ Ψ} or Φ ∩2 F = {U ∩1 F : U ∈ Φ}.

2. Generalized topological spaces

2.1. Grothendieck topology. In this subsection we recall what a Gro-
thendieck topology is. The reader may consult books like [BW, KS, MM].

Let C be a small category (i.e. a category whose objects form a set, and
not a proper class). Consider the category of presheaves of sets on C, denoted
by Psh(C) or Ĉ, which is the category of contravariant functors from C to
the category Set of sets and functions. Let us recall the fundamental fact:

Fact 2.1.1 (Yoneda lemma, weak version). The functor C 3 C 7→
Hom(−, C) ∈ Ĉ is full and faithful, so we can consider C to be a full subcat-
egory of Ĉ.

To define a Grothendieck topology the following notion is usually used:
a sieve S on an object C is a subobject of Hom(−, C) as an object of Ĉ. Since
a sieve on C is a presheaf of sets of morphisms with common codomain C, the
above definition may be translated (with a minor abuse of language) into: S is
a set of morphisms with codomain C such that f ∈ S implies f ◦g ∈ S, if only
f ◦ g is meaningful. The largest sieve on C is Hom(−, C), the smallest is ∅.

A Grothendieck topology J on C is a function C 7→ J(C), with J(C) a
set of sieves on C such that the following axioms hold:
• (identity/non-emptiness) Hom(−, C) ∈ J(C) for each C;
• (stability/base change) if S ∈ J(C) and f : D → C is a morphism

of C, then f∗S = {g | f ◦ g ∈ S} ∈ J(D);
• (transitivity/local character) if S ∈ J(C) and R is a sieve on C such

that f∗R ∈ J(D) for each f ∈ S, f : D → C, then R ∈ J(C).
Elements of J(C) are called covering sieves. The pair (C, J) is called a

Grothendieck site. The above axioms imply the conditions (see Section III.2
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of [MM]):

• (saturation) if S ∈ J(C) and R is a sieve containing S, then R ∈ J(C);
• (intersection) if R,S ∈ J(C), then R ∩ S ∈ J(C).

It follows that each J(C) is a filter (not necessarily proper) on the lattice
SubĈ Hom(−, C) of sieves on C.

If the category C has pullbacks (i.e. fibre products), then instead of cov-
ering sieves, we can speak about covering families of morphisms (generating
respective sieves), so the axioms may be reformulated as:

• (identity/isomorphism) for each C, {idC} is a covering family (also
stated as: for each isomorphism f : D → C, {f} is a covering family);
• (base change) if {fi : Ui → U}i is a covering family, and g : W → U

any morphism, then {π2i : Ui ×U W →W}i is a covering family;
• (local character) if {fi : Ui → U}i is a covering family, and {gij :
Vij → Ui}j are covering families, then {fi ◦ gij : Vij → U}ij is a
covering family;

and usually the following is added (see [KS, Definition 16.1.2]):

• (saturation) if {fi : Ui → U}i is a covering family, and each fi factor-
izes through an element of {gj : Vj → U}j , then {gj : Vj → U}j is a
covering family.

Alternatively (see [BW, Section 6.7]) one can consider saturated and non-
saturated Grothendieck topologies, but for a Grothendieck site saturation is
usually assumed.

Grothendieck topology allows one to define sheaves (of sets). A sheaf on
C is a presheaf F ∈ Ĉ such that for each covering family {Ui → U}i in the
diagram

F (U)
e→
∏
i

F (Ui)
p1
⇒
p2

∏
i,j

F (Ui ×U Uj)

the induced morphism e is the equalizer of the standard pair of morphisms
p1, p2 (cf. [MM, Section III.4]).

A Grothendieck topology is subcanonical if every representable presheaf
is a sheaf, so in this case we may, by identifying the objects of C with their
respective representable presheaves, consider C ⊆ Sh(C) ⊆ Psh(C) = Ĉ.
Grothendieck topologies used in practice are usually subcanonical.

2.2. Generalized topological spaces. This subsection is devoted to
introducing a nice axiomatization and basic properties of generalized topo-
logical spaces.

For any set X, we have the Boolean algebra P(X) of all subsets of X,
which may be treated as a small category with inclusions as morphisms. In
this category fibre products are the same as binary products and the same
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as binary intersections, so P(X) has pullbacks. We want to introduce a full
subcategory Op of P(X), consisting of “open subsets” of X. Then we want
to introduce a subcanonical Grothendieck topology on this category. Sub-
canonicality means in this setting that for each covering family of morphisms
(which may be identified with a family of subsets of a given set, since mor-
phisms are inclusions) the object covered by the family is the supremum of
this family in the smaller category Op.

The above discussion leads to the notion of a generalized topological
space introduced by H. Delfs and M. Knebusch:

Definition 2.2.1 ([DK, p. 1]). A generalized topological space (gts) is a
set X together with a family T̊ (X) of subsets of X, called open sets, and a
family CovX of open families, called admissible (open) families or admissible
(open) coverings, such that:

(A1) ∅, X ∈ T̊ (X) (the empty set and the whole space are open).
(A2) If U1, U2 ∈ T̊ (X) then U1 ∪ U2, U1 ∩ U2 ∈ T̊ (X) (finite unions and

finite intersections of open sets are open).
(A3) If {Ui}i∈I ⊂ T̊ (X) and I is finite, then {Ui}i∈I ∈ CovX (finite

families of open sets are admissible).

The above three axioms are a strengthening of the identity axiom of a
Grothendieck topology. They also ensure that the smaller category has pull-
backs. These three axioms may be collectively called the finiteness axiom.

(A4) If {Ui}i∈I ∈ CovX then
⋃
i∈I Ui ∈ T̊ (X) (the union of an admissible

family is open).

This axiom may be called co-subcanonicality. Together with subcanonicality,
it means that admissible families are coverings (in the traditional sense) of
their unions. This property is imposed by the notation of [DK]: {Ui}i∈I ∈
CovX(U) iff U is the union of {Ui}i∈I .

Subcanonicality and co-subcanonicality may be collectively called the
naturality axiom.

(A5) If {Ui}i∈I ∈ CovX , V ⊂
⋃
i∈I Ui, and V ∈ T̊ (X), then {V ∩Ui}i∈I ∈

CovX (the intersections of an admissible family with an open subset
of the union of the family form an admissible family).

This is the stability axiom.

(A6) If {Ui}i∈I ∈ CovX and for each i ∈ I there is {Vij}j∈Ji ∈ CovX
such that

⋃
j∈Ji Vij = Ui, then {Vij}i∈I, j∈Ji ∈ CovX (all members

of admissible coverings of members of an admissible family form
together an admissible family).

This is the transitivity axiom.
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(A7) If {Ui}i∈I ⊂ T̊ (X), {Vj}j∈J ∈ CovX ,
⋃
j∈J Vj =

⋃
i∈I Ui, and for

each j ∈ J there exists i ∈ I such that Vj ⊂ Ui, then {Ui}i∈I ∈
CovX (a coarsening, with the same union, of an admissible family
is admissible).

This is the saturation axiom.

(A8) If {Ui}i∈I ∈ CovX , V ⊂
⋃
i∈I Ui and V ∩ Ui ∈ T̊ (X) for each i,

then V ∈ T̊ (X) (if a subset of the union of an admissible family has
open intersections with the members of the family then the subset
is open).

This axiom may be called regularity.
Both saturation and regularity have a smoothing character. Saturation

may be achieved by just adding coarsenings (respecting the union) of ad-
missible families. Regularity does not appear in some proofs, but it will be
important when a new space is constructed as an admissible union of known
spaces.

The above axioms may be restated briefly in the following way.

Definition 2.2.2. A generalized topological space is a triple

(X,OpX ,CovX),

where X is any set, OpX ⊆ P(X), and CovX ⊆ P(OpX), such that the
following axioms are satisfied:

• (finiteness) if U ∈ Fin(OpX), then
⋃
U ,
⋂
U ∈ OpX , U ∈ CovX ,

• (stability) if V ∈ OpX , U ∈ CovX , then V ∩1 U ∈ CovX ,
• (transitivity) if Φ ∈ P(CovX),

⋃
1 Φ ∈ CovX , then

⋃
Φ ∈ CovX ,

• (saturation) if U ∈ CovX , V ∈ P(OpX), U � V, then V ∈ CovX ,
• (regularity) if W ∈ P(X), U ∈ CovX , W ∩1 U ∈ P(OpX), then
W ∩

⋃
U ∈ OpX .

Remark 2.2.3. In the above, Fin(·) is the family of finite subsets of a
given set, and U � V means that the two families have the same union and U
is a refinement of V (so V is a coarsening of U). Notice that OpX =

⋃
CovX =⋃

1 CovX , hence one can define a generalized topological space as just a pair
(X,CovX). The naturality axiom does not appear, since our interpretation
of the families OpX (open sets) and CovX (admissible families or admissible
coverings) is intended to give a Grothendieck site (each member of CovX
covers its union).

Definition 2.2.4 (cf. [DK, p. 32]). A strictly continuous mapping be-
tween gts’s is a mapping such that the preimage of an admissible family is
an admissible family. We then write f−1(CovY ) ⊆ CovX , where f : X → Y
is the mapping considered. This condition, in particular, implies that the
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preimage of an open set should be open (i.e. f−1(OpY ) ⊆ OpX). Mappings
satisfying only the latter condition will be called continuous.

Strictly continuous mappings may be viewed as morphisms of sites (cf.
[BW, Section 6.7] and [KS, Section 17.2]).

Definition 2.2.5. The gts’s together with the strictly continuous map-
pings form a category called here GTS. Isomorphisms of GTS will be called
strict homeomorphisms.

Definition 2.2.6 ([AHS, Definition 5.1]). If a category C together with
a faithful functor U : C → Set is given then the pair (C, U) is called a
construct. If the functor U is obvious, we speak about the construct C.

Remark 2.2.7. The category GTS has an obvious forgetful functor U :
GTS → Set and will be seen as a construct. The monomorphisms are
exactly the injective morphisms, since the forgetful functor U is representable
(see [AHS, Corollary 7.38]). The epimorphisms are exactly the surjective
morphisms, since GTS as a construct has indiscrete structures.

Definition 2.2.8. A subset O ⊆ X will be called weakly open if it is
a union of open subsets of the gts X, and weakly closed if its complement
is weakly open. (The weakly open subsets form the topology τ(OpX) =⋃

1 P(OpX) generated by the family OpX , called the generated topology of
the gts X.) The weak closure of a subset Y ⊆ X is the closure Y of Y
in the topology τ(OpX) on X. A mapping f : X → Y will be called
weakly continuous if the preimage of any weakly open set is weakly open
(i.e. f−1(τ(OpY )) ⊆ τ(OpX)).

Definition 2.2.9. A subset Y of a gts X is closed if its complement Y c

is open, and is locally closed if it is the intersection of a closed set and an
open set. A subset Y of a gts X is constructible if it is a Boolean combination
of open sets. The family of closed subsets of X will be denoted by ClX , and
the family of constructible sets by ConstrX .

Recall that each constructible set is a finite union of locally closed sets.

Definition 2.2.10. We will say that a gts has the closure property
(CPG) if the weak closure of any locally closed set is a closed set.

Remark 2.2.11. In general, the closure operator on a gts does not exist.
If the space X has the closure property (CPG), then the topological closure
operator restricted to the class of constructible sets may be treated as the
closure operator of the generalized topology

· : ConstrX → ClX .

Fact 2.2.12. The preimage of a constructible set under a strictly contin-
uous mapping is constructible.
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Definition 2.2.13. By an open family we will understand a subfamily
of OpX . We will say that a family U is essentially finite (resp. essentially
countable) if some finite (resp. countable) subfamily U0 ⊆ U covers the union
of U (i.e.

⋃
U0 =

⋃
U). We will denote by EssFin(U) the family of essentially

finite subfamilies of the family U .
Example 2.2.14. We have the following simple examples of gts’s for

each n ∈ N:
1. The space Rnalg, where the closed sets are the algebraic subsets of Rn,

and the admissible families are the essentially finite open families (this
space is just Rn with the Zariski topology).

2. The space Cnalg, where the closed sets are the algebraic subsets of Cn,
and the admissible families are the essentially finite open families (this
space is Cn with the Zariski topology).

3. The space Rnsalg, where the open sets are the open semialgebraic sub-
sets of Rn, and the admissible families are the essentially finite open
families.

4. The space Rnsan, where the open sets are the open semianalytic subsets
of Rn, and the admissible families are the open families essentially
finite on bounded sets of Rn.

5. The space Rnsuban, where the open sets are the open subanalytic subsets
of Rn, and the admissible families are the open families essentially
finite on bounded sets of Rn.

6. The space Rntop, the usual topological space Rn (here all open families
are admissible).

7. The space Rnts, where the open sets are the sets open in the usual
topology, and the admissible families are the essentially finite open
families.

8. For each topological space (X, τ), we can take OpX = τ , and as CovX
the essentially countable open families.

The function sin : R → R is an endomorphism of Rtop and of Rsan, but not
of Rsalg.

Example 2.2.15. In cases 3–7 of Example 2.2.14, the weakly open sub-
sets are the open subsets of the natural topology on Rn.

Example 2.2.16. Each topological space may be considered as a gts. An
admissible family is understood as any open family. For topological spaces
all weakly continuous mappings are continuous and all continuous mappings
are strictly continuous.

Example 2.2.17 (non-examples). Given a topological space, we could
consider only singletons of open sets as admissible coverings of these sets.
This would give the so-called indiscrete Grothendieck topology, but not (in



Generalized topological spaces I 225

general) a gts, because of (A3). On the other hand, if we considered all
families of open subsets as coverings of an open set, the resulting discrete
Grothendieck topology would not (in general) be subcanonical, hence not a
generalized topology.

Let us recall two interesting examples of gts’s from Remark 23 in [P1].

Example 2.2.18 (“the subanalytic site”). If M is a real analytic mani-
fold, then we can declare:

• an open subset to be an open subanalytic subset;
• an admissible family to be an open family that is essentially finite on

compact subsets.

Example 2.2.19 (“another site”). In the situation of Example 2.2.18,
define:
• an open subset to be any subanalytic subset;
• an admissible family to be an open family that is essentially finite on

compact subsets.

The following three propositions and a remark explain the concept of
admissibility. First of all, notice that, for each open family U , saturation
implies: U ∈ CovX iff U ∪ {∅} ∈ CovX iff U \ {∅} ∈ CovX .

Proposition 2.2.20. If U and V are admissible, then:

(a) U ∪ V is admissible,
(b) U ∪1 V (and U ∪∗1 V if U and V are indexed by the same set) are

admissible,
(c) U ∩1 V is admissible.

Conversely, if
⋃
U ,
⋃
V are open, (

⋃
U)∩(

⋃
V) = ∅ and U∪V is admissible,

then

(d) U and V are admissible.

Proof. (a) Let Φ = {U ,V}. Then, by finiteness,
⋃

1 Φ = {
⋃
U ,
⋃
V} ∈

Fin(OpX) ⊆ CovX . By transitivity, we get
⋃
Φ = U ∪ V ∈ CovX .

(b) Notice that U ∪ V � U ∪∗1 V if U and V are indexed by the same set,
and U ∪ V � U ∪1 V in general. Apply saturation.

(c) Consider Φ = {U ∩1 V | V ∈ V}. Since
⋃

1 Φ = {(
⋃
U) ∩ V | V ∈ V}

= (
⋃
U) ∩ V ∈ CovX , by transitivity we have

⋃
Φ = U ∩1 V ∈ CovX .

(d) This follows from stability and saturation, since (
⋃
U)∩1 (U∪V) � U ,

and similarly for V.

Proposition 2.2.21 (omitting admissible unions). Assume the open
families U ,Vj (j ∈ J) are admissible and the family U ∪

⋃
j(Vj ∪ {

⋃
Vj}) is

admissible. Then U ∪
⋃
j Vj is admissible.
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Proof. Notice that U ∪
⋃
j(Vj ∪{

⋃
Vj}) is a refinement of U ∪

⋃
j{
⋃
Vj},

so the latter family is admissible. By applying transitivity to the family of
families {{U} : U ∈ U}∪ {Vj : j ∈ J}, we get the admissibility of the family
U ∪

⋃
j Vj .

Remark 2.2.22. Notice that a subfamily of an admissible family may
not be admissible, even if they have the same union. Similarly if U and V are
admissible, then U∩V may not be admissible. For example, consider the space
Rsalg of Example 2.2.14. Take U = {(1/n, 1 − 1/n) : n ≥ 3}, V = {(0, 1)},
W = {(0, 2)}. Then U ∪ V, U ∪ W ∈ CovR, but U = (U ∪ V) ∩ (U ∪ W)
/∈ CovR. On the other hand, an open superfamily (with the same union) of
an admissible family is always admissible by saturation.

Proposition 2.2.23. In any gts, if an open family is essentially finite
(on its union), then it is admissible.

Proof. First notice that if an open family U has the largest element U ,
then {U} and U are refinements of each other. Thus, by saturation, U is
admissible.

Now if an open family U has a finite subcover U0 (of its union), then for
each V ∈ U0 the family V ∩1 U has the largest element V , and is admissible.
Since U0 is admissible, so is U0 ∩1 U by transitivity, and U by saturation.

Corollary 2.2.24. We always have EssFin(OpX) ⊆ CovX ⊆ P(OpX).

Definition 2.2.25 (cf. [K1, p. 1]). We call a subset K of a gts X small
if for each admissible covering U of any open U , the set K ∩U is covered by
finitely many members of U . (We then say that U is essentially finite on K
or on K ∩ U .)

Proposition 2.2.26.

(1) Any subset of a small set is small.
(2) The image of a small set under a strictly continuous mapping is

small.

Proof. (1) Take any admissible (open) covering U of U . Assume L ⊆ K
and K is small. Since U is essentially finite on K ∩ U , it is also essentially
finite on its subset L ∩ U .

(2) Assume f : X → Y is strictly continuous, and K ⊆ X is small. Take
an admissible open covering V of V in Y . Then f−1(V) is essentially finite
on K, and f(K) ∩1 V = f(K ∩1 f−1(V)) is essentially finite.

Proposition 2.2.27. The usual Euclidean space with the usual topology
(denoted Rntop) is a gts in which all small subsets are finite. In particular, the
compact interval [0, 1] in Rtop is not small.
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Proof. A small subset K of the (topological) space Rntop is quasi-compact
and all of its subsets are also quasi-compact. But Rntop is Hausdorff. Since
all subsets of K are compact, K is a discrete set, and so finally a finite
set.

Remark 2.2.28. Notice that compact sets are small in Examples 2.2.18
and 2.2.19, but not necessarily small in Example 2.2.16 (because an open
subset of a compact set is not usually compact).

Let us denote the family of all small subsets of X by SmX , and SmopX =
SmX ∩OpX .

Definition 2.2.29 ([H-N]). A bornology B on a setX is an ideal in P(X)
containing every singleton. The pair (X,B) is then called a bornological set,
and each member of B a bounded set. A bornological universe is a triple
(X, τ,B), where τ is a topology, and B is a bornology. A mapping between
bornological sets is called bounded if it maps bounded sets onto bounded
sets.

We always have Fin(X) ⊆ SmX ⊆ P(X). Moreover,

Fact 2.2.30. The family SmX is a bornology on X.

For an extensive study of bornologies, see [H-N].

Fact 2.2.31. If {(Opα,Covα)}α∈A is a family of generalized topologies
on a set X, then their intersection (

⋂
α Opα,

⋂
α Covα) is a generalized topol-

ogy.

Remark 2.2.32. It is clear that
⋃⋂

α Covα ⊆
⋂
α

⋃
Covα. The other

inclusion follows from the fact that {U} is admissible for each open U . The
open subsets of

⋂
α Covα are exactly the members of

⋂
α Opα. Hence we can

just speak about the intersection
⋂
α Covα.

Definition 2.2.33. For any set X, a family V ∈ P2(X) and a family of
families Ψ ∈ P3(X), the smallest generalized topology Cov such that both
Op =

⋃
Cov contains V and Cov contains Ψ will be called the generalized

topology generated by V and Ψ . We will denote this topology by 〈V, Ψ〉, or
just 〈Ψ〉 if the first family is not given.

Definition 2.2.34. A basis of a generalized topology is a family of open
sets such that any open set is an admissible union of elements from the basis.
(The notion of a basis of a topology is a special case of the notion of a basis
of a generalized topology.)

Example 2.2.35. For each topological space (X, τ), the pair (τ, ∅) gen-
erates EssFin(τ) (see Proposition 2.2.23). If B is a basis of τ , then P(B) as
well as (B,P(B)) generate P(τ).
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Fact 2.2.36. If B is a basis of a generalized topology (Op,Cov), then
(B,CovB) generates (Op,Cov), where CovB = Cov ∩ P(B).

Proposition 2.2.37. For any mapping f : X → Y between sets and
any family of families Ψ ∈ P3(Y ) we have f−1(〈Ψ〉) ⊆ 〈f−1(Ψ)〉. If f is a
bijection, then equality holds.

Proof. By the axioms of generalized topology, the following rules lead to
the construction of 〈Ψ〉 for any Ψ :

• if U ∈ Fin(
⋃
Ψ), then {

⋃
U}, {

⋂
U},U ∈ Ψ+,

• if V ∈
⋃
Ψ, U ∈ Ψ , then V ∩1 U ∈ Ψ+,

• if Φ ∈ P(Ψ),
⋃

1 Φ ∈ Ψ , then
⋃
Φ ∈ Ψ+,

• if U ∈ Ψ, V ∈ P(
⋃
Ψ), U � V, then V ∈ Ψ+,

• if W ∈ P(X), U ∈ Ψ , W ∩1 U ∈ P(
⋃
Ψ), then {W ∩ (

⋃
U)} ∈ Ψ+.

Indeed, 〈Ψ〉 is the family of all families that can be obtained from mem-
bers of the original Ψ in finitely many steps of passing to a next Ψ+ using
the above rules.

If some V can be constructed this way from Ψ , then f−1(V) can be
constructed similarly from f−1(Ψ). Hence f−1(〈Ψ〉) ⊆ 〈f−1(Ψ)〉. If f is not
injective or not surjective, then there are more possibilities to construct new
admissible families in the domain. The bijection case is obvious.

Definition 2.2.38. Let X =
⋃
αXα, and for each α let Φα ∈ P3(Xα).

Write
〈Φα〉∗α = {U ∈ P2(X) | U ∩1 Xα ∈ Φα for each α}.

Lemma 2.2.39. Assume f : Y → X is any mapping, and X =
⋃
αXα. If

for each α some family of families Φα ∈ P3(Xα) is given, then 〈f−1(Φα)〉∗α ⊇
f−1(〈Φα〉∗α), where each f−1(Φα) is considered as an element of P3(f−1(Xα)).

Proof. Let U ∈ 〈Φα〉∗α, so U ∩1 Xα ∈ Φα for each α. Then f−1(U) ∩1
f−1(Xα)∈ f−1(Φα) for each α. This means f−1(U) ∈ 〈f−1(Φα)〉∗α.

Lemma 2.2.40. If every Φα of Definition 2.2.38 is a generalized topology
on Xα, then 〈Φα〉∗α is a generalized topology on X.

Proof. Left to the reader.

Definition 2.2.41. For any gts X and a subset Y ⊆ X we induce a gts
on Y by taking the generalized topology generated by CovX ∩2 Y . Then Y
will be called a subspace ofX, since the inclusion Y ↪→ X is a monomorphism
of gts’s. If moreover:

• the open subsets of the gts Y are exactly the traces of open subsets of
the gts X on Y (i.e. OpY = OpX ∩1 Y ),
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• the admissible families of the gts Y are exactly the traces of admissible
families of the gts X on Y (i.e. CovY = CovX ∩2 Y ),

then Y will be called a strict subspace of X.

Proposition 2.2.42. Assume a set X =
⋃
αXα is given. For any family

{(Xα,Covα)}α∈A of gts’s such that each intersection Xα∩Xβ is an open sub-
space both of (Xα,Covα) and of (Xβ,Covβ), there is a unique gts (X,CovX)
having every (Xα,Covα) as an open subspace and the family {Xα}α∈A ad-
missible.

Proof. For existence, put CovX = 〈Covα〉∗α. Then CovX is a generalized
topology by Lemma 2.2.40, each Xα is an open subspace by assumption, and
{Xβ}β∈A is admissible, being essentially finite on each Xα.

For uniqueness, assume that CovX satisfies the required conditions. No-
tice that CovX ⊆ 〈Covα〉∗α by stability. If U ∈ 〈Covα〉∗α, then

⋃
U be-

longs to OpX by assumption and regularity. Hence {Xα}α ∩1
⋃
U belongs

to CovX by assumption and stability. Each U ∩1 Xα belongs to Covα ⊆
CovX . By transitivity, U ∩1 {Xα}α belongs to CovX . By saturation, also
U ∈ CovX .

Definition 2.2.43. A gts (X,CovX) as in Proposition 2.2.42 is called
the admissible union of the family (Xα,Covα) of open subspaces, written

X =
a⋃
αXα. If the Xα are pairwise disjoint, then X is the (generalized

topological) direct sum (or coproduct) of {Xα}α∈A, written X =
⊕

α∈AXα.
(Notice that each Xα is then also closed. Moreover, each family of unions of
some Xα’s is open by regularity, and admissible by saturation.)

Proposition 2.2.44. If X=
a⋃
αXα, then CovX = 〈{{Xα}α}∪

⋃
αCovXα〉.

Proof. Set Ω = 〈{{Xα}α}∪
⋃
α CovXα〉. If V ∈ CovXα , then V is an open

family in X of the form U ∩1 Xα with U ∈ CovX . By stability, V ∈ CovX .
Since CovX is a generalized topology containing {Xα}α, it contains Ω.

Notice that OpX =
⋃
Ω. Indeed, if G ∈ OpX , then G ∩1 {Xα}α ⊆⋃

α OpXα ⊆
⋃
Ω. By regularity, G = G ∩

⋃
αXα ∈

⋃
Ω. The other implica-

tion is clear.
If U ∈ CovX , then for each α we have U ∩1Xα ∈ CovX ∩2Xα = CovXα .

The family of families Φ = {U ∩1 Xα}α is a subfamily of
⋃
α CovXα . The

set
⋃
U belongs to

⋃
Ω. Since

⋃
1 Φ = (

⋃
U) ∩1 {Xα}α ∈ Ω, by transitivity⋃

Φ = U ∩1 {Xα}α ∈ Ω. Its coarsening U is a member of Ω by satura-
tion.

The property of being strictly continuous is local in the following sense.

Proposition 2.2.45. Let X =
a⋃
U and Y be gts’s. For a mapping

f : X → Y , the following conditions are equivalent:
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(a) f is strictly continuous,
(b) f |U is strictly continuous for each U ∈ U .
Proof. For any set V ⊆ X, all V ∩U with U ∈ U are open iff V is open.

An open family V is admissible in X iff all V ∩1 U for U ∈ U are admissible
(in U). The proposition follows.

Question 2.2.46. Are there any analogous propositions for closed fam-
ilies?

Proposition 2.2.47. Let X =
a⋃
U and Y be gts’s. For a map f : Y →X,

the following conditions are equivalent:

(a) f is strictly continuous,
(b) the family f−1(U) is admissible and f |f−1(U) : f−1(U)→ U is strictly

continuous for each U ∈ U .
Proof. If f is strictly continuous, then f−1(U) is admissible and each

f−1(V) is admissible for an admissible V. But then f−1(U) ∩1 f−1(V) =
f−1(U ∩1 V) is admissible by stability for each U ∈ U . This is enough, since
each U is a strict subspace.

If the family f−1(U) is admissible and each f |f−1(U) : f−1(U) → U is
strictly continuous for U ∈ U , then for an admissible V each (f |f−1(U))

−1(V)

= f−1(U) ∩1 f−1(V) is admissible. Since f−1(
⋃
V) is open and f−1(U)

∩1 f−1(
⋃
V) is admissible, we get admissibility of f−1(U)∩1 f−1(V) by tran-

sitivity. Now f−1(U) ∩1 f−1(V) � f−1(V), and this last family is admissible
by saturation.

Fact 2.2.48. Each strictly continuous mapping is weakly continuous and
bounded (with respect to the bornologies of small sets).

The following examples show that a weakly continuous (and even con-
tinuous) mapping which is bounded (in the bornologies of small sets) may
not be strictly continuous.

Example 2.2.49 (RQ). Take the real line R and define the open sets as
the finite unions of open intervals with endpoints being rational numbers or
infinities. Define the admissible families as the essentially finite open families.
Denote by RQ the resulting gts. All subsets are small in this space. The
mapping RQ 3 x 7→ rx ∈ RQ for r /∈ Q is weakly continuous and bounded,
but not continuous.

Example 2.2.50. Consider an uncountable set X, and the topological
discrete generalized topology on it (that is, CovX = P2(X)). Let Y = X,
and let CovY be the family EssCount(P(Y )) of essentially countable families
of subsets of Y . Then id : Y → X is bounded continuous, but not strictly
continuous.
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Proposition 2.2.51. Each subspace Y of a gts X forms an initial sub-
object of X in GTS.

Proof. Recall that the generalized topology 〈CovX∩2Y 〉 is induced on Y .
Assume that (Z,CovZ) is any gts, and f : Z → Y is a mapping such that
iY X ◦ f : Z → X is strictly continuous. Then f−1(CovX ∩2 Y ) ⊆ CovZ , and
〈f−1(CovX ∩2 Y )〉 ⊆ CovZ . But 〈f−1(CovX ∩2 Y )〉 ⊇ f−1(〈CovX ∩2 Y 〉)
by Proposition 2.2.37. This means f is strictly continuous, and Y can be
identified with an initial subobject of X.

Remark 2.2.52. The subspaces in our sense may be identified with the
extremal subobjects in the category GTS. By Theorem 2.2.60 below and
Theorem 21.13(4) in [AHS], the class of extremal subobjects is equal to the
class of initial subobjects (i.e. the inclusion is an embedding) and to the class
of regular subobjects (i.e. the inclusion is an equalizer) in GTS.

Proposition 2.2.53. Each open subset and each small subset are strict
subspaces.

Proof. For an open U in X, the triple

(U,OpX ∩1 U,CovX ∩2 U) = (U,OpX ∩ P(U),CovX ∩ P2(U))

is a gts.
For a small set S in X, we have CovX ∩2 S = EssFin(OpX ∩1 S) so the

triple

(S,OpX ∩1 S,CovX ∩2 S) = (S,OpX ∩1 S,EssFin(OpX ∩1 S))

is a gts (see Corollary 2.3.2).

Remark 2.2.54. In general, the problem of proving transitivity, satura-
tion and regularity arises.

Remark 2.2.55. Dually, we may introduce a generalized cotopology on
any set: define a gts as a triple (X,ClX , IntX), where X is any set, ClX is
a family of subsets of X called closed sets, and IntX is a family of closed
families whose members are admissible (closed) intersections such that the
following conditions are satisfied:

• (co-finiteness) if F ∈ Fin(ClX), then
⋃
F ,
⋂
F ∈ ClX , F ∈ IntX ,

• (co-stability) if G ∈ ClX , F ∈ IntX , then G ∪1 F ∈ IntX ,
• (co-transitivity) if Φ ∈ P(IntX),

⋂
1 Φ ∈ IntX , then

⋃
Φ ∈ IntX ,

• (co-saturation) if F ∈ IntX , G ∈ P(ClX), G �∗ F , then G ∈ IntX ,
• (co-regularity) if W ∈ P(X), F ∈ IntX , W ∪1 F ∈ P(ClX), then
W ∪ (

⋂
F) ∈ ClX .

Here G �∗ F means that
⋂
G =

⋂
F and for each F ∈ F there is some

G ∈ G such that G ⊆ F .
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Proposition 2.2.56. Each closed subset of a gts X is a strict subspace.

Proof. If F is a closed subset of X, then (ClX ∩1 F, IntX ∩2 F ) =
(ClX ∩ P(F ), IntX ∩ P2(F )) is a generalized cotopology with the dual gen-
eralized topology (OpX ∩1 F,CovX ∩2 F ).

Corollary 2.2.57. Each locally closed subset of a gts X is a strict sub-
space.

Definition 2.2.58. For any family (or class) of mappings fi : X → Yi,
i ∈ I, if each Yi has a generalized topology Covi, then the generalized
topology generated by the union of the preimages f−1i (Covi) (denoted
〈
⋃
i f
−1(Covi)〉) on X will be called the initial generalized topology for the

family (fi)i∈I .

Definition 2.2.59 ([AHS, Definitions 21.1, 21.7]). Let C,B be cate-
gories. A functor U : C → B is a topological functor if each U -structured
source has a unique U -initial lift. A construct (C, U) is called topological if
the (forgetful) functor U is topological.

Theorem 2.2.60. The construct GTS is topological.

Proof. For a source of mappings fi : X → Yi indexed by a class I,
we may assume that I is a set. Assume each Yi has a generalized topo-
logy Covi. Give X the initial generalized topology for the family (fi)i∈I .
For any (Z,CovZ) and a mapping h : Z → X, if all fi ◦ h are mor-
phisms, then

⋃
i h
−1(f−1(Covi)) ⊆ CovZ . Since CovZ is a generalized topol-

ogy, it also contains 〈
⋃
i h
−1(f−1(Covi))〉 as well as h−1(〈

⋃
i f
−1(Covi)〉).

This means h is a morphism inGTS. We have proved that each U -structured
source has a U -initial lift. By [AHS, Theorem 21.5] this is enough, since the
construct (GTS, U) is amnestic, which means that no two different objects
in the same fibre of U are equivalent (see [AHS, Definition 5.4]).

Corollary 2.2.61 ([AHS, Theorem 21.17]). The category GTS is com-
plete, co-complete, wellpowered, co-wellpowered, is an (Epi, Extremal Mono-
Source)-category, has regular factorizations and has separators and cosepa-
rators.

Fact 2.2.62 ([AHS, Proposition 21.15]). The forgetful functor U :
GTS → Set preserves and uniquely lifts (small) limits and colimits. In
particular, all (small) limits and colimits in GTS are concrete.

Remark 2.2.63. The category Top may be treated as a full subcategory
of GTS by the full embedding it(X, τ) = (X, τ,P(τ)), it(f) = f .

Definition 2.2.64. The functor top : GTS → Top, which is given by
the formulas

top(X) = Xtop, top(f) = f,
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where OpXtop
= τ(OpX), CovXtop = P(τ(OpX)), will be called the topolo-

gization functor.

Fact 2.2.65. The functor top is a right adjoint of it, hence preserves
limits.

Example 2.2.66 (topologization of the Boolean algebra of definable
sets). Let M be a first order, one-sorted mathematical structure (i.e. a
set M with some distinguished relations, constants and functions). Then
for each A ⊆ M and n ∈ N, the family Defn(M, A) of A-definable sub-
sets of Mn forms a Boolean algebra. Consider Op = Defn(M, A), and
Cov = EssFin(Op). Then the generated topology τ(Op) is the family of
subsets of Mn that are

∨
-definable over A, and the complements of mem-

bers of τ(Op) (i.e. weakly closed sets) are the subsets of Mn type-definable
over A. (In practice, in model theory often bounds are set on the cardinality
of the family of open sets forming a

∨
-definable or type-definable set, or on

the cardinality of the set of parameters A; see for example [BOPP, p. 304],
[EKP, 0.2 Preliminaries] or [PS, Definition 2.1].)

Definition 2.2.67. A gts X will be called partially topological if OpX
is a topology, and topological if CovX = P(OpX).

Fact 2.2.68. Each topological gts is partially topological.

Fact 2.2.69. Each weakly continuous mapping between partially topolog-
ical gts’s is continuous.

Remark 2.2.70. We get an obvious faithful functor bor : GTS → Bor
to the category of bornological sets with bounded mappings, and a faithful
functor ubor : GTS→ UBor, with

ubor(X,OpX ,CovX)) = (X, τ(OpX),SmX)

and ubor(f) = f , to the category of bornological universes with continuous
bounded mappings.

Proposition 2.2.71. The restriction of ubor to the full subcategory
GTSpt of partially topological gts’s has a left adjoint gts : UBor→ GTSpt

defined by the rules

gts(X, τ,B) = (X, τ,EF(τ,B)) and gts(f) = f, where
EF(τ,B) = {U ⊆ τ | U ∩1 S is essentially finite for each S ∈ B}.

Proof. Notice that the following hom-sets are equal:

GTSpt((X, τ,EF(τ,B)), (Y, σ,CovY )) = UBor((X, τ,B), (Y, σ, SmY )).

Indeed, belonging to the left side means for a mapping f : X → Y that
f−1(σ) ⊆ τ and f−1(CovY ) ⊆ EF(τ,B), and belonging to the right side
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means that f−1(σ) ⊆ τ and f(B) ⊆ SmY . These two conditions are equiva-
lent due to Lemma 2.2.72. Indeed, if f(B) ⊆ SmY (hence B � f−1(SmY )),
then f−1(CovY ) ⊆ f−1(EF(σ, SmY )) ⊆ EF(τ, f−1(SmY )) ⊆ EF(τ,B). And
if f−1(CovY ) ⊆ EF(τ,B), then, for any B ∈ B and any V ∈ CovY , we get
f−1V ∩1 B ∈ EssFin(τ ∩1 B). This implies V ∩1 f(B) ∈ EssFin(σ ∩1 f(B)),
which means that f(B) belongs to SmY .

Lemma 2.2.72. Assume (X, τ,CovX) and (Y, σ,CovY ) are objects of
GTSpt. If f is continuous, then

f−1(EF(σ, SmY )) ⊆ EF(τ, f−1(SmY )).

Proof. Assume V ∈ EF(σ, SmY ) and S ∈ f−1(SmY ). Then f(S) ∈ SmY ,
hence V∩1f(S) ∈ EssFin(σ∩1f(S)). Applying f−1, we get f−1V∩1f−1fS ∈
EssFin(τ ∩1 f−1fS). In particular, f−1V ∩1 S ∈ EssFin(τ ∩1 S). This means
f−1V ∈ EF(τ, f−1(SmY )).

Definition 2.2.73. A gts X will be called weakly discrete if all its sin-
gletons are open subsets, discrete if all its subsets are open, and topological
discrete if all families of subsets of X are open and admissible.

Example 2.2.74 (strange weakly discrete small spaces). Let X be any
infinite gts where the open sets are exactly the finite sets or the whole space,
and the admissible families are exactly the essentially finite open families.
Then X is weakly discrete and the generated topology is discrete.

Example 2.2.75 (semialgebraic N). The space Rsalg has a small infinite
weakly discrete strict subspace N. This subspace N differs from the space of
Example 2.2.74.

Example 2.2.76 (infinite discrete small spaces). On any infinite set X,
there is a generalized topology making X a discrete space with X small. It is
enough to declare an open subset to be any subset, and an admissible family
to be any essentially finite family.

The spaces from Examples 2.2.74 and 2.2.75 are weakly discrete but
not discrete. The space from Example 2.2.76 is discrete, but not topological
discrete.

Fact 2.2.77. For a topological discrete space X, we have X =
⊕

x∈X{x}.

Definition 2.2.78. A subset Y ⊆ X will be called dense in X if its
weak closure (i.e. closure in the generated topology) is equal to X. A gts X
is separable if there is a countable dense subset of X.

Spaces 1–7 in Example 2.2.14 are all separable.

Definition 2.2.79. We will say that a gts X satisfies the first axiom of
countability if each point of X has a countable basis of open neighbourhoods
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(such a family may easily be made admissible), and satisfies the second axiom
of countability if there is a countable basis of the generalized topology.

Of course, each gts satisfying the second axiom of countability is separa-
ble. The space from Example 2.2.49 satisfies the second axiom of countability.

Example 2.2.80. The semialgebraic real line Rsalg has its natural topol-
ogy generated by a countable basis {(p, q) : p < q, p, q ∈ Q} which is not
a basis of the generalized topology. More generally, spaces 3–7 from Ex-
ample 2.2.14 satisfy the first axiom of countability, but not the second.

The separation axioms in GTS have weak and strong versions.

Definition 2.2.81. A gts X will be called: (a) weakly T1 if for each
x ∈ X and y ∈ X \ {x} there is an open set U such that x ∈ U and y /∈ U ;
(b) strongly T1 if each singleton is a closed subset of X; (c) weakly Haus-
dorff if for any distinct points x, y ∈ X there are open disjoint sets U, V
such that x ∈ U and y ∈ V ; (d) strongly Hausdorff if it is weakly Haus-
dorff and strongly T1; (e) weakly regular if for each x ∈ X and each subset
F of X not containing x and either closed or a singleton there are open
disjoint sets U, V such that x ∈ U and F ⊆ V ; (f) strongly regular if it is
strongly T1 and weakly regular; (g) weakly normal if for two disjoint sets
F,G, each either closed or a singleton, there are open disjoint sets U, V such
that F ⊆ U and G ⊆ V ; (h) strongly normal if it is strongly T1 and weakly
normal.

Proposition 2.2.82. A gts X is weakly T1 (weakly Hausdorff, respec-
tively) if and only if the generated topology of X is T1 (Hausdorff, respec-
tively). Each weakly regular gts has a regular (Hausdorff ) generated topology.

Proof. The first two cases are obvious. If a gts X is weakly regular, then
for a point x ∈ X and a weakly closed set F not containing x the set F c
is weakly open. Some open U not intersecting F and containing x exists.
By weak regularity, there exist: an open V containing x and an open W
containing U c such that V and W are disjoint. In particular, V and W are
weakly open.

There is a weakly discrete small space (see Example 2.2.74) which is
weakly Hausdorff but not strongly T1. This space also has a regular (Haus-
dorff) strong topology, but is not weakly regular.

Proposition 2.2.83. Each gts with the closure property (CPG) and a
regular (Hausdorff ) generated topology is weakly regular.

Proof. Consider a point x and a set F (possibly a singleton) in a gts from
the assumption separated by weakly open sets U 3 x, V ⊇ F . There exists
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an open subset U ′ containing x. The weak closure U ′ is closed and disjoint
with V .

Example 2.2.84. The space RQ from Example 2.2.49 is weakly normal,
but not strongly T1 (irrational points are not closed).

Definition 2.2.85. The quasi-component C̃x of x in the space X is the
intersection of all clopen subsets of X containing x.

Fact 2.2.86. All quasi-components are weakly closed.

Definition 2.2.87. A subset Y of a gts X will be called connected if
there is no pair U, V of open subsets of X such that Y ⊆ U ∪ V , Y ∩U 6= ∅,
Y ∩ V 6= ∅, and Y ∩ U ∩ V = ∅.

The spaces from 1–7 of Example 2.2.14 are all connected. Also there is
a weakly discrete small space (Example 2.2.74) which is connected. Discrete
spaces having more than one point are not connected. “The subanalytic site”
is connected iff the manifoldM is connected. The space from Example 2.2.75
is not connected.

Proposition 2.2.88. If X is a gts, x ∈ X, and {Cα}α∈A is a family of
connected subsets of X each containing x, then

⋃
α∈ACα is connected.

Proof. Assume that open subsets U, V of X satisfy
⋃
α∈ACα ∩ U 6= ∅,⋃

α∈ACα∩V 6= ∅,
⋃
α∈ACα ⊆ U ∪V ,

⋃
α∈ACα∩U ∩V = ∅. Assume x ∈ U .

Let y ∈ Cα0 ∩ V for some α0 ∈ A. The sets U ∩ Cα0 and V ∩ Cα0 are
non-empty, and cover Cα0 , thus Cα0 is not connected, a contradiction. This
proves

⋃
α∈ACα is connected.

Definition 2.2.89. The connected component of a point x ∈ X of a
space X is the largest connected set Cx containing x.

Remark 2.2.90. Since the weak closure of Cx is connected, Cx is always
weakly closed. Each connected component is contained in a quasi-component.

Fact 2.2.91. Each mapping from a topological discrete space to any gts
is strictly continuous (hence each subset of the codomain may be the image).

Definition 2.2.92. A strictly continuous mapping between gts’s will be
called open if the image of any open subset of the domain is an open subset
of the range. Similarly, a closed mapping maps closed subsets onto closed
subsets.

Each strict homeomorphism is both an open mapping and a closed map-
ping.

Example 2.2.93. The identity mapping from the infinite discrete small
space (see Example 2.2.76) on some (infinite) setX to the topological discrete
space on this set is a closed and open strictly continuous bijection, but not
a strict homeomorphism.
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Definition 2.2.94. A local strict homeomorphism is a strictly contin-
uous mapping f : X → Y for which there is an open admissible covering
X =

⋃
α∈AXα such that each f |Xα is an open mapping and a strict homeo-

morphism onto its image.

The next example shows that a local strict homeomorphism may not be
an open mapping. (We cannot expect closedness even in Top.)

Example 2.2.95. A locally semialgebraic covering p : Rloc → S1 of Ex-
ample 13 (see also Example 3) in [P1] is a local strict homeomorphism but it
is neither an open mapping nor a closed mapping. (Here Rloc may be under-
stood as (Rsalg)loc, see Definition 2.1.15 in [P2].) After passing to the strong
topologies, we get the mapping ptop : Rtop → (S1)top, which is open but not
closed.

Question 2.2.96. Is any subset of a gts a strict subspace?

2.3. Small spaces

Definition 2.3.1. A gts X (i.e. the pair (X,CovX)) will be called a
small space if the set X is small in the space X. The class of small spaces
forms a full subcategory SS of GTS.

Corollary 2.3.2. If X is a small space, then CovX = EssFin(OpX).

Definition 2.3.3. A Noetherian family of sets is a family whose inter-
section is the intersection of some finite subfamily. A family of families will
be called Noetherian if each of its members is a Noetherian family.

Fact 2.3.4. For each gts X, we have Noeth(ClX) ⊆ IntX ⊆ P(ClX),
where Noeth(ClX) is the family of all Noetherian closed families of X.

Fact 2.3.5. A gts X is small iff the family IntX of admissible intersec-
tions is Noetherian, i.e. IntX = Noeth(ClX).

Example 2.3.6. Any topological space (X, τ) may be made small (and
partially topological) by declaring OpX = τ and CovX = EssFin(OpX).

Example 2.3.7 (tower of closed sets in N). Let us introduce a generalized
topology on N in the following way: X is open iff X is a final interval or
the empty set, and any open family is admissible. Then also all admissible
families are essentially finite.

Fact 2.3.8. Let X,Y be small spaces, and f : X → Y be any mapping.
The following conditions are equivalent:

(a) f is strictly continuous,
(b) f is continuous.

Remark 2.3.9. If both X and Y are small, then in condition (b) of
Proposition 2.2.47 we can change “admissible” to “open”.
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The spaces from Examples 2.2.74, 2.2.75, 2.2.76 are small.

Proposition 2.3.10. All subsets of a small space are strict subspaces.

Proof. This follows from Propositions 2.2.26 and 2.2.53.

Theorem 2.3.11. The construct SS is topological.

Proof. This situation is similar to that of Theorem 2.2.60. We get

h−1
(〈⋃

i

f−1i (EssFin(Opi))
〉)
⊆
〈⋃

i

h−1(f−1i (EssFin(Opi)))
〉

= EssFin
(⋃

i

h−1(f−1i (Opi))
)
⊆ EssFin(OpZ).

Fact 2.3.12 ([AHS, Theorem 21.17]). The category SS is complete, co-
complete, wellpowered, co-wellpowered, is an (Epi, Extremal Mono-Source)-
category, has regular factorizations and has separators and coseparators.

Remark 2.3.13. The categories GTS and SS are not regular, since
Counterexample 2.4.5 from [Bor] applies. This is also valid for the categories
LSS, WSS, NWSS to be considered.

Fact 2.3.14 ([AHS, Proposition 21.15]). The forgetful functor V :
SS → Set preserves and uniquely lifts (small) limits and colimits. In par-
ticular, all (small) limits and colimits in SS are concrete.

Proposition 2.3.15. The canonical projections from a binary (or finite)
product of small spaces to its factors are open and closed mappings.

Proof. The canonical projection π2 : X × Y → Y is open by the con-
struction of the product X × Y , where the open sets are exactly the finite
unions of open boxes. Similarly, the dual πc2 : X × Y → Y is open, where
πc2(W ) = {y ∈ Y | (x, y) ∈W for each x ∈ X}.

Definition 2.3.16. The functor sm : GTS→ SS given by the formulas

sm(X) = Xsm, sm(f) = f,

where OpXsm
= OpX and CovXsm = EssFin(OpX), will be called the small-

ification functor.

Consider now the full and faithful inclusion functor is : SS→ GTS.

Proposition 2.3.17. The functor sm is a left adjoint of is, hence pre-
serves colimits.

Proof. Notice that the preimage of an essentially finite family is al-
ways essentially finite. For any object (X,CovX) of GTS and any object
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(Y,EssFin(OpY )) of SS, we get the following equality of hom-sets:

GTS((X,CovX), (Y,EssFin(OpY )))

= SS((X,EssFin(OpX)), (Y,EssFin(OpY ))).

Both sets contain exactly those mappings f : X → Y which satisfy the
condition f−1(OpY ) ⊆ OpX . This equality is clearly natural in (X,CovX)
and (Y,EssFin(OpY )). Since sm is a left adjoint, it preserves colimits by the
dual of Proposition 18.9 in [AHS].

Proposition 2.3.18. The category SSpt of partially topological small
spaces is isomorphic to the category Top.

Proof. The isomorphism is given by the (restrictions of) the known func-
tors sm : Top→ SSpt and top : SSpt → Top.

Fact 2.3.19. All small topological discrete spaces are finite.

Proposition 2.3.20. A finite subspace of a strongly T1 space is a closed
subspace and a small topological discrete gts.

Proof. Closedness is obvious. A finite strongly T1 space is discrete and
both topological and small.

Fact 2.3.21. Each indiscrete space (i.e. with OpX = {∅, X}) is both
small and topological.

Definition 2.3.22. We will say that a gts X satisfies (AQC) (i.e. has
admissible family of quasi-components) if the family of quasi-components of
X is open and admissible (i.e. X decomposes into the direct sum of its quasi-
components). We will say that a gts X satisfies (ACC) (i.e. has admissible
family of connected components) if the family of connected components of
X is open and admissible (i.e. X decomposes into the direct sum of its
connected components).

Proposition 2.3.23. Each small space satisfying (AQC) has a finite
number of quasi-components. Each small space satisfying (ACC) has a finite
number of connected components.

Proof. Choose one point in any quasi-component (connected component,
respectively) of the space. The resulting strict subspace is topological discrete
and small, so it is finite.

The small space from Example 2.2.76 has infinitely many connected com-
ponents.

Proposition 2.3.24. A local strict homeomorphism from a small space
is an open mapping.

Proof. This follows by decomposing a local strict homeomorphism into
a union of finitely many strict homeomorphisms.



240 A. Piękosz

Acknowledgments. This paper was mainly written during my stay at
the Fields Institute during the Thematic Program on o-minimal Structures
and Real Analytic Geometry in 2009. I thank the Fields Institute for their
warm hospitality.

References

[AHS] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories,
The Joy of Cats, Wiley, 1990; http://katmat.math.uni-bremen.de/acc/.

[BO] E. Baro and M. Otero, Locally definable homotopy, Ann. Pure Appl. Logic 161
(2010), 488–503.

[BW] M. Barr and C. Wells, Toposes, Triples and Theories, Grundlehren Math.
Wiss. 278, Springer, 1985.

[B] G. Beer, Embeddings of bornological universes, Set-Valued Anal. 16 (2008),
477–488.

[BOPP] A. Berarducci, M. Otero, Y. Peterzil and A. Pillay, A descending chain condition
for groups definable in o-minimal structures, Ann. Pure Appl. Logic 134 (2005),
303–313.

[Bor] F. Borceux, Handbook of Categorical Algebra. Vol. 2. Categories and Structures,
Encyclopedia Math. Appl. 51, Cambridge Univ. Press, 1994.

[DK] H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, Lecture Notes in
Math. 1173, Springer, 1985.

[EKP] C. Ealy, K. Krupiński and A. Pillay, Superrosy dependent groups having finitely
satisfiable generics, Ann. Pure Appl. Logic 151 (2008), 1–21.

[EP] M. Edmundo and L. Prelli, Sheaves on T -topologies, arXiv:1002.0690v2
[math.LO].

[H-N] H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland, Amster-
dam, 1977.

[KS] M. Kashiwara and P. Shapira, Categories and Sheaves, Grundlehren Math.
Wiss. 332, Springer, 2006.

[K1] M. Knebusch,Weakly Semialgebraic Spaces, Lecture Notes in Math. 1367, Sprin-
ger, 1989.

[K2] M. Knebusch, Semialgebraic topology in the recent ten years, in: Real Algebraic
Geometry (Rennes, 1991), M. Coste et al. (eds.), Lecture Notes in Math. 1524,
Springer, 1992, 1–36.

[MM] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Universitext,
Springer, 1992.

[M] L. Mathews, Cell decomposition and dimension functions in first-order topolog-
ical structures, Proc. London Math. Soc. (3) 70 (1995), 1–32.

[PS] Y. Peterzil and S. Starchenko, Definable homomorphisms of abelian groups in
o-minimal structures, Ann. Pure Appl. Logic 101 (2000), 1–27.

[P1] A. Piękosz, O-minimal homotopy and generalized (co)homology, Rocky Moun-
tain J. Math., to appear.

[P2] A. Piękosz, On generalized topological spaces II, Ann. Math. Polon., to appear.
[Pil] A. Pillay, First order topological structures and theories, J. Symbolic Logic 53

(1987), 763–778.
[S] H. Schoutens, T-minimality, preprint, 2001.

http://katmat.math.uni-bremen.de/acc/
http://dx.doi.org/10.1016/j.apal.2009.03.003
http://dx.doi.org/10.1007/s11228-007-0068-2
http://dx.doi.org/10.1016/j.apal.2005.01.002
http://dx.doi.org/10.1016/j.apal.2007.09.004
http://arxiv.org/abs/1002.0690v2
http://arxiv.org/abs/1002.0690v2
http://dx.doi.org/10.1112/plms/s3-70.1.1


Generalized topological spaces I 241

[V] T. Vroegrijk, On realcompactifications defined by bornologies, Acta Math. Hun-
gar. 133 (2011), 387–395.

Artur Piękosz
Instytut Matematyki
Politechnika Krakowska
Warszawska 24
31-155 Kraków, Poland
E-mail: pupiekos@cyfronet.pl

Received 16.11.2010
and in final form 8.6.2012 (2323)

http://dx.doi.org/10.1007/s10474-011-0141-z



	Introduction
	Generalized topological spaces
	Grothendieck topology
	Generalized topological spaces
	Small spaces


